Filomat 37:22 (2023), 7623–7639 https://doi.org/10.2298/FIL2322623S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

b_3 -subbalancing and b_3 -Lucas subbalancing numbers

Selin Sari^a, Gül Karadeniz Gözeri^{a,*}

^aDepartment of Mathematics, Istanbul University, Vezneciler, 34134, Istanbul, Turkey

Abstract. In this paper, we derive some new algebraic identities on b_3 -subbalancing numbers and obtain the functions that generate b_3 -subbalancing numbers. We also introduce b_3 -Lucas subbalancing numbers and derive some algebraic identities between b_3 -Lucas subbalancing numbers and b_3 -subbalancing numbers. Further, we give the Binet formulas for b_3 -subbalancing and b_3 -Lucas subbalancing numbers.

1. Introduction

Behera and Panda [1] introduced balancing numbers *n* as solutions of the Diophantine equation

$$1 + 2 + \dots + (n - 1) = (n + 1) + (n + 2) + \dots + (n + r)$$
⁽¹⁾

for some positive integers r. The positive integer r in (1) is called the balancer of n. For example, 6, 35, 204 and 1189 are balancing numbers with balancers which are 2, 14, 84 and 492, respectively. The n^{th} balancing number is denoted by B_n .

If *n* is a balancing number with balancer *r*, then from (1)

$$n^{2} = \frac{(n+r)(n+r+1)}{2}$$
 and $r = \frac{-(2n+1) + \sqrt{8n^{2}+1}}{2}$ (2)

It follows from (2) that *n* is a balancing number if and only if $8n^2 + 1$ is a perfect square. Since $8n^2 + 1$ is a perfect square for n = 1, 1 is accepted as a balancing number.

Balancing numbers satisfy the following recurrence relation

 $B_{n+1} = 6B_n - B_{n-1}$, $(n \ge 2)$

with initial terms $B_1 = 1$, $B_2 = 6$.

²⁰²⁰ Mathematics Subject Classification. Primary 11B37; Secondary 11B83

Keywords. Balancing number; Subbalancing number; Generating function; Binet formula

Received: 18 October 2022; Accepted: 25 March 2023

Communicated by Miodrag Spalević

^{*} Corresponding author: Gül Karadeniz Gözeri

Email addresses: selin.sari@ogr.iu.edu.tr (Selin Sari), gulkaradeniz@istanbul.edu.tr (Gül Karadeniz Gözeri)

By modifying (1) slightly, Panda and Ray [2] introduced cobalancing numbers n as solutions of the Diophantine equation

$$1 + 2 + \dots + n = (n+1) + (n+2) + \dots + (n+r)$$
(3)

for some positive integers *r*. The positive integer *r* in (3) is called the cobalancer of *n*. For example, 2, 14, 84 are cobalancing numbers with cobalancers which are 1, 6, 35, respectively. The n^{th} cobalancing number is denoted by b_n .

Cobalancing numbers satisfy the following recurrence relation

 $b_{n+1} = 6b_n - b_{n-1} + 2$, $(n \ge 2)$

with initial terms $b_1 = 0$, $b_2 = 2$.

If n is a cobalancing number with cobalancer r, then from (3)

$$n(n+1) = \frac{(n+r)(n+r+1)}{2} \quad \text{and} \quad r = \frac{-(2n+1) + \sqrt{8n^2 + 8n + 1}}{2}$$
(4)

It follows from (4) that *n* is a cobalancing number if and only if $8n^2 + 8n + 1$ is a perfect square.

The numbers $C_n = \sqrt{8B_n^2 + 1}$ and $c_n = \sqrt{8b_n^2 + 8b_n + 1}$ are called the n^{th} Lucas-balancing number and the n^{th} Lucas-cobalancing number, respectively ([3, 4]). For example, 3, 17, 99 are Lucas-balancing numbers and 1, 7, 41 are Lucas-cobalancing numbers.

Lucas-balancing and Lucas-cobalancing numbers satisfy the following recurrence relations

$$C_{n+1} = 6C_n - C_{n-1} , \quad (n \ge 2)$$

$$c_{n+1} = 6c_n - c_{n-1} , \quad (n \ge 2)$$

with initial terms $C_1 = 3$, $C_2 = 17$ and $c_1 = 1$, $c_2 = 7$, respectively.

Further in [3], the Binet formulas for balancing, cobalancing, Lucas-balancing and Lucas-cobalancing numbers are given as:

$$B_n = \frac{\alpha_1^{2n} - \alpha_2^{2n}}{4\sqrt{2}} \qquad b_n = \frac{\alpha_1^{2n-1} - \alpha_2^{2n-1}}{4\sqrt{2}} - \frac{1}{2}$$
$$C_n = \frac{\alpha_1^{2n} + \alpha_2^{2n}}{2} \qquad c_n = \frac{\alpha_1^{2n-1} + \alpha_2^{2n-1}}{2}$$
where $\alpha_1 = 1 + \sqrt{2}$ and $\alpha_2 = 1 - \sqrt{2}$.

The concept of balancing numbers, cobalancing numbers, Lucas-balancing numbers and Lucas-cobalancing numbers has been extanded and generalized by many authors. In [5], Panda and Ray observed relations between balancing and cobalancing numbers with Pell and Associated Pell numbers. Later in [6], relations between balancing numbers and Pell, Pell-Lucas and oblong numbers were obtained. Further in [7], some identities on the sums, divisibility properties, perfect squares, Pythagorean triples involving Pell, Pell-Lucas and balancing numbers were derived.

There have been studies about investigating balancing numbers in some sequences. Liptai [8] proved that there is no Fibonacci balancing number except 1. Later in [9], he derived that there is no balancing number in the terms of the Lucas sequence. In [10], Szalay also obtained the same result using different

method.

Panda and Rout [11], introduced gap balancing numbers and studied specifically on 2-gap balancing numbers. Further in [12], some algebraic identities of *k*-gap balancing numbers for arbitrary *k* were given. In [13], Panda and Panda defined almost balancing numbers and obtained some algebraic equations related to these numbers. Later in [14], Tekcan derived algebraic relations between almost balancing numbers and triangular and square triangular numbers. Further in [15], he obtained some algebraic identities on sums of almost balancing numbers.

In [16], Panda generalized the concept of balancing and cobalancing numbers to an arbitrary sequence. Later in [17], (k, l)-balancing numbers were defined and some effective and ineffective finiteness results were proved for (k, l)-balancing numbers. Some properties of generalized balancing numbers were obtained in [18]. Further in [19], a survey about balancing, cobalancing and generalized balancing numbers was given.

Davala and Panda [20] defined supercobalancing numbers. Later, in [21] they generalized the concept of almost balancing numbers by defining *D*-subbalancing numbers *n* as solutions of the Diophantine equation

$$1 + 2 + \dots + (n-1) + D = (n+1) + (n+2) + \dots + (n+r)$$
(5)

for some positive integer r, where D is a fixed positive integer. The positive integer r in (5) is called D-subbalancer of n. They observed that the choice of the positive integer D is important for obtaining D-subbalancing numbers and there is no positive integer n that satisfies the equation (5), for every D. They showed that it is possible to find a positive integer n that satisfies the equation (5) when D is chosen as cobalancing numbers. They obtained basic concepts and theorems about b_n -subbalancing numbers. Specifically, they examined b_3 -subbalancing numbers and b_5 -subbalancing numbers and showed that b_3 -subbalancing numbers can be classified in two classes of the form $11B_m + C_m$, $11B_{m+1} - C_{m+1}$, $m \ge 0$.

In the present work, we consider b_3 -subbalancing numbers and give some new algebraic identities provided by the b_3 -subbalancing numbers and obtain the functions that generate b_3 -subbalancing numbers. We also prove that any two consecutive even terms of the sequence of b_3 -subbalancing numbers and any two consecutive odd terms of the sequence of b_3 -subbalancing numbers are relatively prime. Further, similar to Lucas-balancing numbers, we introduce b_3 -Lucas subbalancing numbers. We give the Binet formulas for b_3 -subbalancing and b_3 -Lucas subbalancing numbers. Later, we obtain some algebraic relations between b_3 -Lucas subbalancing numbers.

2. Preliminaries

Throughout this paper, we denote the m^{th} b_3 -subbalancing number and the m^{th} b_3 -Lucas subbalancing number as $(Sb_3)_m$ and $(CSb_3)_m$, respectively. We get the following results regarding b_3 -subbalancing numbers from [21].

Theorem 2.1. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number, let B_m denote the m^{th} balancing number and let C_m denote the m^{th} Lucas-balancing number. Then

$$(Sb_3)_{2m} = 11B_m + C_m$$

(Sb_3)_{2m+1} = 11B_{m+1} - C_{m+1}

for $m \ge 0$.

Theorem 2.2. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number. Then, the recurrence relation for b_3 -subbalancing numbers is

$$(Sb_3)_{m+2} = 6(Sb_3)_m - (Sb_3)_{m-2} \qquad (m \ge 2)$$

where $(Sb_3)_0 = 1$, $(Sb_3)_1 = 8$, $(Sb_3)_2 = 14$, $(Sb_3)_3 = 49$.

Corollary 2.1. $(Sb_3)_m$ is a b_3 -subbalancing number if and only if $8(Sb_3)_m^2 + 113$ is a perfect square.

Theorem 2.3. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and B_m denote the m^{th} balancing number. Then

$$B_m = \frac{11(Sb_3)_{2m} - \sqrt{8(Sb_3)_{2m}^2 + 113}}{113} \qquad (m \ge 0)$$

$$B_m = \frac{11(Sb_3)_{2m-1} + \sqrt{8(Sb_3)_{2m-1}^2 + 113}}{113} \qquad (m \ge 1).$$

3. Main Results

In this section we derive our main results.

3.1. Algebraic Identities for b₃-Subbalancing Numbers

In this subsection, we obtain some new algebraic identities between b_3 -subbalancing numbers and balancing and Lucas-balancing numbers.

Theorem 3.1. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and B_m denote the m^{th} balancing number. Then

$$(Sb_3)_{2m+1} = 8(Sb_3)_{2m} - 63B_m \qquad (m \ge 0)$$

and

$$(Sb_3)_{2m} = 22B_m - (Sb_3)_{2m-1}$$
 $(m \ge 1).$

Proof. It follows from Theorem 2.1 that

$$(Sb_3)_{2m+1} = 8B_{m+1} + B_m \tag{6}$$

and

$$(Sb_3)_{2m} = 8B_m + B_{m+1} \tag{7}$$

From (6) and (7), we get

$$(Sb_3)_{2m+1} = 8(Sb_3)_{2m} - 63B_m.$$

Further from (6), we obtain

$$(Sb_3)_{2m-1} = 8B_m + B_{m-1} \tag{8}$$

From (7), we get

 $(Sb_3)_{2m} = 14B_m - B_{m-1} \tag{9}$

From (8) and (9), we get

$$(Sb_3)_{2m} = 22B_m - (Sb_3)_{2m-1}.$$

Remark 3.1. We observe that all terms of the sequence of b_3 -subbalancing numbers can be written in terms of the sequence of the balancing numbers without involving any other number sequence.

Corollary 3.1. The sum of any even term of the sequence of b_3 -subbalancing numbers and the preceding one is always even. Equivalently to this, the sum of any odd term of the sequence of b_3 -subbalancing numbers and the next one is always even.

Corollary 3.2. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and B_m denote the m^{th} balancing number. Then

$$4(Sb_3)_{2m} = 7(Sb_3)_{2m-1} - 11B_{m-1}$$

for $m \ge 1$.

Proof. Using (8) and (9), we obtain

$$7(Sb_3)_{2m-1} = 56B_m + 7B_{m-1}$$

$$4(Sb_3)_{2m} = 56B_m - 4B_{m-1}.$$

Thus, we get

 $4(Sb_3)_{2m} = 7(Sb_3)_{2m-1} - 11B_{m-1}.$

Theorem 3.2. Let $(Sb_3)_m$ denote the $m^{th} b_3$ -subbalancing number. Then

$$(Sb_3)_{2m} = \frac{113(Sb_3)_{2m-1} - 22(Sb_3)_{2m-2}}{63}$$

and

$$(Sb_3)_{2m+1} = \frac{113(Sb_3)_{2m} - 63(Sb_3)_{2m-1}}{22}$$

for $m \ge 1$.

Proof. From Theorem 3.1, we deduce that

$$8(Sb_3)_{2m-2} = (Sb_3)_{2m-1} + 63B_{m-1} \tag{10}$$

Using (10) and Corollary 3.2, we obtain

$$252(Sb_3)_{2m} + 88(Sb_3)_{2m-2} = 452(Sb_3)_{2m-1}$$
⁽¹¹⁾

From (11), we get

$$63(Sb_3)_{2m} = 113(Sb_3)_{2m-1} - 22(Sb_3)_{2m-2}.$$

Thus, we get

$$(Sb_3)_{2m} = \frac{113(Sb_3)_{2m-1} - 22(Sb_3)_{2m-2}}{63}$$

The other case can be proved similarly.

In the following two theorems the relations between b_3 -subbalancing numbers and Lucas-balancing numbers are given.

Theorem 3.3. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and C_m denote the m^{th} Lucas-balancing number. Then

$$11(Sb_3)_{2m+1} = 25(Sb_3)_{2m} + 63C_m$$

for $m \ge 0$.

Proof. Using Theorem 2.1 and relations between balancing numbers and Lucas-balancing numbers, we obtain

 $(Sb_3)_{2m+1} = 25B_m + 8C_m.$

From Theorem 2.1, we get

 $11(Sb_3)_{2m+1} = 25(Sb_3)_{2m} + 63C_m.$

Theorem 3.4. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and C_m denote the m^{th} Lucas-balancing number. Then

$$(Sb_3)_{2m} = (Sb_3)_{2m-1} + 2C_m$$

for $m \ge 1$.

Proof. It follows from Theorem 2.1 that

$$(Sb_3)_{2m-1} = 11B_m - C_m.$$

Thus, we get

 $(Sb_3)_{2m} = (Sb_3)_{2m-1} + 2C_m.$

Theorem 3.5. Let $(Sb_3)_m$ denote the $m^{th} b_3$ -subbalancing number. Then

$$(Sb_3)_m^2 = (Sb_3)_{m-2}(Sb_3)_{m+2} + 113$$

for $m \ge 2$.

Proof. This theorem is proved by induction. It is easily seen that the assertion is true for m = 2. Assuming the assertion is true for $m \le k$, we have

$$(Sb_3)_{k+1}^2 = (Sb_3)_{k+1} (Sb_3)_{k+1} = (6(Sb_3)_{k-1} - (Sb_3)_{k-3})(Sb_3)_{k+1} = 6(Sb_3)_{k-1}(Sb_3)_{k+1} - (Sb_3)_{k-1}^2 + 113 = (Sb_3)_{k-1}(6(Sb_3)_{k+1} - (Sb_3)_{k-1}) + 113 = (Sb_3)_{k-1}(Sb_3)_{k+3} + 113.$$

Thus it is shown that the assertion is true for m = k + 1.

Theorem 3.6. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and B_m denote the m^{th} balancing number. Then

$$(Sb_3)_{m+1}(Sb_3)_m - (Sb_3)_{m-1}(Sb_3)_{m-2} = 113B_m$$

for $m \ge 2$.

Proof. This theorem is proved by induction. It is easily seen that the assertion is true for m = 2. Assuming the assertion is true for $m \le k$, we have

$$\begin{aligned} (Sb_3)_{k+2}(Sb_3)_{k+1} &- (Sb_3)_k(Sb_3)_{k-1} &= (6(Sb_3)_k - (Sb_3)_{k-2})(Sb_3)_{k+1} - (Sb_3)_k(Sb_3)_{k-1} \\ &= 6(Sb_3)_{k+1}(Sb_3)_k - (Sb_3)_{k+1}(Sb_3)_{k-2} - (Sb_3)_k(Sb_3)_{k-1} \\ &= 6(Sb_3)_{k+1}(Sb_3)_k - 6(Sb_3)_{k-1}(Sb_3)_{k-2} \\ &+ (Sb_3)_{k-2}(Sb_3)_{k-3} - (Sb_3)_k(Sb_3)_{k-1} \\ &= 6((Sb_3)_{k+1}(Sb_3)_k - (Sb_3)_{k-1}(Sb_3)_{k-2}) \\ &- ((Sb_3)_k(Sb_3)_{k-1} - (Sb_3)_{k-2}(Sb_3)_{k-3}) \\ &= 6(113B_k) - 113B_{k-1} \\ &= 113B_{k+1}. \end{aligned}$$

Thus it is shown that the assertion is true for m = k + 1.

Theorem 3.7. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and B_n denote the n^{th} balancing number. Then

 $(Sb_3)_{2n+m-1} = (Sb_3)_{m-1}B_{n+1} - (Sb_3)_{m-3}B_n$

for any two positive integers *m* and *n*.

Proof. This theorem is proved by induction. It is easily seen that the assertion is true for n = 1. Assuming the assertion is true for $n \le k$, we have

$$\begin{aligned} (Sb_3)_{2k+m+1} &= 6(Sb_3)_{2k+m-1} - (Sb_3)_{2k+m-3} \\ &= 6(B_{k+1}(Sb_3)_{m-1} - B_k(Sb_3)_{m-3}) - (B_k(Sb_3)_{m-1} - B_{k-1}(Sb_3)_{m-3}) \\ &= (Sb_3)_{m-1}(6B_{k+1} - B_k) - (Sb_3)_{m-3}(6B_k - B_{k-1}) \\ &= B_{k+2}(Sb_3)_{m-1} - B_{k+1}(Sb_3)_{m-3}. \end{aligned}$$

Thus it is shown that the assertion is true for n = k + 1.

Theorem 3.8. Any two consecutive even terms of the sequence of b_3 -subbalancing numbers and any two consecutive odd terms of the sequence of b_3 -subbalancing numbers are relatively prime, that is

 $((Sb_3)_{2m}, (Sb_3)_{2m-2}) = 1$ and $((Sb_3)_{2m+1}, (Sb_3)_{2m-1}) = 1$.

Proof. Using the Euclidean Algorithm and Theorem 2.1, we deduce that

$$\begin{aligned} (Sb_3)_{2m} &= 6(Sb_3)_{2m-2} + [-(Sb_3)_{2m-2} + (Sb_3)_{2m-2}] - (Sb_3)_{2m-4} \\ (Sb_3)_{2m-2} &= [(Sb_3)_{2m-2} - (Sb_3)_{2m-4}] \times 1 + (Sb_3)_{2m-4} \\ (Sb_3)_{2m-2} - (Sb_3)_{2m-4} &= (6-2)(Sb_3)_{2m-4} + [(Sb_3)_{2m-4} - (Sb_3)_{2m-6}] \\ (Sb_3)_{2m-4} &= [(Sb_3)_{2m-4} - (Sb_3)_{2m-6}] \times 1 + (Sb_3)_{2m-6} \\ (Sb_3)_{2m-4} - (Sb_3)_{2m-6} &= (6-2)(Sb_3)_{2m-6} + [(Sb_3)_{2m-6} - (Sb_3)_{2m-8}] \\ \vdots \\ (Sb_3)_4 - (Sb_3)_2 &= (6-2)(Sb_3)_2 + [(Sb_3)_2 - (Sb_3)_0] \\ (Sb_3)_2 &= [(Sb_3)_2 - (Sb_3)_0] \times 1 + (Sb_3)_0 \\ (Sb_3)_2 - (Sb_3)_0 &= [(Sb_3)_2 - (Sb_3)_0](Sb_3)_0 + 0. \end{aligned}$$

Since $((Sb_3)_2 - (Sb_3)_0, (Sb_3)_0) = 1$, we get $((Sb_3)_{2m}, (Sb_3)_{2m-2}) = 1$.

The other case can be proved similarly.

In the following theorem the Binet formula for b_3 -subbalancing numbers is given.

Theorem 3.9. Let $(Sb_3)_m$ denote the $m^{th} b_3$ -subbalancing number. Then

$$(Sb_3)_{2m} = \frac{\left(11\sqrt{2}+4\right)\alpha_1^m - (11\sqrt{2}-4)\alpha_2^m}{8}$$

and

$$(Sb_3)_{2m+1} = \frac{\left(11\sqrt{2}-4\right)\alpha_1^{m+1} - (11\sqrt{2}+4)\alpha_2^{m+1}}{8}$$

where $\alpha_1 = 3 + 2\sqrt{2}$, $\alpha_2 = 3 - 2\sqrt{2}$.

Proof. From the Binet formulas for balancing and Lucas-balancing numbers, we get

S. Sari, G. Karadeniz Gözeri / Filomat 37:22 (2023), 7623–7639

$$(Sb_3)_{2m} = 11\left(\frac{\alpha_1^m - \alpha_2^m}{4\sqrt{2}}\right) + \left(\frac{\alpha_1^m + \alpha_2^m}{2}\right)$$
$$= \frac{(4 + 11\sqrt{2})\alpha_1^m + (4 - 11\sqrt{2})\alpha_2^m}{8}$$
$$= \frac{(11\sqrt{2} + 4)\alpha_1^m - (11\sqrt{2} - 4)\alpha_2^m}{8}.$$

The other case can be proved similarly.

3.2. Functions Genarating b₃-Subbalancing Numbers

In this subsection, we present some functions that generate b_3 -subbalancing numbers.

Theorem 3.10. For any even term of the sequence of b_3 -subbalancing numbers x, $g(x) = \frac{129x-22\sqrt{8x^2+113}}{113}$ is the b_3 -subbalancing number just prior to it and $\tilde{g}(x) = \frac{211x+63\sqrt{8x^2+113}}{113}$ is the b_3 -subbalancing number next to it.

Proof. Since *x* even term of the sequence of b_3 -subbalancing numbers, $x = (Sb_3)_{2m}$

for some positive integer *m*.

From Theorem 2.3 and Theorem 3.1, we get

$$(Sb_3)_{2m-1} = 22 \left(\frac{11(Sb_3)_{2m} - \sqrt{8(Sb_3)_{2m}^2 + 113}}{113} \right) - (Sb_3)_{2m}$$
$$= \frac{129(Sb_3)_{2m} - 22\sqrt{8(Sb_3)_{2m}^2 + 113}}{113}$$

which is equivalent to

$$(Sb_3)_{2m-1} = g((Sb_3)_{2m})$$

proving that the b_3 -subbalancing number just prior to x. Similarly, we get

$$(Sb_3)_{2m+1} = 8(Sb_3)_{2m} - 63 \left(\frac{11(Sb_3)_{2m} - \sqrt{8(Sb_3)_{2m}^2 + 113}}{113} \right)$$
$$= \frac{211(Sb_3)_{2m} + 63\sqrt{8(Sb_3)_{2m}^2 + 113}}{113}.$$

Thus the b_3 -subbalancing number next to $(Sb_3)_{2m}$ is

$$\tilde{g}((Sb_3)_{2m}) = (Sb_3)_{2m+1}.$$

Theorem 3.11. For any odd term of the sequence of b_3 -subbalancing numbers x, $g(x) = \frac{211x-63\sqrt{8x^2+113}}{113}$ is the b_3 -subbalancing number just prior to it and $\tilde{g}(x) = \frac{129x+22\sqrt{8x^2+113}}{113}$ is the b_3 -subbalancing number next to it.

Proof. Since *x* any odd term of the sequence of b_3 -subbalancing numbers, $x = (Sb_3)_{2m+1}$ for some positive integer *m*.

From (6) and Theorem 2.3, we get

$$B_{m} = (Sb_{3})_{2m+1} - 8 \left(\frac{11(Sb_{3})_{2m+1} + \sqrt{8(Sb_{3})_{2m+1}^{2} + 113}}{113} \right)$$
$$= \frac{25(Sb_{3})_{2m+1} - 8\sqrt{8(Sb_{3})_{2m+1}^{2} + 113}}{113}$$
(12)

It follows from (7) and (12) that

$$(Sb_3)_{2m} = 8 \left(\frac{25(Sb_3)_{2m+1} - 8\sqrt{8(Sb_3)_{2m+1}^2 + 113}}{113} \right) + \left(\frac{11(Sb_3)_{2m+1} + \sqrt{8(Sb_3)_{2m+1}^2 + 113}}{113} \right)$$
$$= \frac{211(Sb_3)_{2m+1} - 63\sqrt{8(Sb_3)_{2m+1}^2 + 113}}{113}.$$

Thus the b_3 -subbalancing number just prior to $(Sb_3)_{2m+1}$ is

$$g((Sb_3)_{2m+1}) = (Sb_3)_{2m}.$$

Using Theorem 2.3 and Theorem 3.1, we get

$$(Sb_3)_{2m+2} = 22 \left(\frac{11(Sb_3)_{2m+1} + \sqrt{8(Sb_3)_{2m+1}^2 + 113}}{113} \right) - (Sb_3)_{2m+1}$$
$$= \frac{129(Sb_3)_{2m+1} + 22\sqrt{8(Sb_3)_{2m+1}^2 + 113}}{113}.$$

Thus the b_3 -subbalancing number next to $(Sb_3)_{2m+1}$ is

$$\tilde{g}((Sb_3)_{2m+1}) = (Sb_3)_{2m+2}.$$

Theorem 3.12. If x is a b_3 -subbalancing number, then the functions $f(x) = 3x + \sqrt{8x^2 + 113}$ and $g(x) = 17x + 6\sqrt{8x^2 + 113}$ are also b_3 -subbalancing numbers.

Proof.

$$8(f(x))^{2} + 113 = 8(3x + \sqrt{8x^{2} + 113})^{2} + 113$$

= 136x² + 48x \sqrt{8x^{2} + 113} + 1017
= (8x + 3\sqrt{8x^{2} + 113})^{2} (13)

Since $8(f(x))^2 + 113$ is a perfect square, f(x) is a b_3 -subbalancing number.

$$g(x) = 17x + 6\sqrt{8x^2 + 113}$$

= 3(3x + \sqrt{8x^2 + 113}) + 8x + 3\sqrt{8x^2 + 113}.

From (13), we get

$$g(x) = 3(3x + \sqrt{8x^2 + 113}) + \sqrt{8(f(x))^2 + 113}$$

= $3f(x) + \sqrt{8(f(x))^2 + 113}$
= $f(f(x)).$

Since g(x) = f(f(x)), g(x) is a b_3 -subbalancing number.

Remark 3.2. We observe that when x is even f(x) generates odd b_3 -subbalancing numbers while g(x) generates even b_3 -subbalancing numbers. Similarly, when x is odd f(x) generates even b_3 -subbalancing numbers while g(x) generates odd b_3 -subbalancing numbers.

The following theorem shows that the function f(x) in Theorem 3.12 is equal to the $(m + 2)^{th} b_3$ -subbalancing number when x is equal to the $m^{th} b_3$ -subbalancing number.

Theorem 3.13. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and $f(x) = 3x + \sqrt{8x^2 + 113}$. Then

$$f((Sb_3)_m) = (Sb_3)_{m+2}$$

for $m \ge 0$.

Proof. Using the recurrence relation for b_3 -subbalancing numbers, we get

$$(Sb_3)_{m+2} = 6(Sb_3)_m - (Sb_3)_{m-2} = 3(Sb_3)_m + (3(Sb_3)_m - (Sb_3)_{m-2})$$
(14)

Then

$$(3(Sb_3)_m - (Sb_3)_{m-2})^2 = 9(Sb_3)_m^2 + (Sb_3)_{m-2}^2 - ((Sb_3)_{m+2} + (Sb_3)_{m-2})(Sb_3)_{m-2}$$

= 9(Sb_3)_{m-2} - (Sb_3)_{m+2}(Sb_3)_{m-2}
= 8(Sb_3)_m^2 + 113.

Hence

$$3(Sb_3)_m - (Sb_3)_{m-2} = \sqrt{8(Sb_3)_m^2 + 113}$$
(15)

From (14) and (15), we obtain

$$(Sb_3)_{m+2} = 3(Sb_3)_m + \sqrt{8(Sb_3)_m^2 + 113}$$
(16)

Thus, we get

$$f((Sb_3)_m) = (Sb_3)_{m+2}.$$

Theorem 3.14. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and $\tilde{f}(x) = 3x - \sqrt{8x^2 + 113}$. Then

$$\tilde{f}((Sb_3)_m) = (Sb_3)_{m-2}$$

for $m \ge 2$.

Proof. Since *x* any *b*₃-subbalancing number, then $x = (Sb_3)_m$ for $m \ge 2$.

From (15), we get

$$(Sb_3)_{m-2} = 3(Sb_3)_m - \sqrt{8(Sb_3)_m^2 + 113}$$
⁽¹⁷⁾

Thus, we get

$$\tilde{f}((Sb_3)_m) = (Sb_3)_{m-2}.$$

3.3. b₃-Lucas Subbalancing Numbers

In this subsection, first we introduce the concept of b_3 -Lucas subbalancing numbers. Then, we deduce some algebraic identities between b_3 -Lucas subbalancing numbers and balancing, Lucas-balancing numbers.

Definition 3.1. Let $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number. The square root of the number $8(Sb_3)_m^2 + 113$ is called the m^{th} b_3 -Lucas subbalancing number and denoted by $(CSb_3)_m$. That is,

$$(CSb_3)_m = \sqrt{8(Sb_3)_m^2 + 113}$$

For example, $(CSb_3)_0 = 11$ and $(CSb_3)_1 = 25$, since $(Sb_3)_0 = 1$ and $(Sb_3)_1 = 8$.

Corollary 3.3. Using definition of b₃-Lucas subbalancing numbers, (16) and (17), we get

$$(CSb_3)_m = (Sb_3)_{m+2} - 3(Sb_3)_m \quad (m \ge 0) (CSb_3)_m = 3(Sb_3)_m - (Sb_3)_{m-2} \quad (m \ge 2).$$

It is obvious that these identities shows the relations between b_3 -Lucas subbalancing number and b_3 -subbalancing number.

Theorem 3.15. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and $(CSb_3)_0 = 11, (CSb_3)_2 = 41$

$$(CSb_3)_{2m} = 6(CSb_3)_{2m-2} - (CSb_3)_{2m-4}$$

for $m \ge 2$.

Proof. Using the equation (16), we get

$$(CSb_3)_{2m}^2 = 8(Sb_3)_{2m}^2 + 113$$

= 8(3(Sb_3)_{2m-2} + (CSb_3)_{2m-2})^2 + 113
= (3(CSb_3)_{2m-2} + 8(Sb_3)_{2m-2})^2.

Thus, we get

$$(CSb_3)_{2m} = 3(CSb_3)_{2m-2} + 8(Sb_3)_{2m-2}$$
(18)

Similarly, from the equation (17), we get

$$(CSb_3)_{2m-4} = 3(CSb_3)_{2m-2} - 8(Sb_3)_{2m-2}$$
⁽¹⁹⁾

From (18) and (19), we get

 $(CSb_3)_{2m} = 6(CSb_3)_{2m-2} - (CSb_3)_{2m-4}.$

Theorem 3.16. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and $(CSb_3)_1 = 25$, $(CSb_3)_3 = 139$

 $(CSb_3)_{2m+1} = 6(CSb_3)_{2m-1} - (CSb_3)_{2m-3}$

for $m \ge 2$.

Proof. Using the equation (16), we get

$$(CSb_3)_{2m+1}^2 = 8(Sb_3)_{2m+1}^2 + 113$$

= $8(3(Sb_3)_{2m-1} + \sqrt{8(Sb_3)_{2m-1}^2 + 113})^2 + 113$
= $(3(CSb_3)_{2m-1} + 8(Sb_3)_{2m-1})^2$.

Thus, we get

$$(CSb_3)_{2m+1} = 3(CSb_3)_{2m-1} + 8(Sb_3)_{2m-1}$$
⁽²⁰⁾

Similarly, from the equation (17), we get

$$(CSb_3)_{2m-3} = 3(CSb_3)_{2m-1} - 8(Sb_3)_{2m-1}$$
(21)

From (20) and (21), we get

 $(CSb_3)_{2m+1} = 6(CSb_3)_{2m-1} - (CSb_3)_{2m-3}.$

The following theorem shows that the odd and even terms of the sequence of b_3 -Lucas subbalancing numbers can be written depending on the balancing and Lucas-balancing numbers.

Theorem 3.17. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number, B_m denote the m^{th} balancing number and C_m denote the m^{th} Lucas-balancing number. Then

$$(CSb_3)_{2m} = 11C_m + 8B_m$$
$$(CSb_3)_{2m+1} = 11C_{m+1} - 8B_{m+1}$$

for $m \ge 0$.

Proof. This theorem is proved by induction. It is easily seen that the assertion is true for m = 0. Assuming the assertion is true for $m \le k$, we have

$$(CSb_3)_{2k+2} = 6(CSb_3)_{2k} - (CSb_3)_{2k-2}$$

= 6(11C_k + 8B_k) - (11C_{k-1} + 8B_{k-1})
= 11(6C_k - C_{k-1}) + 8(6B_k - B_{k-1})
= 11C_{k+1} + 8B_{k+1}.

Thus it is shown that the assertion is true for m = k + 1. The other case can be proved similarly.

From Theorem 3.17, we can give the following two results that show the connection between b_3 -Lucas subbalancing numbers and Lucas-balancing and balancing numbers.

Theorem 3.18. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and C_m denote the m^{th} Lucas-balancing number. Then

$$(CSb_3)_{2m} = 8C_m + C_{m+1}$$

 $(CSb_3)_{2m+1} = C_m + 8C_{m+1}$

for $m \ge 0$.

Theorem 3.19. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and B_m denote the m^{th} balancing number. *Then*

 $(CSb_3)_{2m} = 11B_{m+1} - 25B_m$ $(CSb_3)_{2m+1} = 25B_{m+1} - 11B_m$

for $m \ge 0$.

Theorem 3.20. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and C_m denote the m^{th} Lucas-balancing number. Then

$$(CSb_3)_{2m+1} = 8(CSb_3)_{2m} - 63C_m$$

for $m \ge 0$.

Proof. From Theorem 3.18, we get

$$(CSb_3)_{2m+1} = C_m + 8C_{m+1}$$

= $C_m + 8C_{m+1} + 8(CSb_3)_{2m} - 64C_m - 8C_{m+1}$
= $8(CSb_3)_{2m} - 63C_m$.

Theorem 3.21. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and C_m denote the m^{th} Lucas-balancing number. Then

$$(CSb_3)_{2m} = 22C_m - (CSb_3)_{2m-1}$$

for $m \ge 1$.

Proof. From Theorem 3.18, we obtain

$$(CSb_3)_{2m} = 14C_m - C_{m-1} \tag{22}$$

and

$$(CSb_3)_{2m-1} = 8C_m + C_{m-1} \tag{23}$$

From (22) and (23), we get

 $(CSb_3)_{2m} = 22C_m - (CSb_3)_{2m-1}.$

Corollary 3.4. The sum of any even term of the sequence of b_3 -Lucas subbalancing numbers and the preceding term of the sequence of b_3 -Lucas subbalancing number is always even. Similarly, the sum of any odd term of the sequence of b_3 -Lucas subbalancing numbers and the next term of the sequence of b_3 -Lucas subbalancing number is always even.

Theorem 3.22. Let $(CSb_3)_m$ denote the $m^{th} b_3$ -Lucas subbalancing number. Then

 $22(CSb_3)_{2m+1} = 113(CSb_3)_{2m} - 63(CSb_3)_{2m-1}$

for $m \ge 1$.

Proof. Using Theorem 3.20 and Theorem 3.21, we obtain

 $22(CSb_3)_{2m+1} = 176(CSb_3)_{2m} - 1386C_m$ $63(CSb_3)_{2m} = 1386C_m - 63(CSb_3)_{2m-1}.$

Thus

 $22(CSb_3)_{2m+1} = 113(CSb_3)_{2m} - 63(CSb_3)_{2m-1}.$

Theorem 3.23. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and C_m denote the m^{th} Lucas-balancing number. Then

 $4(CSb_3)_{2m} = 7(CSb_3)_{2m-1} - 11C_{m-1}$

for $m \ge 1$.

Proof. Using (22) and (23), we get

 $7(CSb_3)_{2m-1} = 56C_m + 7C_{m-1}$

and

 $4(CSb_3)_{2m} = 56C_m - 4C_{m-1}.$

Then

$$4(CSb_3)_{2m} = 7(CSb_3)_{2m-1} - 11C_{m-1}.$$

Theorem 3.24. Let $(CSb_3)_m$ denote the $m^{th} b_3$ -Lucas subbalancing number. Then

 $63(CSb_3)_{2m} = 113(CSb_3)_{2m-1} - 22(CSb_3)_{2m-2}$

for $m \ge 1$.

Proof. From Theorem 3.20 and Theorem 3.23, we obtain

 $8(CSb_3)_{2m-2} = (CSb_3)_{2m-1} + 63C_{m-1}$

and

$$252(CSb_3)_{2m} + 88(CSb_3)_{2m-2} = 452(CSb_3)_{2m-1}$$

Then

$$63(CSb_3)_{2m} = 113(CSb_3)_{2m-1} - 22(CSb_3)_{2m-2}.$$

In the following theorem the Binet formula for b_3 -Lucas subbalancing numbers is given. **Theorem 3.25.** Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number. Then

$$(CSb_3)_{2m} = \frac{\left(8\sqrt{2} + 44\right)\alpha_1^m - \left(8\sqrt{2} - 44\right)\alpha_2^m}{8}$$

and

$$(CSb_3)_{2m+1} = \frac{\left(-8\sqrt{2}+44\right)\alpha_1^{m+1} + \left(8\sqrt{2}+44\right)\alpha_2^{m+1}}{8}$$

where $\alpha_1 = 3 + 2\sqrt{2}$, $\alpha_2 = 3 - 2\sqrt{2}$.

Proof. Using Theorem 3.17 and the Binet formulas for balancing and Lucas-balancing numbers, we obtain

$$(CSb_3)_{2m} = 11\left(\frac{\alpha_1^m + \alpha_2^m}{2}\right) + 8\left(\frac{\alpha_1^m - \alpha_2^m}{4\sqrt{2}}\right)$$
$$= \frac{(44 + 8\sqrt{2})\alpha_1^m + (44 - 8\sqrt{2})\alpha_2^m}{8}$$
$$= \frac{(8\sqrt{2} + 44)\alpha_1^m + (44 - 8\sqrt{2})\alpha_2^m}{8}.$$

The other case can be proved similarly.

Theorem 3.26. Let $(CSb_3)_m$ denote the $m^{th} b_3$ -Lucas subbalancing number. Then

$$(CSb_3)_m^2 = (CSb_3)_{m-2}(CSb_3)_{m+2} - 904$$

for $m \ge 2$.

Proof. This theorem is proved by induction. It is easily seen that the assertion is true for m = 2. Assuming the assertion is true for $m \le k$, we have

$$(CSb_3)_{k+1}^2 = (CSb_3)_{k+1}(CSb_3)_{k+1}$$

= (6(CSb_3)_{k-1} - (CSb_3)_{k-3})(CSb_3)_{k+1}
= 6(CSb_3)_{k-1}(CSb_3)_{k+1} - (CSb_3)_{k-1}^2 - 904
= (CSb_3)_{k-1}(6(CSb_3)_{k+1} - (CSb_3)_{k-1}) - 904
= (CSb_3)_{k-1}(CSb_3)_{k+3} - 904.

Thus it is shown that the assertion is true for m = k + 1.

Theorem 3.27. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and B_m denote the m^{th} balancing number. *Then*

$$(CSb_3)_{m+2}(CSb_3)_{m+1} - (CSb_3)_m(CSb_3)_{m-1} = 904B_{m+1}$$

for $m \ge 1$.

Proof. This theorem is proved by induction. It is easily seen that the assertion is true for m = 1. Assuming the assertion is true for $m \le k$ and using Theorem 3.6 and Corollary 3.3, we have

$$\begin{aligned} (CSb_3)_{k+3}(CSb_3)_{k+2} - (CSb_3)_{k+1}(CSb_3)_k &= (3(Sb_3)_{k+3} - (Sb_3)_{k+1})(3(Sb_3)_{k+2} - (Sb_3)_k) \\ &- ((Sb_3)_{k+3} - 3(Sb_3)_{k+1})((Sb_3)_{k+2} - 3(Sb_3)_k) \\ &= 8((Sb_3)_{k+3}(Sb_3)_{k+2} - (Sb_3)_{k+1}(Sb_3)_k) \\ &= 904B_{m+1}. \end{aligned}$$

Thus it is shown that the assertion is true for m = k + 1.

3.4. Relationship Between b₃-Lucas Subbalancing Numbers and b₃-Subbalancing Numbers

In this subsection, some relations between b_3 -Lucas subbalancing numbers and b_3 -subbalancing numbers are given.

Theorem 3.28. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number, $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number and B_m denote the m^{th} balancing number. Then

$$(CSb_3)_m(Sb_3)_{m-1} + (CSb_3)_{m-1}(Sb_3)_m = 113B_m$$

for $m \ge 1$.

Proof. From Theorem 3.6 and Corollary 3.3, we get

$$(CSb_3)_m(Sb_3)_{m-1} + (CSb_3)_{m-1}(Sb_3)_m = (3(Sb_3)_m - (Sb_3)_{m-2})(Sb_3)_{m-1} + ((Sb_3)_{m+1} - 3(Sb_3)_{m-1})(Sb_3)_m = 3(Sb_3)_m(Sb_3)_{m-1} - (Sb_3)_{m-1}(Sb_3)_{m-2} + (Sb_3)_{m+1}(Sb_3)_m - 3(Sb_3)_m(Sb_3)_{m-1} = (Sb_3)_{m+1}(Sb_3)_m - (Sb_3)_{m-1}(Sb_3)_{m-2} = 113B_m.$$

Theorem 3.29. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number. Then

 $(CSb_3)_m(Sb_3)_{m+2} - (CSb_3)_{m+2}(Sb_3)_m = 113$

for $m \ge 0$.

Proof. If m = 0, we have

 $(CSb_3)_0(Sb_3)_2 - (CSb_3)_2(Sb_3)_0 = 113.$

Thus the assertion is true for m = 0. If m = 1, we have

 $(CSb_3)_1(Sb_3)_3 - (CSb_3)_3(Sb_3)_1 = 113.$

Thus the assertion is true for m = 1. Assuming the assertion is true for $m \le k$, we have

$$(CSb_3)_{k+1}(Sb_3)_{k+3} - (CSb_3)_{k+3}(Sb_3)_{k+1} = (CSb_3)_{k+1}(6(Sb_3)_{k+1} - (Sb_3)_{k-1}) - (Sb_3)_{k+1}(6(CSb_3)_{k+1} - (CSb_3)_{k-1}) = (Sb_3)_{k+1}(CSb_3)_{k-1} - (CSb_3)_{k+1}(Sb_3)_{k-1} = 113.$$

Thus it is shown that the assertion is true for m = k + 1.

Theorem 3.30. Let $(CSb_3)_m$ denote the m^{th} b_3 -Lucas subbalancing number and $(Sb_3)_m$ denote the m^{th} b_3 -subbalancing number. Then

$$(CSb_3)_{2m}(Sb_3)_{2m+1} - (CSb_3)_{2m+1}(Sb_3)_{2m} = 63$$

and

$$(CSb_3)_{2m+1}(Sb_3)_{2m+2} - (CSb_3)_{2m+2}(Sb_3)_{2m+1} = 22$$

for $m \ge 0$.

Proof. If m = 0, we have

 $(CSb_3)_0(Sb_3)_1 - (CSb_3)_1(Sb_3)_0 = 63.$

Thus the assertion is true for m = 0. If m = 1, we have

 $(CSb_3)_2(Sb_3)_3 - (CSb_3)_3(Sb_3)_2 = 63.$

Thus the assertion is true for m = 1. Assuming the assertion is true for $m \le k$ and using Theorem 3.18 and equations (6), (7), we get

$$(CSb_3)_{2k+2}(Sb_3)_{2k+3} - (CSb_3)_{2k+3}(Sb_3)_{2k+2} = (8C_{k+1} + C_{k+2})(8B_{k+2} + B_{k+1}) - (8C_{k+2} + C_{k+1})(8B_{k+1} + B_{k+2}) = 63B_{k+2}C_{k+1} - 63C_{k+2}B_{k+1} = 63(B_{k+2}C_{k+1} - C_{k+2}B_{k+1}) = 63.$$

Thus it is shown that the assertion is true for m = k + 1. The other case can be proved similarly.

References

- [1] A. Behera, G.K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly 37(2) (1999) 98-105.
- [2] G.K. Panda, P.K. Ray, Cobalancing numbers and cobalancers, International Journal of Mathematics and Mathematical Sciences 8 (2005) 1189-2000.
- [3] P.K. Ray, Balancing and cobalancing numbers (Thesis(PhD)), Department of Mathematics National Institute of Technology 2009.
- [4] G.K. Panda, Some fascinating properties of balancing numbers, Congressus Numerantium 194 (2009) 185-189.
- [5] G.K. Panda, P.K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bulletin of the Institute of Mathematics Academia Sinica(New Series) 6(1) (2011) 41-72.
- [6] G.K. G�zeri, A. �zko�, A. Tekcan, Some algebraic relations on balancing numbers, Util. Math. 103 (2017) 217-236.
- [7] G.K. G�zeri, On Pell, Pell-Lucas, and balancing numbers, Journal of Inequalities and Applications, 3 (2018).
- [8] K. Liptai, Fibonacci balancing numbers, Fibonacci Quarterly 42(4) (2004) 330-340.
- [9] K. Liptai, Lucas balancing numbers, Acta Math. Univ. Ostrav. 14(1) (2006) 43-47.
- [10] L. Szalay, On the resolution of simultaneous Pell equaitons, Annales Mathematicae et Informaticae 34 (2007) 77-87.
- [11] G.K. Panda, S.S. Rout, Gap balancing numbers, Fibonacci Quarterly 51(3) (2013) 239-248.

- [12] S.S. Rout, G.K. Panda, *k*-Gap balancing numbers, Periodica Mathematica Hungarica 70(1) (2015) 109-121.
 [13] G.K. Panda, A.K. Panda, Almost balancing numbers, Journal of the Indian Mathematical Society 82(3-4) (2015) 147-156.
- [14] A. Tekcan, Almost balancing, triangular and square triangular numbers, Notes on Number Theory and Discrete Mathematics 25(1) (2019) 108-121.
- [15] A. Tekcan, Sums and spectral norms of all almost balancing numbers, Creat. Math. Inform. 28(2) (2019) 203-214.
- [16] G.K. Panda, Sequence balancing and cobalancing numbers, Fibonacci Quarterly 45(3) (2007) 265-271.
 [17] K. Liptai, F. Luca, A. Pinter, L. Szalay, Generalized balancing numbers, Indagationes Math. N. S. 20(1) (2009) 87-100.
- [18] A. Berczes, K. Liptai, I. Pink, On generalized balancing sequences, Fibonacci Quarterly 48(2) (2010) 121-128.
- [19] P. Olajos, Properties of balancing, cobalancing and generalized balancing numbers, Annales Mathematicae et Informaticae 37 (2010) 125-138.
- [20] R.K. Davala, G.K. Panda, Supercobalancing numbers, Matematika 32(1) (2016) 31-42.
- [21] R.K. Davala, G.K. Panda, Subbalancing numbers, Matematika 34(1) (2018) 163-172.