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Abstract. This paper’s main objective is to examine an initial boundary value problem of a quasilin-
ear parabolic equation of non-standard growth and logarithmic nonlinearity by utilizing the logarithmic
Sobolev inequality and potential well method. Results of global existence, estimates of polynomial decay,
and blowing up of weak solutions have been obtained under certain conditions that will be stated later.
Our results extend those of a recent paper that appeared in the literature.

1. Introduction

In the present paper, we deal with the global existence and blowing-up of weak solutions for the
following initial boundary value problem with logarithmic nonlinearity

ut − div
(
|∇u|p(x)−2

∇u
)
= |u|p(x)−2 u log |u| , x ∈ Ω, t > 0,

u (x, t) = 0, x ∈ ∂Ω, t > 0,
u (x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω. The function p (.) is continuous on Ω into
R+ such that

2 < p− ≤ p(x) ≤ p+ < p∗ (x) , (1.2)

with

p− = ess inf
x∈Ω

p (x) , p+ = ess sup
x∈Ω

p (x) and p∗ (x) =
{ np(x)

n−p(x) , if p+ < n,
+∞, if p+ ≥ n,
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and u0 ∈W1,p(x)
0 (Ω) \ {0} .

According to recent research, studying problems with nonstandard p (x)−growth can be an effective
tool for modeling a wide range of events in many scientific and technological fields. Their applications in
elastic mechanics, fluid dynamics, or calculus of variations, (see, for example, [1, 2, 36, 37]), have stimulated
the study of problems with variable exponents. Variable exponent spaces are regarded as a good tool for
handling problems of this type. The variable exponent Lebesgue and Sobolev spaces have been developed
as a result of numerous theoretical studies (see [13, 19–22, 25, 32]). As a result, this topic is becoming
increasingly important and well-known; for further details on variable exponent spaces, see [10, 12, 33, 39].

On the level of classic Lebesgue and Sobolev spaces, we may find quite many global existence or
nonglobality, blow-up, a long time behavior of weak solution results on differential equations in the
literature; see for instance [8, 11, 16, 18, 24, 29, 38].

When p(x) ≡ 2, the problem (1.1) has been considered in [9]; the authors investigated global existence
and blow-up in infinite time of the solutions. If p(x) ≡ p a constant exponent, Cong Nhan Le and Xuan
Truong Le established in [28] the global existence and blow-up results. They showed that when p > 2 ,
solutions blow up in finite time and obtained sufficient conditions on the existence of global weak solutions.

On the other hand, works on differential equations at the level of variable exponent Lebesgue and
Sobolev spaces are fairly fewer.

Hua Wang and Yijun He in [40] were interested in the case where
ut = ∆u + |u|p(x) , x ∈ Ω, t > 0,
u (x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u (x, 0) = u0 (x) , x ∈ Ω,

with u0 (x) ≥ 0. They demonstrated that under condition 1 < p− ≤ p+ ≤ n+2
n−2 and certain initial data, the

solution blows up in finite time for a positive initial energy.
M. Kbiri Alaoui et al. [3] considered the problem

∂u
∂t − div

(
|∇u|m(x)−2

∇u
)
= |u|p(x)−2 u + f , in Q = Ω × (0,T) ,

u (x, t) = 0, on ∂Q = ∂Ω × [0,T),
u (x, 0) = u0 (x) , in Ω,

They proved that any solution with a nontrivial initial datum blows up in finite time whenever∫
Ω

u2
0dx > 0, f ≡ 0 and

∫
Ω

(
1

p(x)
|u0|

p(x)
−

1
m(x)

|∇u0|
m(x)

)
dx ≥ 0.

Boudjriou in [7] studied the problem
ut − div

(
|∇u|p(x)−2

∇u
)
= |u|q(x)−2 u log |u| , x ∈ Ω, t > 0,

u (x, t) = 0, x ∈ ∂Ω, t > 0,
u (x, 0) = u0 (x) , x ∈ Ω,

Under suitable conditions, the author discusses the global existence and finite time blow-up of solutions
by using the potential well method via the Pohozaev manifold and the concavity method.

In light of the extensive literature on polynomial nonlinear terms, physicists and mathematicians have
shown a keen interest in logarithmic nonlinearity. Both the relativistic wave equation for spinless particles
and the non-relativistic wave equation describing spinning particles traversing in an external electromag-
netic field were also studied by introducing the logarithmic nonlinearity (see [4]). The global-in-time well
posedness of the solution to the problem of the evolution equation with such logarithmic type nonlinearity
also draws a lot of attention. This type of nonlinearity is also encountered in many branches of physics,
including incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media
[8], inflationary cosmology [17], nuclear physics [25], optics [26], and geophysics [30].
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It should be noted that the presence of logarithmic nonlinearity causes a few difficulties in the deploy-
ment of the potential well method. So as to deal with this situation, we need the logarithmic Sobolev
inequality, presented in [15, 28].

Lemma 1.1. Let q > 1, µ > 0, and u ∈W1,q (Rn) \ {0} . Then we have

q
∫
Rn

|u(x)|q log
(
|u(x)|

∥u(x)∥Lq(Rn)

)
dx +

n
q

log
(

qµe
nLq

) ∫
Rn

|u(x)|q dx ≤ µ
∫
Rn

|∇u(x)|q dx,

where

Lq =
q
n

(
q − 1

e

)q−1

π−
q
2

 Γ
(

n
2 + 1

)
Γ
(
n q−1

q + 1
) 

q
n

.

In this paper, we consider the problem (1.1) with the presence of a nonlinear diffusion term of variable
exponent ∆p(x) = div

(
|∇u|p(x)−2

∇u
)

and logarithmic nonlinearity |u|p(x)−2 u log |u|. This extends the problem
in [28] from the level of classical Lebesgue and Sobolev spaces to the level of variable exponent Lebesgue
and Sobolev spaces. Our goal is to establish a global existence, a long time decay and blow up in finite
time of solutions of the problem (1.1) within the framework of the variable exponent Lebesgue and Sobolev
spaces by means of the potential well method (see [34]) via the Nehari manifold, and the concavity method
(see [29]) in order to obtain global existence and blow up of weak solutions to (1.1). In our work, we discuss
the following details:

-The solution of problem (1.1) exists locally and globally in time if it holds the condition p+ < p∗
−

, but
here we have discussed two cases

Case 1: If 2 < p− ≤ p+ <
(
1 + 2

n

)
p−,

Case 2: If p+ <
(
1 + 2

n

)
p− does note holds, i.e.,

((
1 + 2

n

)
p− ≤ p+ < p∗

−

)
.

We point out that the case 1 with p− = p and p+ = q has been discussed in [23] where the authors obtained
results of decay and finite time blow-up of solutions for the Pseudo-parabolic p(x)−Laplacian equation with
logarithmic nonlinearity.

ut − ∆ut − div
(
|∇u|p(x)−2

∇u
)
= |u|q(x)−2 u log |u| , x ∈ Ω, t > 0. (1.3)

But case 2 is not studied in the previous cited papers in the literature.
We montion also that an initial boundary value problem like (1.3) has been considered in [5, 14], (see

also [41])
An other two cases that we have discussed for prouving the coercivity of the energy functional defined

in (2.4) (see the proof of Lemma 2.6 below) that are:

Case 3: If 2 < p− ≤ p+ <
(
1 + p−

n

)
p−,

Case 4: If p+ <
(
1 + p−

n

)
p− does note holds, i.e.,

((
1 + p−

n

)
p− ≤ p+ < p∗

−

)
.

Also, these cases are not considered in the literature.
We also note that the inequality (2.6), which we have used throughout the paper and without which

the potential well method does not work, plays an important role in this inequality, as does the generic
constant γ, which we defined for the first time in (a).

There is no result for the logarithmic Sobolev inequality in variable exponent Sobolev spaces to our
knowledge, but this is the first result in the literature that allows the treatment of non-standard growth
parabolic equations by using the classical logarithmic Sobolev inequality, which is a fundamental inequality,
to get the results in [28], for dealing with the logarithmic nonlinear term (see Lemma 2.5)
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Remark 1.1. If u ∈W1,p(x)
0 (Ω) \ {0} , then, by defining u(x) = 0 for x ∈ Rn

\Ω it holds

p−

∫
Ω

|u|p− log
(
|u|
∥u∥p−

)
dx +

n
p−

log
(

p−µe
nLp−

) ∫
Ω

|u|p− dx ≤ µ
∫
Ω

|∇u|p− dx, (1.4)

p+

∫
Ω

|u|p+ log
(
|u|
∥u∥p+

)
dx +

n
p+

log
(

p+µe
nLp+

) ∫
Ω

|u|p+ dx ≤ µ
∫
Ω

|∇u|p+ dx, (1.5)

for any real number µ > 0, where

Lp− =
p−
n

(
p− − 1

e

)p−−1

π−
p−
2

 Γ
(

n
2 + 1

)
Γ
(
n p−−1

p−
+ 1

) 
p−
n

, Lp+ =
p+
n

(
p+ − 1

e

)p+−1

π−
p+
2

 Γ
(

n
2 + 1

)
Γ
(
n p+−1

p+
+ 1

) 
p+
n

.

2. Preliminaries

2.1. Functional framwork

We give some results about the Lebesgue and Sobolev spaces with variable exponents, which are
well-known in [12, 25, 32]. The following notations will be used in the sequel:

∥v∥p(.) = ∥v∥Lp(.)(Ω) , ∥v∥p− = ∥v∥Lp− (Ω) , ∥v∥p+ = ∥v∥Lp+ (Ω) .

Let P (Ω) be the set of all Lebesgue measurable functions p (.) : Ω → [1,∞], where Ω is a bounded
domain in Rn.

A function p (.) is said to satisfy the log-Hölder continuous condition in Ω if

∀x, y ∈ Ωwith
∣∣∣x − y

∣∣∣ ≤ 1
2
,

∣∣∣p (x) − p
(
y
)∣∣∣ ≤ C0

− log
(∣∣∣x − y

∣∣∣) , (2.1)

where C0 > 0 is a constant.
We say that p (.) satisfy the log-Hölder decay condition in Ω if

∀x ∈ Ω,
∣∣∣p (x) − p∞

∣∣∣ ≤ C∞
log (e + |x|)

, (2.2)

where p∞ = lim|x|→∞ p (x) and C∞ > 0 are constants.
By Plog (Ω) we denote the class of variable exponents:

P
log (Ω) =

{
p (.) ∈ P (Ω) : 1/p (.) is globally log-Hölder continuous

}
.

Note that r (.) ∈ P (Ω) is globally log-Hölder continuous in Ω, if r (.) satisfies both (2.1)-(2.2) conditions.

Proposition 2.1 (see [10]). Given a domain Ω
1) If p (.) fulfills (2.1), then it is uniformly continuous and fulfills (2.2) on every bounded subset. E ⊂ Ω.
2) If p (.) ∈ P (Ω) and p+ < +∞, then 1/p (.) satisfies either conditions (2.1), (2.2) or both if and only if p (.) is also.

Remark 2.1. From Proposition 2.1 we deduce that if Ω is bounded, p (.) ∈ C
(
Ω

)
and satisfies the conditions (1.2),

(2.1) then p (.) , 1/p (.) ∈ Plog (Ω)
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Now we define the p(.) modular of a measurable function u : Ω→ R as follows:

ρp(x) (u) =
∫
Ω\Ω∞

|u(x)|p(x) dx + ess sup
x∈Ω∞
|u(x)| ,

where

Ω∞ =
{
x ∈ Ω : p(x) = ∞

}
.

The generalized Lebesgue space Lp(.)(Ω) is the class of those measurable functions u defined on Ω as
follows

Lp(x)(Ω) =

u : u ∈ P (Ω) ,
∫
Ω

|u(x)|p(x) dx < ∞


We define the Luxembourg norm of the space Lp(.)(Ω) by

∥u∥p(x) = inf
{
κ > 0 : ρp(x) (u/κ) ≤ 1

}
.

The space Lp(.)(Ω) equipped with this norm, is a Banach space.
Now we present some results that concern variable-exponent Lebesgue spaces

Proposition 2.2 (see [20, 21]). Let u ∈ Lp(x)(Ω), (un)n∈N ⊂ Lp(x)(Ω), then
1) ∥u∥p(x) < 1 (= 1;> 1)⇔ ρp(x) (u) < 1 (= 1;> 1) ,
2) If ∥u∥p(x) > 1, then ∥u∥p−p(x) ≤ ρp(x) (u) ≤ ∥u∥p+p(x) ,

3) If ∥u∥p(x) < 1, then ∥u∥p+p(x) ≤ ρp(x) (u) ≤ ∥u∥p−p(x) ,

4) ∥un∥p(x) →n→+∞
0⇔ ρp(x) (un) →

n→+∞
0,

5) ∥un∥p(x) →n→+∞
+∞⇔ ρp(x) (un) →

n→+∞
+∞.

Proposition 2.3 (see [20]). Let u, un ∈ Lp(x)(Ω), n = 1, 2, ... . Then the following statements are equivalent to each
other :
1) limn→∞ ∥un − u∥p(x) = 0,
2) limn→∞ ρp(x) (un − u) = 0,
3) un converges to u in Ω in measure and limn→∞ ρp(x) (un) = ρp(x) (u) .

Proposition 2.4 (see [20]). Assume that Ω has finite measure, p1 (x) , p2 (x) ∈ P (Ω) . If p1 (x) ≤ p2 (x) for almost
all x ∈ Ω and 1 ≤ pi− ≤ pi+ < +∞, (i = 1, 2) , then Lp2(x) (Ω) ↪→ Lp1(x) (Ω) and the embedding is continuous.

Proposition 2.5 (generalized Hölder inequality, see [25, 33]). Let p (.) , p′ (.) ∈ P (Ω) such that p− > 1 and

1
p (.)
+

1
p′ (.)

= 1, a.e. x ∈ Ω.

Then the inequality∫
Ω

|u (x) v (x)| dx ≤
(

1
p−
+

1
p′
−

)
∥u∥p(x) ∥v∥p′(x) ,

holds for every u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω) .

The interpolation inequality given in [39, Lemma 8.2 page 37] is also needed
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Lemma 2.1. If 1 ≤ p0 < pθ < p1 ≤ ∞, then

∥u∥pθ ≤ ∥u∥
1−θ
p0
∥u∥θp1

for all u ∈ Lp0 (Ω) ∩ Lp1 (Ω) with θ ∈ (0, 1) defined by 1
pθ
= 1−θ

p0
+ θ

p1
.

Generally, variable-exponent Lebesgue spaces and classical Lebesgue spaces are similar in many prop-
erties. Moreover, several results that concern variable-exponent Lebesgue spaces have been obtained, see
for instance [12, 25] for the following statements.
• The modular ρp(.) and the norm ∥.∥p(x) are lower semi-continuous with respect to (sequential) weak con-
vergence and almost everywhere convergence.
• The space Lp(.)(Ω) is reflexive if and only if 1 < p− < p+ < ∞.
• Continuous functions are dense if p+ < ∞.

The space W1,p(.)(Ω) is the variable-exponent Sobolev space defined by

W1,p(.)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
This space endowed with the norm

∥u∥1,p(x) = ∥u∥p(x) + ∥∇u∥p(x) ,

is a Banach space.
We define W1,p(x)

0 (Ω) as the closure of C∞0 (Ω) in W1,p(x) (Ω) with respect to the norm ∥u∥1,p(x) = ∥u∥W1,p(.)
0 (Ω) =

∥∇u∥p(x), since p (.) satisfies (1.2) and (2.1). The space W−1,p′ (.)(Ω) is the dual space of W1,p(x)
0 (Ω) where p′ (x)

is the conjugate exponent function of p (x) such that 1
p(x) +

1
p′ (x) = 1.

We denote X0 =W1,p(x)
0 (Ω) \ {0}, with the norm ∥u∥1,p(x) = ∥∇u∥p(x).

Proposition 2.6 (see [12, Theorem 8.1.13]). Let p ∈ P (Rn) . The space W1,p(.)
0 (Ω) is a Banach space, which is

separable if p (.) is bounded, and reflexive and uniformaly convexe if 1 < p− ≤ p+ < +∞.

Proposition 2.7. Assume that 1 ≤ ess infx∈Ω pi(x) ≤ pi(x) ≤ ess supx∈Ω pi(x) < +∞, (i = 1, 2) . If p1 (x) ≤ p2 (x) ,
then W1,p2(x) (Ω) ↪→W1,p1(x) (Ω) .

Proposition 2.8 (see [32]). If Ω is bounded, p(x) ∈ C
(
Ω

)
such that p+ < n and q (x) defined in Ω with q− ≥ 1 and

ess inf
x∈Ω

(
p∗(x) − q (x)

)
> 0,

then the embedding W1,p(x)
0 (Ω) ↪→ Lq(x) (Ω) is compact.

Proposition 2.9 (see [10, Theorem 6.29] and [12, Theorem 8.3.1]).
1) GivenΩ and p (.) ∈ P (Ω) such that p+ < n suppose that the maximal operator is bounded on L(p∗(.)/n′)′ (Ω) . Then
W1,p(.)

0 (Ω) ⊂ Lp∗(.) (Ω) , and

∥u∥p∗(.) ≤ C ∥∇u∥p(.) .

2) Let p ∈ Plog (Ω) satisfy 1 ≤ p− ≤ p+ < n. Then for every u ∈W1,p(.)
0 (Ω), the inequality

∥u∥p∗(.) ≤ c ∥∇u∥p(.)

holds with a constant c depending only on the dimension n, clog(p), and p+.
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Lemma 2.2. Let ϱ (.) be a continuous function from Ω into (0,+∞) such that 0 < ess infx∈Ω ϱ (x) = ϱ− ≤ ϱ (x) ≤
ϱ+ = ess supx∈Ω ϱ (x) < +∞. Then the following inequalities hold

log s ≤
e−1

ϱ (x)
sϱ(x), for all s ∈ [1,+∞) and −

e−1

ϱ (x)
≤ sϱ(x) log s ≤ 0, for all s ∈ (0, 1].

Proof. The proof follows directly by studying the variations of the function φ (s) = log s − e−1

ϱ(x) s
ϱ(x), for

s ∈ [1,+∞) and the function ϕ (s) = sϱ(x) log s, for s ∈ (0, 1].

Remark 2.2. It follows from Lemma 2.2 that

sp(x) log s ≤
e−1

ϱ (x)
sp(x)+ϱ(x), for all s ∈ [1,+∞) .

Lemma 2.3 (see [27]).
(a) For any function u ∈W1,p

0 (Ω), we have the inequality

∥u∥q ≤ Bq,p ∥∇u∥p ,

for all q ∈ [1,∞) if n ≤ p, and 1 ≤ q ≤ np
n−p if n > p. The best constant Bq,p depends only on Ω,n, p and q. We will

denote the constant Bp,p by Bp.

(b) Let 2 ≤ s ≤ p < q < p∗. For any u ∈W1,p
0 (Ω) we have

∥u∥q ≤ C ∥∇u∥αp ∥u∥
1−α
s ,

where C is a positive constant and

α =

(
1
s
−

1
q

) (
1
n
−

1
p
+

1
s

)−1

.

Now we define what a weak solution of problem (1.1) means.

Definition 2.1 (Weak solution). A function u ∈ L∞ (0,T; X0) with

ut ∈ Lp′(x)
(
0,T; W−1,p′(x) (Ω)

)
∩ L2

(
0,T; L2 (Ω)

)
,

is said to be a weak solution of problem (1.1) on Ω × [0,T) if it satisfies the initial condition

u (., 0) = u0 (.) ∈ X0.

and ∫
Ω

utwdx +
∫
Ω

|∇u|p(x)−2
∇u∇wdx =

∫
Ω

|u|p(x)−2 u log |u|wdx, (2.3)

for all w ∈W1,p(x)
0 (Ω) , and for almost every t ∈ (0,T) .

2.2. Potential well
Let us consider the functionals J and I defined on X0 by

J(u) =
∫
Ω

1
p(x)
|∇u|p(x) dx −

∫
Ω

1
p(x)
|u|p(x) log |u| dx +

∫
Ω

1
p2(x)

|u|p(x) dx,
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= J1(u) −
∫
Ω

1
p(x)
|u|p(x) log |u| dx +

∫
Ω

1
p2(x)

|u|p(x) dx, (2.4)

I(u) =
∫
Ω

|∇u|p(x) dx −
∫
Ω

|u|p(x) log |u| dx = I1(u) −
∫
Ω

|u|p(x) log |u| dx. (2.5)

The functionals I and J are defined as in [28] with some modifications, they are well-defined in X0. Further-
more, the following proposition given in [22] characterizes the functionals J1 and I1 in the space W1,p(x)

0 (Ω).

Proposition 2.10. Let J1(u) =
∫
Ω

1
p(x) |∇u|p(x) dx for u ∈ W1,p(x)

0 (Ω), then J1 ∈ C1
(
W1,p(x)

0 (Ω) ,R
)

and the p (x)−

Laplacian is the derivative operator of J1. We define J′1 : W1,p(x)
0 (Ω)→

(
W1,p(x)

0 (Ω)
)∗

, then

⟨J′1 (u) , v⟩ =
∫
Ω

|∇u|p(x)−2
∇u∇vdx, ∀u, v ∈W1,p(x)

0 (Ω) ,

and J′1 satisfies the following properties:
(i) J′1 is a continuous, bounded, strictly monotone operator, and is a homeomorphism.
(ii) J′1 is a mapping of type (S+), i.e., if un ⇀ u in W1,p(x)

0 (Ω) and lim
n→∞
⟨J′1 (un) − J′1 (u) ,un − u⟩ ≤ 0, then un → u in

W1,p(x)
0 (Ω).

Remark 2.3. Note that in Proposition 2.10, ⟨J′1 (u) ,u⟩ = I1 (u) , for all u ∈ X0, and then ⟨J′ (u) ,u⟩ = I (u) , for all
u ∈ X0. Indeed

⟨J′ (u) ,u⟩ = ⟨J′1 (u) ,u⟩ −
∫
Ω

|u|p(x)−2 u log (|u|) udx −
∫
Ω

1
p(x)
|u|p(x) dx +

∫
Ω

1
p(x)

(
|u|p(x)−2 u

)
udx

= I1(u) −
∫
Ω

|u|p(x) log |u| dx = I (u) .

Remark 2.4. It is easy to show by lemma 2.2 that the functional u 7→
∫
Ω

|u|p(x) log |u| dx is continuous on X0, and

then by Proposition 2.10 and Remark 2.3 we deduce that the functionals J and I are continuous from X0 into R.
Furthermore we have J ∈ C1 (X0,R).

On the other hand, since I (u) changes sign (see Lemma 2.5 below), so we denote by γI(u) ≡ γ a generic
constant, i.e. a constant changing value according to the sign of I (u), such that

γ =
1
2

(
1

p+
− sgn (I (u))

1
p−

)
+

1
2

(
1

p−
+ sgn (I (u))

1
p+

)
=

{
1/p−, if I (u) ≤ 0
1/p+, if I (u) > 0 (a)

then from (2.4)-(2.5) we have

J(u) ≥ γI (u) +
1

p2
+

∫
Ω

|u|p(x) dx. (2.6)

Let u ∈ X0 and consider the real function j : λ→ J(λu) for λ > 0, defined by

j(λ) = J (λu) =
∫
Ω

λp(x)

p(x)
|∇u|p(x) dx −

∫
Ω

λp(x)

p(x)
|u|p(x) log |u| dx − logλ

∫
Ω

λp(x)

p(x)
|u|p(x) dx +

∫
Ω

λp(x)

p2(x)
|u|p(x) dx.

(2.7)

In the following lemma we show that j(λ) has a unique positive critical point λ∗ = λ∗(u) see [16, 28, 34, 35].
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Lemma 2.4. Let u ∈ X0. Then it holds
(1) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) = −∞;
(2) there is a unique λ∗ = λ∗(u) > 0 such that j′(λ∗) = 0;
(3) j(λ) is increasing on (0, λ∗) , decreasing on (λ∗,+∞) and attains the maximum at λ∗;
(4) I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ∗ < λ < +∞ and I(λ∗u) = 0.

Proof. Let u ∈ X0, by (2.7) it is easy to show that (1) holds since
∫
Ω

λp(x)

p(x) |u|
p(x) dx , 0, (λ , 0) . By simple

calculation, we get

d
dλ

j(λ) =
∫
Ω

λp(x)−1
|∇u|p(x) dx −

∫
Ω

λp(x)−1
|u|p(x) log |u| dx − logλ

∫
Ω

λp(x)−1
|u|p(x) dx, (2.8)

to show (2) and (3), it suffices to take

λ∗ = λ∗ (u) = exp


∫
Ω

(λ∗)p(x)−1
(
|∇u|p(x)

− |u|p(x) log |u|
)

dx∫
Ω

(λ∗)p(x)−1
|u|p(x) dx


implicitly. The last property (4) follows from the relationship.

I(λu) = λ(
∫
Ω

λp(x)−1
|∇u|p(x) dx −

∫
Ω

λp(x)−1
|u|p(x) log |u| dx − logλ

∫
Ω

λp(x)−1
|u|p(x) dx)

= λ j′(λ).

Thus the lemma is proved.

Lemma 2.5. Let u0 ∈ X0. Suppose that

min
Ω

∫
Ω

|u0|
p(x) log (|u0|) dx ≥ 0, (2.9)

then there exists a positive reel number R such that the following statements hold

(1) if 0 < max
{
∥u∥p(x) , ∥u∥

p+/p−
p(x)

}
< R then I(u) > 0.

(2) if I(u) < 0 then min
{
∥u∥p(x) , ∥u∥

p+/p−
p(x)

}
> R.

(3) if I(u) = 0 then min
{
∥u∥p(x) , ∥u∥

p+/p−
p(x)

}
≥ R.

Proof. Divided Ω into l subsets in the following way Ω = ∪l
i=1Ωi such that in every subset Ωi we have

pi− ≤ p (x) ≤ pi+, for all 1 ≤ i ≤ l, where pi− = p− (Ωi) and pi+ = p+ (Ωi). Here we have used the assumption
(1.2) and the continuity of the function p (x). Now for l large enough we suppose that

max
Ωi

∫
Ωi

|u|p(x) dx ≤ 1, i = 1, 2, ..., l, (2.10)

and by assumption (2.9) that∫
Ωi

|u|pi− log (|u|) dx ≥ 0, i = 1, 2, ..., l. (2.11)
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On one hand it follows by Proposition 2.2 (with Ω is replaced by Ωi) that

∥u∥pi+

p(x),Ωi
≤

∫
Ωi

|u|p(x) dx ≤ ∥u∥pi−

p(x),Ωi
. (2.12)

On the other hand by (2.10) we may write

min
{
∥u∥pi−

pi−,Ωi
, ∥u∥pi+

pi+,Ωi

}
≤

∫
Ωi

|u|p(x) dx ≤ max
{
∥u∥pi−

pi−,Ωi
, ∥u∥pi+

pi+,Ωi

}
. (2.13)

According to (2.5), (2.12) and (1.4)-(1.5) (with p−, p+ and Ω are replaced by pi−, pi+ and Ωi respectively), we
get ∫

Ωi

|∇u|p(x) dx −
∫
Ωi

|u|p(x) log |u| dx ≥
∫
Ωi

|∇u|p(x) dx −
µi

pi−

∫
Ωi

|∇u|pi− dx −
µi

pi+

∫
Ωi

|∇u|pi+ dx

−

∫
Ωi

|u|p(x)

log
(
|u|

∥u∥p(x),Ωi

)
+

1
pi+

log


∫
Ωi

|u|p(x) dx


 dx

+

∫
Ωi

|u|pi− log
(
|u|

∥u∥pi−,Ωi

)
dx +

n
p2

i−

log
(

pi−µie
nLpi−

) ∫
Ωi

|u|pi− dx

+

∫
Ωi

|u|pi+ log
(
|u|

∥u∥pi+,Ωi

)
dx +

n
p2

i+

log
(

pi+µie
nLpi+

) ∫
Ωi

|u|pi+ dx,

Choose µi =

∫
Ωi

|∇u|p(x) dx/

p−1
i−

∫
Ωi

|∇u|pi− dx + p−1
i+

∫
Ωi

|∇u|pi+ dx

.

Since by (2.11),
∫
Ωi

|u|pi− log (|u|) dx ≥ 0 for all i = 1, 2, ..., l, we may write

∫
Ωi−

(
|u|p(x)

− |u|pi− − |u|pi+
)

log (|u|) dx ≤ −
∫
Ωi−

|u|pi− log (|u|) dx ≤
∫
Ωi+

(
|u|pi− + |u|pi+ − |u|p(x)

)
log (|u|) dx

which means that∫
Ωi

|u|pi− log (|u|) dx +
∫
Ωi

|u|pi+ log (|u|) dx −
∫
Ωi

|u|p(x) log (|u|) dx ≥ 0. (2.14)

It follows from (2.10), (2.12) and (2.13) that

∥u∥pi−,Ωi ∥u∥pi+,Ωi
≤ min

{
∥u∥pi−,Ωi

, ∥u∥pi+,Ωi

}
≤ ∥u∥p(x),Ωi

.

There exists δ ∈ (0, 1) such that by (2.13) we find

log
(
∥u∥pi−,Ωi

)
∥u∥pi−,Ωi

+ log
(
∥u∥pi+,Ωi

)
∥u∥pi+,Ωi

≤

(
δmax

{
∥u∥pi−,Ωi

, ∥u∥pi+,Ωi

}
+ (1 − δ) min

{
∥u∥pi−,Ωi

, ∥u∥pi+,Ωi

})
log

(
∥u∥pi−,Ωi ∥u∥pi+,Ωi

)
≤ log

(
∥u∥p(x),Ωi

) ∫
Ωi

|u|p(x) dx. (2.15)
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So (2.14) and (2.15) give

0 ≤
∫
Ωi

|u|pi− log
(
|u|

∥u∥pi−,Ωi

)
dx +

∫
Ωi

|u|pi+ log
(
|u|

∥u∥pi+,Ωi

)
dx −

∫
Ωi

|u|p(x) log
(
|u|

∥u∥p(x),Ωi

)
dx

Therefore we obtain∫
Ωi

|∇u|p(x) dx −
∫
Ωi

|u|p(x) log |u| dx ≥ a

log

(pi−µie
nLpi−

) n
p2
i−

(
pi+µie
nLpi+

) n
p2
i+

 − 1
pi+

log


∫
Ωi

|u|p(x) dx


 ,

where a = min
{
∥u∥pi−,Ωi

, ∥u∥pi+,Ωi

}
.

By applying the well known property of the logarithmic function
∑
i≥1

log (δi) ≤ log
(∑

i≥1
δi

)
for δi ≤ 1, we get

I(u) =
l∑

i=1


∫
Ωi

|∇u|p(x) dx −
∫
Ωi

|u|p(x) log |u| dx


≥ a

log
l∏

i=1

(pi−µie
nLpi−

) n
p2
i−

(
pi+µie
nLpi+

) n
p2
i+

 − l∑
i=1

1
pi+

log


∫
Ωi

|u|p(x) dx




≥ a

log
l∏

i=1

(pi−µie
nLpi−

) n
p2
i−

(
pi+µie
nLpi+

) n
p2
i+

 − 1
p−

log


∫
Ω

|u|p(x) dx


 . (2.16)

If ∥u∥p(x) ≤ 1 then from (2.16) we have

I(u) ≥ a

log
l∏

i=1

(pi−µie
nLpi−

) n
p2
i−

(
pi+µie
nLpi+

) n
p2
i+

 − log
(
∥u∥p(x)

) , (2.17)

if ∥u∥p(x) > 1 then (2.16) gives

I(u) ≥ a

log
l∏

i=1

(pi−µie
nLpi−

) n
p2
i−

(
pi+µie
nLpi+

) n
p2
i+

 − log
(
∥u∥p+/p−p(x)

) . (2.18)

Seting

R =
l∏

i=1

(pi−µie
nLpi−

) n
p2
i−

(
pi+µie
nLpi+

) n
p2
i+

 .
(1) From (2.17)-(2.18) we may deduce that for 0 < max

{
∥u∥p(x) , ∥u∥

p+/p−
p(x)

}
< R, then

I(u) > 0.

(2) suppose that I(u) < 0. then from (2.17)-(2.18) we find

log
(
R/ ∥u∥p(x)

)
< 0, and log

(
R/ ∥u∥p+/p−p(x)

)
< 0,
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this means that

R/ ∥u∥p(x) < 1, and R/ ∥u∥p+/p−p(x) < 1

which implies

min
{
∥u∥p(x) , ∥u∥

p+/p−
p(x)

}
> R.

To prove (3), we proceed in the same way as in the proof of (2), which completes the proof of the lemma.

Let us denote byN the Nehari manifold

N = {u ∈ X0 : I(u) = 0} .

Clearly, N is not an empty set in accordance with Lemma 2.4 (Notice that I(λ∗u) = 0 then λ∗u is in N).
Furthermore, we have the following result.

Lemma 2.6.
1) Assume that p+ + ϱ+ < p∗

−
, then the functional J is coercive onN ,

2) The functionals J and I are weakly lower semicontinuous.

Proof. 1) Remember that J is coercive onN if lim
u∈N ,∥u∥

W
1,p(x)
0
→∞

J (u) = ∞. For this we assume that

∥u∥p(x) , ∥∇u∥p(x) > 1. (2.19)

Now suppose that u ∈ N , from formula (2.6) we get

J(u) ≥
1

p2
+

∫
Ω

|u|p(x) dx. (2.20)

According to Remark 2.2, we may write∫
Ω

|u (x)|p(x) log |u (x)| dx ≤
∫
Ω−

|u (x)|p+ log |u (x)| dx +
∫
Ω+

|u (x)|p+ log |u (x)| dx

≤

∫
Ω+

|u (x)|p+ log |u (x)| dx

≤
1
ϱ−

∫
Ω

|u(x)|p++ϱ+ dx.

Therefore we apply the Lemma 2.3 by using the assumption p− < p+ + ϱ+ < p∗
−

, we obtain∫
Ω

|u(x)|p(x) log |u(x)| dx ≤ C ∥u∥
(1−α)(p++ϱ+)
p− ∥∇u∥

α(p++ϱ+)
p− ,

where

p∗− =
np−

n − p−
and α = n

(
1

p−
−

1
p+ + ϱ+

)
=

n
(
p+ + ϱ+ − p−

)
p−

(
p+ + ϱ+

) .
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By Proposition 2.4 and Proposition 2.7, the continuous embeddings Lp(x) ↪→ Lp− (Ω), W1,p(x)
0 (Ω) ↪→W1,p−

0 (Ω)
ensure that∫

Ω

|u(x)|p(x) log |u(x)| dx ≤ C ∥u∥
(1−α)(p++ϱ+)
p(x) ∥∇u∥

α(p++ϱ+)
p(x) . (2.21)

To complete the proof of 1) we have two cases for p+.

Case 1 : if p+ < p− +
p2
−

n , in this case choose 0 < ϱ+ <
(
p− +

p2
−

n

)
− p+, then p− > α

(
p+ + ϱ+

)
, by Young’s

inequality, we get∫
Ω

|u(x)|p(x) log |u(x)| dx ≤ Cε
(
∥u∥p−p(x)

)β
+ ε ∥∇u∥p−p(x) ,

where ε > 0 and β =
(1−α)(p++ϱ)
p−−α(p++ϱ) > 1. Since u ∈ N , so if ∥∇u∥p(x) > 1, we find from Proposition 2.2 (with u is

replaced by ∇u) that

∥∇u∥p−p(x) ≤

∫
Ω

|∇u|p(x) dx =
∫
Ω

|u|p(x) log |u| dx ≤ Cε
(
∥u∥p−p(x)

)β
+ ε ∥∇u∥p−p(x) .

Taking ε < 1 so from (2.20) and Proposition 2.2 by using the assumption ∥u∥p(x) > 1, yield

J(u) ≥ cε
(
∥∇u∥p−p(x)

) 1
β

, (2.22)

Hence, J is coercive onN .
Case 2 : if p+ < p− +

p2
−

n does not hold. So divided Ω into l subsets in the following way Ω = ∪l
j=1Ω j and in

every subset Ω j we have p j+ < p j− +
p2

j−

n ,
(
j = 1, 2, ..., l

)
and ϱ j+ < p∗j− − p j+,

(
j = 1, 2, ..., l

)
. Here we have used

the assumption (1.2) and the continuity of the functions p (x) and ϱ (x). For any u ∈ N , we shall show that
(2.22) holds, for this we assume that ∥u∥p(x),Ω j

≤ 1 and ∥∇u∥p(x),Ω j
≤ 1, for all j = 1, 2, ..., l. Therefore, choose

ϱ j+ <
(
p j− +

p2
j−

n

)
− p j+. Then p j− > α j

(
p j+ + ϱ j+

)
,
(
j = 1, 2, ..., l

)
. As above we have∫

Ω j

|u(x)|p(x) log |u(x)| dx ≤ C jε ∥u∥
β jp j−

p(x),Ω j
+ ε ∥∇u∥p j−

p(x),Ω j

≤ C jε


∫
Ω j

|u|p(x) dx


β jp j−/p j+

+ ε


∫
Ω j

|∇u|p(x) dx


p j−/p j+

for every j = 1, 2, ..., l, where β j =
(1−α j)(p j++ϱ j+)
p j−−α j(p j++ϱ j+) > 1, here we have used Proposition 2.2. Because of

∫
Ω

|u(x)|p(x) log |u(x)| dx ≤
l∑

j=1

∫
Ω j

|u(x)|p(x) log |u(x)| dx

≤

l∑
j=1

C jε


∫
Ω j

|u|p(x) dx


β jp j−/p j+

+ ε


∫
Ω j

|∇u|p(x) dx


p j−/p j+

 .
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Set β = min1≤ j≤l β j > 1, since ∥u∥p(x),Ω j
, ∥∇u∥p(x),Ω j

≤ 1 and 1 < p− ≤ p j− ≤ p j+ ≤ p+, ∀ j = 1, 2, ..., l, then

∫
Ω

|u(x)|p(x) log |u(x)| dx ≤ Cε
l∑

j=1


∫
Ω j

|u|p(x) dx


βp−/p+

+ ε
l∑

j=1


∫
Ω j

|∇u|p(x) dx


p−/p+

≤ Cε


l∑

j=1

∫
Ω j

|u|p(x) dx


βp−/p+

+ ε


l∑

j=1

∫
Ω j

|∇u|p(x) dx


p−/p+

= Cε



∫
Ω

|u|p(x) dx


p−/p+


β

+ ε


∫
Ω

|∇u|p(x) dx


p−/p+

.

If (2.19) holds, Proposition 2.2 gives us∫
Ω

|u(x)|p(x) log |u(x)| dx ≤ Cε
(
∥u∥p−p(x),Ω

)β
+ ε ∥∇u∥p−p(x),Ω .

Similarly we get (2.22) as above, Thus, J is coercive onN .
2) Consider in X0 the sequence (un)n∈N such that un ⇀ u weakly in X0, so Proposition 2.3, Proposition 2.6
and Proposition 2.7 ensure that (un)n∈N is bounded in X0, there exists a subsequence of (un)n∈N still denoted
by (un)n∈N such that un → u a.e in Ω. So by Lebesgue dominated convergence Theorem, in view of (1.2),
Lemma 2.1 and Remark 2.2, we get

lim
n→∞

∫
Ω

1
p(x)
|un|

p(x) log |un| dx =
∫
Ω

1
p(x)
|u|p(x) log |u| dx, (2.23)

and

lim
n→∞

∫
Ω

|un|
p(x) log |un| dx =

∫
Ω

|u|p(x) log |u| dx. (2.24)

Moreover from Fatou Lemma we have∫
Ω

lim inf
n→∞

1
p(x)
|∇un|

p(x) dx ≤ lim inf
n→∞

∫
Ω

1
p(x)
|∇un|

p(x) dx, (2.25)

and ∫
Ω

lim inf
n→∞

1
p2(x)

|un|
p(x) dx ≤ lim inf

n→∞

∫
Ω

1
p2(x)

|un|
p(x) dx, (2.26)

which means by (2.23), (2.25) and (2.26) that

J(u) ≤ lim inf
n→∞


∫
Ω

1
p(x)
|∇un|

p(x) dx −
∫
Ω

1
p(x)
|un|

p(x) log |un| dx +
∫
Ω

1
p2(x)

|un|
p(x) dx


= lim inf

n→∞
J(un).
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For the funtional I we use (2.24) and the weak lower semicontinuity of the modular ρp(.) (see [12, Theorem
3.2.9 p. 77]) that is

I(u) =
∫
Ω

|∇u|p(x) dx −
∫
Ω

|u|p(x) log |u| dx

≤ lim inf
n→∞


∫
Ω

|∇un|
p(x) dx −

∫
Ω

|un|
p(x) log |un| dx


= lim inf

n→∞
I(un).

Thus 2). This completes the proof.

Now, define

d = inf
u∈N

J(u), (2.27)

and prove in the following lemma that there exists for J defined on X0 a nontrivial critical minimizing point
u ∈ N , as a solution to the stationary problem (2.27) associated to (1.1).

Lemma 2.7. Let u ∈ X0, and p (.) ∈ Plog (Ω), then the following assertions hold
(1) d = inf

u∈X0
sup
λ>0

J(λu).

(2) There exists a positive lower bound for d, that is

d ≥
Rp−

p2
+

=M, (2.28)

(3) The problem (2.27) has a positive extremal solution u ∈ N , In other words, it means J(u) = d.

Proof. Let u ∈ X0, then by lemma 2.4, Proposition 2.2 and (2.6) (with u is replaced by λ∗u) we may write

sup
λ>0

J(λu) = J(λ∗u) ≥ γI (λ∗u) +
1

p2
+

∫
Ω

|λ∗u|p(x)

≥
1

p2
+

min
{
∥λ∗u∥p−p(x) , ∥λ

∗u∥p+p(x)

}
. (2.29)

Firstly, we prove (1). By the definition ofN , and lemma 2.4 we can deduce that λ∗u ∈ N . Consequently,

J(λ∗u) ≥ inf
u∈N

J (u) = d. (2.30)

So (2.29) together with (2.30) yield that

inf
u∈X0

sup
λ>0

J(λu) ≥ d. (2.31)

In addition, if u ∈ N then it follows from (2.8) that λ∗ = 1 is the only critical point in (0,∞) of the mapping
j(λ). Therefore,

sup
λ>0

J(λu) = J(u),

for each u ∈ N . Hence

inf
u∈X0

sup
λ>0

J(λu) ≤ inf
u∈N

sup
λ>0

J(λu) = inf
u∈N

J(u) = d. (2.32)
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Thus, (2.31) and (2.32) lead to the desired result.
(2) In accordance with lemma 2.4, for each u ∈ X0, then I(λ∗u) = 0. Which means by lemma 2.5 that

min
{
∥λ∗u∥p(x) , ∥λ

∗u∥p+/p−p(x)

}
≥ R. (2.33)

So (2.29) and (2.33) give

sup
λ>0

J(λu) ≥
Rp−

p2
+

=M.

Hence, (2.28) arises from assertion (1) and therefore the assertion (2) is proved.
(3) Let {um}

∞

m ⊂ N , be a minimizing sequence for J, and suppose that {um}
∞

m is of positive terms (um > 0) a.e.
Ω for all m ∈N, such that

lim
m→∞

J(um) = d.

Moreover {|um|}
∞

m ⊂ N is also a minimizing sequence for J and J(|um|) = J(um) because of um > 0. In addition,
we have previously seen that J is coercive on N which implies that {um}

∞

m is bounded in W1.p(x)
0 (Ω). Since

p (.) ∈ Plog (Ω), then the compact embedding W1.p(.)
0 (Ω) ↪→↪→ Lp(.)(Ω) (see [12, Theorem 8.4.2]), guarantees

that there exists a function u and a subsequence of {um}
∞

m , anyway denoted by {um}
∞

m , such that

um → u weakly in W1.p(x)
0 (Ω),

um → u strongly in Lp(x)(Ω),
um(x)→ u(x) a.e. in Ω.

so we have u ≥ 0 a.e inΩ. Since p (.) ∈ P (Ω), the weak lower semicontinuity of the functional J (see Lemma
2.6), yield

J(u) ≤ lim inf
m→∞

J(um) = d.

since um ∈ N then um ∈ X0 and I(um) = 0 which implies by Lemma 2.5 that

∥um∥p(x) ≥ R.

This mean that ∥um∥p(x) , 0 by strong convergence in Lp(x)(Ω), that is, u ∈ X0. Furthermore, from weak lower
semicontinuity of I(u) (see Lemma 2.6), we find

I(u) ≤ lim inf
k→∞

I(uk) = 0.

So, to complete the proof of (3), we must show that I(u) = 0. Indeed, suppose that I(u) < 0, then, by Lemma
2.4, there exists a positive constant λ∗,

λ∗ = λ∗ (u) = exp


∫
Ω

(λ∗)p(x)−1
(
|∇u|p(x)

− |u|p(x) log |u|
)

dx∫
Ω

(λ∗)p(x)−1
|u|p(x) dx

 < 1

satisfying I(λ∗u) = 0. Therefore, we have

0 < d ≤ J(λ∗u) ≤
∫
Ω

1
p2(x)

|λ∗u|p(x) dx ≤ (λ∗) p− lim inf
k→∞

J(uk) = (λ∗) p−d < d.

Which is impossible, and the lemma is proved.
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Now we presnt the potential well sets that were introduced in [28] (see also [34])

W1 = {u ∈ X0 : J(u) < d} , W2 = {u ∈ X0 : J(u) = d} , W =W1 ∪W2,
W
+
1 = {u ∈ W1 : I(u) > 0} , W+

2 = {u ∈ W2 : I(u) > 0} , W+ =W+
1 ∪W

+
2 ,

W
−

1 = {u ∈ W1 : I(u) < 0} , W−

2 = {u ∈ W2 : I(u) < 0} , W− =W−

1 ∪W
−

2 .

It is clear that,W+
∩W

− = ∅ andW+
∪W

− =W. We callW the potential well and d the depth of the
well. Note thatW+ is the best part of the well, so we will prove that if the initial datum belongs toW+

then every weak solution of the problem (1.1) exists globally in time. On the other hand, a result of blow
up for weak solutions may be obtained if the initial datum belongs toW−.

Remark 2.5. According to (2.6), it is easy to show that

W
+
1 = {u ∈ X0 : 0 < J(u) < d, I(u) > 0} .

3. Global existence and decay estimates

This section is firstly devoted to establishing the local existence of solutions of problem (1.1), and thus
we prove the global existence of weak solutions of problem (1.1), taking into account that the initial datum
belong toW+. Next, we shall show as in [28] that the decay of the norm ∥u (t)∥2 is polynomial rather than
exponential as given in [9] with respect to the case p(x) ≡ 2. The proof of the last objective is based on the
following lemma presented by Martinez [31].

Lemma 3.1. Let f : R+ → R+ be a nonincreasing function and σ is a nonegative constant such that

+∞∫
t

f 1+σ (s) ds ≤
1
ω

f σ (0) f (t) , ∀t ≥ 0.

Then we have
(1) f (t) ≤ f (0) e1−ωt, for all t ≥ 0, whenever σ = 0,

(2) f (t) ≤ f (0)
(

1+σ
1+ωσt

) 1
σ , for all t ≥ 0, whenever σ > 0.

Now we start with the local existence of solutions to our problem.

Theorem 3.1 (Local existence). Assume that u0 ∈ X0, p ∈ C
(
Ω

)
satisfying the condition 2 < p− ≤ p (x) ≤ p+ < p∗

−

and the log-Hölder continuous condition (2.1). Then the problem (1.1) has a weak local solution u (x, t) onΩ× (0,T0),
satisfying the energy inequality

t∫
0

∥us (s)∥22 ds + J (u (t)) ≤ J (u0) , t ∈ [0,T0). (3.1)

where T0 is a positive constant.

Proof. By using The Faedo-Galerkin’s methods: We consider in the space W1,p(x)
0 (Ω) , the basis

{
w j

}∞
j=1

and

let Vm be the finite dimensional space defined by

Vm = span {w1,w2, ...,wm} .

Suppose that u0m an element of Vm such that

u0m =

m∑
j=1

amjw j → u0 strongly in W1,p(x)
0 (Ω) . (3.2)
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when m→ +∞. Defining the approximate solution um (x, t) of the problem (1.1) as follows

um (x, t) =
m∑

j=1

αmj (t) w j (x) ,

with coefficients αmj
(
1 ≤ j ≤ m

)
satisfying the following ordinary differential equations∫

Ω

umt (t) widx +
∫
Ω

|∇um (t)|p(x)−2
∇um (t)∇widx =

∫
Ω

|um (t)|p(x)−2 um (t) log |um (t)|widx, (3.3)

1 ≤ i ≤ m, with the initial conditions

αmj (0) = amj, 1 ≤ j ≤ m. (3.4)

The Theorem of Peano guarantees the local existence of the solution of a system (3.3)-(3.4). Let us multiply
the ith equation in (3.3) by αmi (t) and take the sum over i from 1 to m we get

1
2

d
dt
∥um (t)∥22 +

∫
Ω

|∇um (t)|p(x) dx =
∫
Ω

|um (t)|p(x) log |um (t)| dx. (3.5)

In view of Remark 2.2, we have∫
Ω

|um (t)|p(x) log |um (t)| dx ≤
∫
Ω−

|um (t)|p+ log |um (t)| dx +
∫
Ω+

|um (t)|p+ log |um (t)| dx

≤
e−1

ϱ−

∫
Ω+

|um (t)|p++ϱ+ dx

≤
1
ϱ−

∫
Ω

|um (t)|p++ϱ+ dx, (3.6)

for some ϱ+ chosen small enough such that 2 < p− < p+ + ϱ+ ≤ p∗
−
=

np−
n−p−

with Ω− = {x ∈ Ω |um (t)| ≤ 1}
and Ω+ = {x ∈ Ω |um (t)| > 1} . By Lemma 2.1 we get from (3.6),∫

Ω

|um (t)|p(x) log |um (t)| dx ≤ C ∥um (t)∥
θ(p++ϱ+)
p∗
−

∥um (t)∥
(1−θ)(p++ϱ+)
2

with 0 < θ < 1 and 1
p++ϱ+

=
θ(n−p−)

np−
+ 1−θ

2 .From the continuous embeddings W1,p(x)
0 (Ω) ↪→ Lp∗(x) (Ω) ↪→ Lp∗

− (Ω),
we have∫

Ω

|um (t)|p(x) log |um (t)| dx ≤ C ∥∇um (t)∥
θ(p++ϱ+)
p(x) ∥um (t)∥

(1−θ)(p++ϱ+)
2 . (3.7)

We distinguishe two cases
Case 1: if ∥∇um∥p(x) > 1. Assume that p+ < (1 + 2

n )p−, it follows from (3.7) that

∫
Ω

|um (t)|p(x) log |um (t)| dx ≤ C


∫
Ω

|∇um (t)|p(x) dx


θ(p++ϱ+)

p−

∥um (t)∥
(1−θ)(p++ϱ+)
2 ,
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by Young’s inequality we have∫
Ω

|um (t)|p(x) log |um (t)| dx ≤ ε
∫
Ω

|∇um (t)|p(x) dx + Cε
(
∥um (t)∥22

)ν
, (3.8)

where we have chosen 0 < ϱ+ < (1 + 2
n )p− − p+ so that θ

(
p+ + ϱ+

)
< p−, with

θ =

(
1
2
−

1
p+ + ϱ+

) (
1
n
−

1
p−
+

1
2

)−1

and ν =
p− (1 − θ)

(
p+ + ϱ+

)
2
[
p− − θ

(
p+ + ϱ+

)] > 1.

If p+ < (1 + 2
n )p− does not hold. here we use the same as in the proof of Lemma 2.6. By dividing Ω into

l subsets such that Ω = ∪l
j=1Ω j with p j+ < (1 + 2

n )p j−,
(
j = 1, 2, ..., l

)
and ϱ j+ < p∗j− − p j+,

(
j = 1, 2, ..., l

)
. For l

large enough, assume that ∥∇um (t)∥p(x),Ω j
≤ 1, for all j = 1, 2, ..., l. So, choose ϱ j+ < (1 + 2

n )p j− − p j+. Then

p j− > θ j

(
p j+ + ϱ j+

)
,
(
j = 1, 2, ..., l

)
. By Proposition 2.2 we find

∫
Ω j

|um (t)|p(x) log |um (t)| dx ≤ C j


∫
Ω j

|∇um (t)|p(x) dx


θ j(pj++ϱ j+)

pj+

∥um (t)∥(
1−θ j)(p j++ϱ j+)

2,Ω j

Young’s inequality gives

∫
Ω j

|um (t)|p(x) log |um (t)| dx ≤ ε


∫
Ω j

|∇um (t)|p(x) dx


p j−/p j+

+ C jε

(
∥um (t)∥22,Ω j

)ν j

where

θ j =

(
1
2
−

1
p j+ + ϱ j+

) (
1
n
−

1
p j−
+

1
2

)−1

and ν j =
p j−

(
1 − θ j

) (
p j+ + ϱ j+

)
2
[
p j− − θ j

(
p j+ + ϱ j+

)] > 1.

We can see that∫
Ω

|u(x)|p(x) log |u(x)| dx ≤
l∑

j=1

∫
Ω j

|u(x)|p(x) log |u(x)| dx

≤

l∑
j=1

C jε


∫
Ω j

|um (t)|2 dx


ν j

+ ε
l∑

j=1


∫
Ω j

|∇um (t)|p(x) dx


p j−/p j+

.

Set ν = min1≤ j≤l ν j > 1, since ∥∇um (t)∥p(x),Ω j
≤ 1 and 1 < p− ≤ p j− ≤ p j+ ≤ p+, ∀ j = 1, 2, ..., l, then

∫
Ω

|u(x)|p(x) log |u(x)| dx ≤ Cε
l∑

j=1


∫
Ω j

|um (t)|2 dx


ν

+ ε
l∑

j=1


∫
Ω j

|∇um (t)|p(x) dx


p−/p+

≤ Cε


l∑

j=1

∫
Ω j

|um (t)|2 dx


ν

+ ε


l∑

j=1

∫
Ω j

|∇um (t)|p(x) dx


p−/p+
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= Cε
(
∥um (t)∥22,Ω

)ν
+ ε

∫
Ω

|∇um (t)|p(x) dx,

and (3.8) follows again
Case 2: if ∥∇um∥p(x) ≤ 1, so (3.7) becomes∫

Ω

|um (t)|p(x) log |um (t)| dx ≤ C
(
∥um (t)∥22

) (1−θ)(p++ϱ+)
2

Since p−
p−−θ(p++ϱ+) > 1 then 2ν

(1−θ)(p++ϱ+) > 1. Young’s inequality gives∫
Ω

|um (t)|p(x) log |um (t)| dx ≤ C +
(
∥um (t)∥22

)ν
. (3.9)

We combine (3.8) and (3.9) we find∫
Ω

|um (t)|p(x) log |um (t)| dx ≤ ε
∫
Ω

|∇um (t)|p(x) dx + cε
(
∥um (t)∥22

)ν
. (3.10)

This combined with (3.5) yields

1
2

d
dt
∥um (t)∥22 + (1 − ε)

∫
Ω

|∇um (t)|p(x) dx ≤ cε
(
∥um (t)∥22

)ν
.

Choose 0 < ε < 1, then for all t ∈ [0,T0] where T0 is a positive constant, we find

1
2

d
dt
∥um (t)∥22 ≤ cε

(
∥um (t)∥22

)ν
.

setting η = max
m∈N
∥u0m∥

2
2 , r (s) = sν, 1 (s) = 2cε and choose T0 such that there exists a positive constant C0 large

enough satisfying T0 ≤
η1−ν
−C1−ν

0
2cε(ν−1) , so that Bihari’s integral inequality yields

∥um (t)∥22 ≤ C0, ∀t ∈ [0,T0] . (3.11)

Let us multiply again the two sides of (3.3) by α′mi (t) , and take the sum over i = 1, 2...m, and then integrate
with respect to time on [0, t] . We obtain

t∫
0

∥ums (s)∥22 ds + J (um (t)) = J (um (0)) . (3.12)

Then (3.2) means that there is a positive constant C1 such that

J (um (0)) ≤ C1, for all m. (3.13)

On the other hand, (3.10) and (3.11) with the help of (2.6) (where u is replaced by um (t)), derive that

J(um (t)) ≥ γ (1 − ε)
∫
Ω

|∇um (t)|p(x) dx +
1

p2
+

∫
Ω

|um (t)|p(x) dx − γcε (C0)ν , (3.14)
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where C0 is a positive constant depending on T0.
So (3.12) and (3.14) give

t∫
0

∥ums (s)∥22 ds +
1 − ε

p+

∫
Ω

|∇um (t)|p(x) dx ≤ C1 +
cε (C0)ν

p−

This means, for ε < 1 that∫
Ω

|∇um (t)|p(x) dx ≤ C, (3.15)

and

∥umt∥L2(0,T0;L2(Ω)) ≤ C. (3.16)

If we combine a priori estimates (3.15), (3.16) we conclude that there exists a function u and a subsequence
of {um}

∞

m=1 again denoted by {um}
∞

m=1 such that

um → u weakly∗ in L∞
(
0,T0; W1,p(x)

0 (Ω)
)
, (3.17)

umt → ut weakly in L2
(
0,T0; L2 (Ω)

)
, (3.18)

|∇um|
p(x)−2

∇um → χ weakly∗ in L∞
(
0,T0; W−1,p′(x)

0 (Ω)
)
. (3.19)

Due to the compact embedding W1,p(x)
0 (Ω) ↪→↪→ Lr(x) (Ω) given in Proposition 2.8 and by the compactness

theorem of Aubin-Lions-Simon, it follows from (3.17) and (3.18) that

um → u strongly in C
(
[0,T0] ; Lr(x) (Ω)

)
,

for all function r (.) such that 2 ≤ r (x) ≪ p∗ (x) = np(x)
n−p(x) . Obviously, this means by the continuity of the

function um 7→ |um|
p(x)−2 um log |um| that

|um|
p(x)−2 um log |um| → |u|p(x)−2 u log |u| a.e. (x, t) ∈ Ω × (0,T0) . (3.20)

On the other hand, a simple calculation, gives∫
Ω

∣∣∣ψm (x, t)
∣∣∣p′(x)

dx ≤
∫
Ω−

∣∣∣ψm (x, t)
∣∣∣p′+ dx +

∫
Ω+

∣∣∣ψm (x, t)
∣∣∣p′+ dx

≤

(
e−1

p− − 1

)p′+

|Ω| +

(
p+
q−

)p′+ ∫
Ω+

|um (t)|q(x) dx

where q (.) : Ω → R is a measurable function satisfies p+ ≤ q− ≤ q (x) ≤ q+ < p∗ (x), ψm (x, t) =
|um (x, t)|p(x)−1 log |um (x, t)| and

Ω− = {x ∈ Ω : |um (x, t)| ≤ 1} , Ω+ = {x ∈ Ω : |um (x, t)| > 1} ,

by Proposition 2.2 we get∫
Ω

∣∣∣ψm (x, t)
∣∣∣p′(x)

dx ≤
(

e−1

p− − 1

)p′+

|Ω| +

(
p+
q−

)p′+

max
{
∥um (t)∥q−q(x) , ∥um (t)∥q+q(x)

}



A. Lalmi et al. / Filomat 37:22 (2023), 7527–7558 7548

Using the embeddings W1,p(x)
0 (Ω) ↪→ Lp∗(x) (Ω) ↪→ Lq(x) (Ω) (see Proposition 2.4 and Proposition 2.9) we find∫

Ω

∣∣∣ψm (x, t)
∣∣∣p′(x)

dx ≤
(

1
p− − 1

)p′+

|Ω| +

(
p+
q−

)p′+

max
{
Sq− ∥∇um (t)∥q−p(x) ,S

q+ ∥∇um (t)∥q+p(x)

}
≤ C0,

since by (3.15) where S is the best constant of the Sobolev embedding. Then, using Lions lemma (see [6,
Lemma 1.3 p. 12]), we deduce from (3.18) and (3.19) that

|um|
p(x)−2 um log |um| → |u|p(x)−2 u log |u| weakly∗ in L∞

(
0,T0; Lp′(x) (Ω)

)
. (3.21)

Taking, in (3.3) and (3.4) the limit as m → +∞, and then by using (3.17)-(3.19) and (3.21), it is readily
shown that u satisfies the initial condition u (0) = u0 and∫

Ω

ut (t) wdx +
∫
Ω

χ (t)∇wdx =
∫
Ω

|u (t)|p(x)−2 u (t) log |u (t)|wdx, (3.22)

for all w ∈W1,p(x)
0 (Ω) and for almost every t ∈ [0,T0] . Finally, by means of well-known arguments from the

theory of monotone operators in variable exponent spaces (see [13]) and Minty’s trick we obtain

χ = |∇u|p(x)−2
∇u

Indeed, we show that

lim sup
m→∞

T0∫
0

∫
Ω

|∇um (t)|p(x) dxdt ≤

T0∫
0

∫
Ω

χ (t)∇u (t) dxdt.

So on one hand because of um is a test function we have from (3.3)

T0∫
0

∫
Ω

|∇um (t)|p(x) dxdt = −

T0∫
0

∫
Ω

umt (t) um (t) dxdt +

T0∫
0

∫
Ω

|um (t)|p(x) log |um (t)| dxdt

an integration by parts gives

T0∫
0

∫
Ω

|∇um (t)|p(x) dxdt = −
1
2
∥um (T0)∥22 +

1
2
∥um (0)∥22 +

T0∫
0

∫
Ω

|um (t)|p(x) log |um (t)| dxdt

Taking lim supm→∞ on both sides and using the fact that Vm is dense in W1,p(x)
0 (Ω) and the lower semiconti-

nuity of the norm as well as (3.17)-(3.19) and (3.21) yields

lim sup
m→∞

T0∫
0

∫
Ω

|∇um (t)|p(x) dxdt ≤ −
1
2
∥u (T0)∥22 +

1
2
∥u (0)∥22 +

T0∫
0

∫
Ω

|u (t)|p(x) log |u (t)| dxdt

= −

T0∫
0

∫
Ω

ut (t) u (t) dxdt +

T0∫
0

∫
Ω

|u (t)|p(x) log |u (t)| dxdt

=

T0∫
0

∫
Ω

χ (t)∇u (t) dxdt
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since by (3.22) (with w is replaced by u). Thus, the function u is a desirable solution of the problem (1.1).
Now we show that the solution u satisfies the energy inequality (3.1). To this end, we consider the

positive continuous function θ ∈ C ([0,T0]) . Then, from (3.12) we get

T0∫
0

θ (t) dt

t∫
0

∥ums (s)∥22 ds +

T0∫
0

J (um (t))θ (t) dt =

T0∫
0

J (um (0))θ (t) dt. (3.23)

The right-hand side of (3.23) converges to

T0∫
0

J (u0)θ (t) dt

as m → +∞. The lower semi-continuity of the second term in left-hand side of (3.23) with respect to the
weak topology of W1,p(x)

0 (Ω) , means that

T0∫
0

J (u (t))θ (t) dt ≤ lim inf
m→+∞

T0∫
0

J (um (t))θ (t) dt.

Therefore, we get

T0∫
0

θ (t) dt

t∫
0

∥us (s)∥22 ds +

T0∫
0

J (u (t))θ (t) dt ≤

T0∫
0

J (u0)θ (t) dt.

θ is arbitrary, then, it holds the energy inequality

t∫
0

∥us (s)∥22 ds + J (u (t)) ≤ J (u0) , t ∈ [0,T0] .

Which completes the proof.

Remark 3.1. Note that the continuous embedding W1,p(x)
0 (Ω) ↪→ Lp∗(x) (Ω) in Proposition 2.9 (see [10, 12]) can

be also obtained from the embeddings W1,p(x)
0 (Ω) ↪→ W1,p(x) (Ω) which is straightforward and the continuous one

W1,p(x) (Ω) ↪→ Lp∗(x) (Ω) given in [19, Theorem 1.1, Theorem 1.2].

Now we present our main theorem of this section.

Theorem 3.2. Assume that u0 ∈ W
+. Then the weak solution of the problem (1.1) is globally in time and satisfies:

u (t) ∈ W+ for 0 ≤ t < +∞,

and the following energy estimate holds

t∫
0

∥us (s)∥22 ds + J (u (t)) ≤ J (u0) , a.e. t ≥ 0. (3.24)

Furthermore, the decay of the solution is polynomial, as follows,
(i) if J (u0) < M, then it holds the estimate

∥u (t)∥2 ≤ ∥u0∥2

 p−

2
(
1 + ζ

(
p− − 2

)
∥u0∥

p−−2
2 t

) 
1/(p−−2)

, t ≥ 0,
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where ζ = a
p−Rp− log M

J(u0) > 0;
(ii) if J (u0) =M, then there exists a time tε > 0 such that the norm ∥u (t)∥2 satisfies the estimate

∥u (t)∥2 ≤ ∥u (tε)∥2

 p−

2
(
1 + ζε

(
p− − 2

)
∥u (tε)∥

p−−2
2 t

) 
1/(p−−2)

, t ≥ tε,

where ζε = a
p−Rp− log M

J(u(tε))
> 0.

Proof. Two cases can be distinguished

Case I: the initial datum u0 ∈ W
+
1

Global existence of the Weak Solutions

As in the proof of Theorem 3.1, we consider the same sequences
{
w j

}+∞
j=1
, {u0m}

+∞
m=1 , and {um}

+∞
m=1 .

Let us multiply the two sides of (3.3) by α′mi (t) , and taking the sum over i ∈ {1, 2, ...,m} , and then integrating
with respect to time on [0, t] , we have

t∫
0

∥ums (s)∥22 ds + J (um (t)) = J (um (0)) , 0 ≤ t < Tm, (3.25)

where Tm is the maximal existence time of solution um (x, t) .
Since J is continuous, then from (3.2), (3.4) and (3.25) we get

J (um (0))→ J (u0) as m→ +∞,

with J (u0) < d and

t∫
0

∥ums (s)∥22 ds + J (um (t)) < d, 0 ≤ t < Tm, (3.26)

for some m large enough. We shall show that

um (t) ∈ W+
1 , ∀t ≥ 0, (3.27)

for some m large enough. Indeed, suppose that (3.27) is not true and that t∗ be the smallest time such that
um (t∗) <W+

1 . Then, by the continuity of um (t) , we have um (t∗) ∈ ∂W+
1 . Therefore

J (um (t∗)) = d, (3.28)

or

I (um (t∗)) = 0. (3.29)

However, it is obvious that (3.28) could not arise from (3.26) whereas if (3.29) is verified then, through the
formula (2.27), we have

J (um (t∗)) ≥ inf
u∈N

J (u) = d,

this contradicts (3.26). then (3.27) holds.
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On the other hand, because of um (t) ∈ W+
1 so that I(um (t)) > 0 and

J(um (t)) ≥
1

p+
I(um (t)) +

1
p2
+

∫
Ω

|um (t)|p(x) dx, ∀t ∈ [0,Tm), (3.30)

then through (3.26) we derive,

∫
Ω

|um (t)|p(x) dx < p2
+d, and

t∫
0

∥ums (s)∥22 ds < d, (3.31)

for some m large enough and t ∈ [0,Tm). Moreover, from the fact that I(um (t)) > 0 there exists a constant
0 < δ < 1 such that∫

Ω

|um (t)|p(x) log |um (t)| dx ≤ δ
∫
Ω

|∇um (t)|p(x) dx

this combined with (3.30), we may write∫
Ω

|∇um (t)|p(x) dx ≤ p+ J(um (t)) +
∫
Ω

|um (t)|p(x) log |u,m (t)| dx −
1

p+

∫
Ω

|um (t)|p(x) dx

≤ p+ J(um (t)) + δ
∫
Ω

|∇um (t)|p(x) dx −
1

p+

∫
Ω

|um (t)|p(x) dx,

since 0 < δ < 1 we conclude from (3.26) and (3.31) that∫
Ω

|∇um (t)|p(x) dx ≤ Cd, (3.32)

for all t ∈ [0,Tm). The above inequalities lead us to take Tm = T for all m, with any T > 0.
According to (3.31) and (3.32), it can be seen by proceeding in the same way as in the proof of Theorem

3.1 that the problem (1.1) has a weak solution u in the interval [0,T] , and furthermore (3.24) is fulfulled.

Decay Estimates

CASE J (u0) < M : due to u (t) ∈ W+
1 , through (2.6) and the energy inequality we can conclude that∫

Ω

|um (t)|p(x) dx ≤ p2
+ J (u (t)) ≤ p2

+ J (u0) .

utilising (2.16), Proposition 2.2 and Lemma 2.5, because of I(u (t)) ≥ 0 we have

I(u (t)) ≥
a

Rp−

log (R) −
1

p−
log


∫
Ω

|u|p(x) dx


 max

{
∥u∥p−p(x) , ∥u∥

p+
p(x)

}
≥

a
Rp−

(
log (R) −

1
p−

log
(
p2
+ J (u0)

)) ∫
Ω

|u|p(x) dx

≥ ζ ∥u (t)∥p−2 , (3.33)

because of p− > 2, where ζ = a
p−Rp− log M

J(u0) > 0.
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On the other hand, from the first equation of problem (1.1) we get

T∫
t

I (u (s)) ds = −

T∫
t

∫
Ω

us (s) u (s) dxds ≤
1
2
∥u (t)∥22 , (3.34)

for all t ∈ [0,T] .
We Combine (3.31) and (3.32), resulting in

T∫
t

∥u (t)∥p−2 ds ≤
1

2ζ
∥u (t)∥22 , ∀t ∈ [0,T] .

Tending T to +∞ then by Lemma 3.1 (with f (t) replaced by ∥u (t)∥22 , σ =
(
p− − 2

)
/2 and ω = 2ζ ∥u0∥

p−−2
2 ), we

obtain the following decay estimate

∥u (t)∥2 ≤ ∥u0∥2

 p−

2
(
1 + ζ

(
p− − 2

)
∥u0∥

p−−2
2 t

) 
1/(p−−2)

, t ≥ 0.

CASE J (u0) =M : in view of I (u (t)) > 0 for all t ≥ 0 we may write∫
Ω

ut (t) u (t) dx = −I (u (t)) < 0, ∀t > 0.

And as ∥ut (t)∥22 should be positive
(
∥ut (t)∥22 > 0

)
, for all t > 0. Since t →

t∫
0

∥us (s)∥22 ds is a continuous

function and by the help of the energy inequality (3.24), thus, for any number ε > 0 small enough, there
exists tε > 0 so that

J (u (tε)) ≤ J (u0) −

tε∫
0

∥us (s)∥22 ds =M − ε.

Finally, we consider the initial time tε and we proceed in the same way as in the case 0 < J (u0) < M
then, we find the estimate

∥u (t)∥2 ≤ ∥u (tε)∥2

 p−

2
(
1 + ζε

(
p− − 2

)
∥u (tε)∥

p−−2
2 t

) 
1/(p−−2)

, t ≥ tε,

where ζε = a
p−Rp− log M

J(u(tε))
> 0.

Case II: the Initial Datum u0 ∈ W
+
2

To prove that the solution of problem (1.1) is globally in time, we need to define the sequence{
γm

}+∞
m=1 ⊂ (0, 1)

with limm→+∞ γm = 1. And consider the following problem
ut − div

(
|∇u|p(x)−2

∇u
)
= |u|p(x)−2 u log |u| , (x, t) ∈ Ω ×R+,

u (x, t) = 0, (x, t) ∈ ∂Ω ×R+,
u (x, 0) = u0m (x) , x ∈ Ω,

(3.35)
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where u0m = γmu0. Owing to I (u0) ≥ 0 then from Lemma 2.4 we have

λ∗ = λ∗ (u0) = exp


∫
Ω
λ∗p(x)−1

(
|∇u0|

p(x)
− |u0|

p(x) log |u0|
)

dx∫
Ω
λ∗p(x)−1 |u0|

p(x) dx

 ≥ 1.

Therefore, we obtain

I (u0m) = I
(
γmu0

)
> 0 and J (u0m) = J

(
γmu0

)
< J (u0) = d

it means by the definition ofW+
1 that u0m ∈ W

+
1 . Proceeding in the same way as in the previous subsection,

leads to the problem (3.35) having a global weak solution um as follows

um ∈ L∞
(
0,T; W1,p(x)

0 (Ω)
)
, umt ∈ Lp′(x)

(
0,T; W−1,p′(x)

0 (Ω)
)
∩ L2

(
0,T; L2 (Ω)

)
and ∫

Ω

umt (t) wdx +
∫
Ω

|∇um (t)|p(x)−2
∇um (t)∇wdx =

∫
Ω

|um (t)|p(x)−2 um (t) log |um (t)|wdx,

for all w ∈W1,p(x)
0 (Ω) ∩ L2 (Ω) and for almost every t > 0 as well, we have

um (t) ∈ W+,

for all t ∈ [0,+∞), and

t∫
0

∥ums (s)∥22 ds + J (um (t)) ≤ J (u0m) < d, t ∈ [0,+∞).

The rest of the proof can be formulated in a similar way as earlier.

4. Blow up of Weak Solutions

The aim of this section is to prove that blowing up in finite time results of weak solutions to problem
(1.1) provided that the initial datum u0 is inW− and fulfills the condition J(u0) ≤ M. To this end, we need
some lemmas, which are presented in [9, 28].

Lemma 4.1. Let ψ ∈W1,1
loc (R+) be a nonnegative function satisfying ψ(0) > 0 and the differential inequality

dψ
dt

(t) ≥ cψσ(t), for a.e. t ≥ 0,

where σ > 1 and c is positive constant. Then we have

ψ(t) ≥
(

1
ψ1−σ(0) − c (σ − 1) t

)1/(σ−1)

, t ∈ [0,T∗) ,

which implies that lim
t→T−∗

ψ(t) = ∞, with T∗ =
ψ1−σ(0)
c(σ−1) .

Proof. For the proof of this lemma see [18].
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Lemma 4.2. Let Φ be a positive, twice differentiable function satisfying the following conditions

Φ(t) > 0, and Φ
′

(t) > 0,

for some t ∈ [0,T), and the inequality

Φ(t)Φ
′′

(t) − α
(
Φ
′

(t)
)2
≥ 0, ∀t ∈ [t,T],

where α > 1. Then, we have

Φ(t) ≥
(

1

Φ1−α(t) − Φ̂(t − t)

)1/(α−1)

, t ∈
[
t,T∗

)
,

with Φ̂ is a positive constant, and

T∗ = t +
Φ(t)

(α − 1)Φ′ (t)
.

This implies

lim
t→T−∗
Φ(t) = +∞.

The main result of this section is the following theorem

Theorem 4.1. Let u0 ∈ W
− with J(u0) ≤ M. Suppose that the local weak solution u(x, t) of problem (1.1) which

corresponds to u0 and for which the energy inequality

t∫
0

∥us(s)∥22 ds + J(u(t)) ≤ J(u0), ∀t ∈ [0,T) . (4.1)

holds. Then, it follow the assertions
(i) The solution u(x, t) blows up at finite time when J(u0) ≤ 0 so we have

lim
t→T−∗
∥u(t)∥22 = +∞, where T∗ =

p2
+lp−2,p(x) ∥u0∥

2−p−
2

p−
(
p− − 2

) . (4.2)

In addition, the following estimate holds

∥u (t)∥22 ≥

 1

∥u0∥
2−p−
2 −

(
p−/p2

+lp−2,p(x)

) (
p− − 2

)
t


2/(p−−2)

.

(ii) The solution u(x, t) blows up at finite time when 0 < J(u0) ≤ M, which means that there exists a time T∗ > 0 for
which

lim
t→T−∗
∥u(t)∥22 = +∞.

Proof. We start by proving that u(t) ∈ W−

1 , for all t ≥ 0, when u0 ∈ W
−

1 . Indeed, reasoning by absurd, we
suppose that there exists a time t0 ∈ (0,T) for which

u(., t) ∈ W−

1 for all t ∈ [0, t0), and u(., t0) ∈ ∂W−

1 ,
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so

I(u(t0)) = 0 or J (u(t0)) = d.

Nevertheless, owing to (2.28) and the energy inequality (4.1) it is obvious that the identity J (u(t0)) = d can

not arise. However, if I (u(t0)) = 0, it follows that min
{
∥u∥p(x) , ∥u∥

p+/p−
p(x)

}
≥ R > 0 in view of Lemma 2.5. We

conclude that u(t0) ∈ N so, through the formula (2.27), we find J (u(t0)) ≥ d which contracts the inequality
of energy (4.1).

After that, weak solutions to problem (1.1) blow up at finite time i.e., (4.2) holds. Thus we assume that

∥u (t)∥p(x) > 1. (4.3)

since by the embedding Lp(x) (Ω) ↪→ L2 (Ω) , p (x) > 2.
Define the functional

Γ(t) =

t∫
0

∥u (s)∥22 ds + (T − t) ∥u0∥
2
2 t ∈ [0,T] , (4.4)

we have

Γ′(t) = ∥u (t)∥22 − ∥u0∥
2
2 =

t∫
0

d
ds

(
∥u (s)∥22

)
ds = 2

t∫
0

∫
Ω

us (s) u (s) dxds. (4.5)

From (4.5) and by Setting u = w in (2.3) we get

Γ′′(t) = 2
∫
Ω

ut (t) u (t) dx = −2
∫
Ω

|∇u (t)|p(x) dx + 2
∫
Ω

|u (t)|p(x) log |u (t)| dx = −2I (u (t)) . (4.6)

By Proposition 2.2, (2.6), (4.3), and the inequality of energy (4.1), the formula (4.6) becomes

Γ′′(t) ≥ −
2
γ

J(u (t)) +
2
γp2
+

∫
Ω

|u (t)|p(x) dx

≥
2
γ

t∫
0

∥us(s)∥22 ds +
2
γp2
+

∥u (t)∥p−p(x) −
2
γ

J(u0). (4.7)

Three cases can be considered:
(i) Case J(u0) ≤ 0.
In the present case, we use the embedding Lp(x) (Ω) ↪→ L2 (Ω) , p (x) > 2. Then (4.3), (4.5) and (4.7) give us

Γ′′(t) ≥
2p−
p2
+

∥u (t)∥p−p(x) ≥
2p−

p2
+lp−2,p(x)

(
∥u (t)∥22

)p−/2
=

2p−
p2
+lp−2,p(x)

(
Γ′(t) + ∥u0∥

2
2

)p−/2
,

since by the definition of γ, where lp−2,p(x) is the embedding constant. Therefore we can apply Lemma 4.1

(with ψ(t) replaced by Γ′(t) + ∥u0∥
2
2 , c = 2p−/p2

+lp−2,p(x) and σ = p−/2) to obtain the estimate

∥u (t)∥22 ≥

 1

∥u0∥
2−p−
2 −

(
p−/p2

+lp−2,p(x)

) (
p− − 2

)
t


2/(p−−2)

,
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this demonstrates that

lim
t→T−∗
∥u (t)∥22 = +∞, where T∗ =

p2
+lp−2,p(x) ∥u0∥

2−p−
2

p−
(
p− − 2

) .

(ii) Case 0 < J(u0) < M :
Since u(t) ∈ W−

1 , for all t ∈ [0,T], we have I(u(t)) < 0 this involves by Lemma 2.5 and (4.3) that

min
{
∥u∥p−p(x) , ∥u∥

p+
p(x)

}
= ∥u∥p−p(x) ≥ Rp− for all t ∈ [0,T],

Then, through (4.7) by using the fact that M − J(u0) > 0, and the definition of γ we have

Γ′′(t) ≥
2
γ

t∫
0

∥us(s)∥22 ds +
2
γ

(M − J(u0))

≥ 2p−

t∫
0

∥us(s)∥22 ds + 2p− (M − J(u0)) , t ∈ [0,T]. (4.8)

So we get

Γ′(t) = Γ′(0) +

t∫
0

Γ′′(s)ds ≥ 2p− (M − J(u0)) t ≥ 0, t ∈ [0,T]. (4.9)

Therefore, (4.5) and (4.9) give us by using Hölder inequality that

1
4

(Γ′(t))2
≤


t∫

0

∫
Ω

us (s) u (s) dxds


2

≤

t∫
0

∥us(s)∥22 ds

t∫
0

∥u(s)∥22 ds, (4.10)

for all t ∈ [0,T]. Combining (4.4), (4.8) and (4.10), we find

Γ(t)Γ′′(t) ≥ 2p−

t∫
0

∥us(s)∥22 ds

t∫
0

∥u (s)∥22 ds + 2p− (M − J(u0))Γ(t)

≥
p−
2

(Γ′(t))2 + 2p− (M − J(u0))Γ(t)

for all t ∈ [0,T]. Consequently

Γ(t)Γ′′(t) −
p−
2

(Γ′(t))2
≥ 2p− (M − J(u0))Γ(t) > 0. for all t ∈ [0,T]

In accordance with Lemma 4.2, there exists T∗ > 0 such that

lim
t→T−∗
Γ(t) = +∞,

which means that limt→T−∗

t∫
0
∥u (s)∥22 ds = +∞. And then, we obtain

lim
t→T−∗
∥u(t)∥22 = +∞.
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(iii) Case J(u0) =M : Because I (u (t)) < 0 for all t ≥ 0 this means that∫
Ω

ut (t) u (t) dt = −
∫
Ω

|∇u (t)|p(x) dx +
∫
Ω

|u (t)|p(x) log |u (t)| dx = −I (u (t)) > 0, ∀t > 0.

And as ∥ut (t)∥22 should be positive, for all t > 0. Since t →

t∫
0

∥us (s)∥22 ds is continuous function and by the

help of the energy inequality (4.1), thus, for any number ε > 0 small enough, there exists tε > 0 such that

J (u (tε)) ≤ J (u0) −

tε∫
0

∥us (s)∥22 ds =M − ε

Finally, we consider the initial time, tε and we proceed in the same way as in the case 0 < J (u0) < M then
we obtain the finite blow up result

lim
t→T−∗
∥u(t)∥22 = +∞.

which complete the proof of the theorem.
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Paris, 1969.
[7] T. Boudjeriou, On the diffusion p(x)−laplacian with logarithmic nonlinearity, . 6 (2020), 773–794.
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