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Abstract. In this paper, the iterates of (α, q)-Bernstein operators are considered. Given fixed n ∈ N and
q > 0, it is shown that for f ∈ C[0, 1] the k-th iterate Tk

n,q,α( f ; x) converges uniformly on [0, 1] to the linear
function L f (x) passing through the points (0, f (0)) and (1, f (1)).Moreover, it is proved that, when q ∈ (0, 1),
the iterates T jn

n,q,α( f ; x), in which { jn} → ∞ as n→∞, also converge to L f (x). Further, when q ∈ (1,∞) and { jn}

is a sequence of positive integers such that jn/[n]q → t as n→ ∞, where 0 ≤ t ≤ ∞, the convergence of the
iterates T jn

n,q,α(p; x) for p being a polynomial is studied.

1. Introduction

Bernstein polynomials and their generalizations based on q-integers are widely used in many branches
of mathematics, especially in approximation theory and probability theory. The fundamental property of
Bernstein operator is that Bn( f ; .) transforms every continuous function f defined on [0, 1] into a polynomial
of degree n, called Bernstein polynomial. Researchers asked themselves naturally what happens as the
Bernstein operator is applied to such f repeatedly and then iterations of Bernstein operators have began to
be investigated by researchers. The first study on this subject is done by R.P. Kelinsky and T.J. Rivlin in 1967
[9]. After this date, many researchers get many results related to iterations of Bernstein operators. See, for
example, [5–8, 11, 16]. It is known that the iterates of Bernstein operators converge. One of the famous proof
is based on the contraction mappings for Banach fixed point theorem used by I.A. Rus at 2004. Moreover, it
is shown that Bernstein operators are weakly Picard operators [15]. Another proof is conducted by U.Abel
and M. Ivan in 2009, in which the basic properties of Bernstein polynomials and positive linear operators
are used [1].

In addition, the iterates of q-Bernstein operators have been considered. In 2002, it is proved that BM
n,q( f ; x)

converges to the linear interpolating polynomial of f at the endpoints of [0, 1] for any fixed q > 0 when
M → ∞ [12]. The rate of convergence of Bn,q( f , x) to an analytic function of f in the norm of C[0, 1] has
the order q−n was proved by S. Ostrovska in 2003. Moreover, when { jn} is a sequence of positive integers
such that jn → ∞ as n → ∞, the convergence of B jn

n,q( f , x) is investigated as n → ∞. It is shown that for
q ∈ (0, 1) the asymptotic behavior of such iterates is quite different from the classical case [13]. There are
many research papers related to iterates of generalized Bernstein operators and some of them are shown in
the references [2, 14, 17].
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In this study, the iterates of (α, q)-Bernstein operators, introduced by Qing-Bo Cai and Xiao-Wei Xu in
[4], are investigated.

2. Preliminaries

The definitions and notations used in this article are adopted from [3, Ch.10]. Let q > 0. The q-integer is
defined by

[n]q := 1 + q + q2 + · · · + qn−1, [0]q := 0 (n = 1, 2, . . . ),

the q-factorial of n by

[n]q! := [1]q[2]q . . . [n]q, [0]q! := 1 (n = 1, 2, . . . ).

For integers k and n with 0 ≤ k ≤ n, the q-binomial coefficient is[n
k

]
q
=

[n]q!
[k]q![n − k]q!

.

The q-shifted product is defined by

(a; q)0 := 1, (a; q)k =

k−1∏
s=0

(1 − aqs), (a; q)∞ =
∞∏

s=0

(1 − aqs).

The q-analogue of α-Bernstein operators, called (α, q)-Bernstein operators, are defined in [4] as follows:

Definition 2.1. [4] Given q > 0 and α ∈ R. For n ∈N and f : [0, 1]→ R, the (α, q)-Bernstein operator is given by
Tn,q,α : f → Tn,q,α( f ; ·) such that

Tn,q,α( f ; x) =
n∑

i=0

f
(

[i]q

[n]q

)
p(α)

n,q,i(x), (1)

where p(α)
n,q,i(x) are the basis (α, q)-Bernstein polynomials of degree n given by p(α)

1,q,0(x) = 1 − x, p(α)
1,q,1(x) = x and for

n ≥ 2,

p(α)
n,q,i(x) =

([n − 2
i

]
q

(1 − α)x +
[n − 2

i − 2

]
q

(1 − α)qn−i(1 − qn−i−1x) +
[n

i

]
q
αx(1 − qn−i−1x)

)
xi−1(x; q)n−i−1.

It can be shown, as it is done in [13], that for f ∈ C[0, 1] and q ∈ (0, 1),

lim
n→∞

Tn,q,α( f , x) = B∞,q( f , x)

where B∞,q is the limit q-Bernstein operator given by

B∞,q( f ; x) =
{ ∑

∞

i=0 f (1 − qi)p∞,q,i(x), x ∈ [0, 1)
f (1), x = 1

in which

p∞,q,i(x) =
xi(x; q)∞

(q; q)i
, i = 0, 1, 2, . . .

By Euler’s identity, see [3, Ch.10, Section 10.2, Corollary 10.2.2],

1
(x; q)∞

=

∞∑
k=0

xk

(q; q)k
, |x| < 1, |q| < 1.
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Thus, it is evident that

∥B∞,q∥ = 1.

From the definition it is obvious that Tn,q,α satisfy

Tn,q,α( f ; 0) = f (0), Tn,q,α( f ; 1) = f (1) (2)

for all n which is known as the end-point interpolation. Also, the operators Tn,q,α leave the linear functions
invariant:

Tn,q,α(at + b; x) = ax + b. (3)

If we take a = 0, b = 1 we get
n∑

k=0

p(α)
n,q,i(x) = 1 for all n = 1, 2, . . .

Therefore,

∥Tn,q,α∥ = 1. (4)

The eigenvalues and corresponding eigenvectors of Tn,q,α are studied in [10] where the following results
are presented.

Lemma 2.2. [10] For all q > 0 and α ∈ [0, 1], the operator Tn,q,α has n + 1 linearly independent monic eigenvectors
p(α,n)

k,q (x) of degree k = 0, 1, . . . ,n corresponding to the eigenvalues λ(α,n)
0,q = λ

(α,n)
1,q = 1 and

λ(α,n)
k,q =

q
k(k−1)

2 [n − 2]q!

[n − k]q![n]k
q

(
(1 − α)[n − k]q[n − 1 + k]q + α[n]q[n − 1]q

)
for k = 2, 3, . . ..

Lemma 2.3. [10] The following equality holds:

lim
n→∞
λ(α,n)

k,q =

{
qk(k−1)/2 i f q ∈ (0, 1)

1 i f q ∈ [1,∞)

It has been shown in [10] that

Tn,q,α(tm; x) = λ(α,n)
m,q xm + P(n)

m−1 (5)

where λ(α,n)
k,q is given by Lemma 2.2 and P(n)

m−1 is a polynomial of degree at most m − 1.

Definition 2.4. Let f : [0, 1]→ R. The k-th iterate of Tn,q,α is defined by

Tk
n,q,α( f ; x) = Tn,q,α(Tk−1

n,q,α( f ; x)), k = 2, 3, ...

where T1
n,q,α( f ; x) = Tn,q,α( f ; x).
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3. Main Results

In the sequel, πn stands for the set of polynomials of degree at most n, and L f ∈ π1 denotes the linear
function passing through the (0, f (0)) and (1, f (1)). That is,

L f (x) = f (0)(1 − x) + f (1)x.

The next result states the convergence of the iterates.

Theorem 3.1. Let q > 0 and f ∈ C[0, 1]. Then, for fixed n ∈N,

lim
k→∞

Tk
n,q,α( f ; x) = L f (x)

and the convergence is uniform on [0, 1].

Proof. As Tn,q,α( f ; x) ∈ πn for any function f : [0, 1]→ R, it is enough to deal with only the case f ∈ πn. For
n = 1, using (1), one gets

T1,q,α( f , x) = f (0)p(α)
1,q,0(x) + f (1)p(α)

1,q,1(x)

= f (0)(1 − x) + f (1)x
= L f (x).

For n ≥ 2, by the help of (3), one can see that the statement is true if f ∈ π1. Now, we will apply induction
only for a monomial xm where m ≤ n using again the linearity property of Tn,q,α. Assume that the statement
is true for f (x) = 1, x, . . . , xm−1. From (5), one has

Tn,q,α(tm; x) = ηxm + P(x) (6)

where η ∈ (0, 1) and P ∈ πm−1. By the induction assumption,

lim
k→∞

Tk
n,q,α(P; x) = Lp(x)

Write (6) as

Tn,q,α(tm; x) = ηxm + ρ(x) + Lp(x) (7)

where ρ(x) = P(x) − Lp(x). Applying the operator on both sides of (7), as Lp ∈ π1,we get

T2
n,q,α(t

m; x) = ηTn,q,α(tm; x) + Tn,q,α(ρ; x) + Lp(x)

= η2xm + ηρ(x) + ηLp(x) + Tn,q,α(ρ; x) + Lp(x)

= η2xm + (ηI + Tn,q,α)ρ(x) + (1 + η)Lp(x)

where I denotes the identity operator. If we continue applying the operator successively, we get

Tk
n,q,α(t

m; x) = ηkxm +
[
ηk−1I + ηk−2Tn,q,α + · · · + Tk−1

n,q,α

]
ρ(x) + (1 + η + · · · + ηk−1)LP(x).

Now, because η ∈ (0, 1), for k→∞, one has ηkxm
→ 0 and (1+ η+ · · ·+ ηk−1)LP(x)→ LP(x)

1−η uniformly on [0, 1].
To show the limit of the term in brackets, choose ε > 0. Clearly, by the linearity of the operator we have

lim
k→∞

Tk
n,q,α(ρ; x) = 0.

Thus, for ε1 =
ε(1−η)

2 , one can find K ∈N such that

||T j
n,q,α(ρ, x)|| < ε1, j ≥ K.
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Then,

||ηk−1ρ(x) + · · · + Tk−1
n,q,α(ρ; x)|| ≤ ||ηk−1ρ(x) + · · · + ηk−KTK−1

n,q,α(ρ; x)||

+ ||ηk−K−1TK
n,q,α(ρ; x) + ηk−K−2TK+1

n,q,α(ρ; x) + · · · + Tk−1
n,q,α(ρ; x)||

≤ ε1 + ε1η + · · · + ε1η
k−K−1 + ηk−K

||ηK−1ρ(x) + · · · + TK−1
n,q,α(ρ(x), x)||.

Set ||ηK−1ρ(x) + ηK−2Tn,q,α(ρ; x) + · · · + TK−1
n,q,α(ρ; x)|| = M and choose k0 > K such that Mηk−K

≤
ε
2 for all k ≥ k0.

Then, we get

||ηk−1ρ + · · · + Tk−1
n,q,α(ρ; x)|| ≤

ε1

1 − η
+Mηk−K

≤ ε.

So,

lim
k→∞

Tk
n,q,α(t

m; x) =
LP(x)
1 − η

,

uniformly on [0, 1]. Using (2), together with the last result, we get

lim
k→∞

Tk
n,q,α(t

m; x) = x

Now, suppose that

Tn,q,α( f ; x) = Anxn + An−1xn−1 + · · · + A1x + A0.

Then,

lim
k→∞

Tk
n,q,α( f ; x) = lim

k→∞

[
AnTk

n,q,α(t
n; x) + · · · + A1Tk

n,q,α(t; x) + A0

]
= (An + · · · + A1)x + A0.

Using (2) once more, one finds A0 = f (0) and A0 + A1 + · · · + An = f (1). Therefore,

lim
k→∞

Tk
n,q,α( f ; x) = [ f (1) − f (0)](x) + f (0) = L f (x)

and convergence is uniform on [0, 1].

Example 3.2. For f (x) = 2x + sin(9πx/2) one has L f (x) = 3x. The first, third and the fifth iterates of Tn,q,α( f ; x)
when n = 3, q = 0.9 and α = 0.5 are depicted in Figure 1. As it can be observed, Tk

3,0.9,0.5( f ; x) converges to L f .

In the previous theorem, n is fixed. Next, we consider the case when n is not fixed. More precisely,
when q ∈ (0, 1),we have the following result:

Theorem 3.3. Let q ∈ (0, 1) and { jn} be a sequence of positive integers such that jn → ∞ as n → ∞. Then, for
f ∈ C[0, 1]

lim
n→∞

T jn
n,q,α( f ; x) = L f (x)

uniformly on [0, 1].

Proof. Because of end-point interpolation, it suffices to prove that lim
n→∞

T jn
n,q,α( f ; x) = ax + b for some a, b ∈ R.

The theorem is proved in two parts.
1) First, consider the case f (x) = xm and use induction on m. For m = 0, 1 the statement is obvious due

to (3). Assume that lim
n→∞

T jn
n,q,α(t

s; x) = asx + bs ∈ π1 for s = 0, 1, . . . ,m − 1. Then, by (5)

Tn,q,α(tm; x) = (λ(α,n)
m,q ) jn xm +

[
(λ(α,n)

m,q ) jn−1I + (λ(α,n)
m,q ) jn−2Tn,q,α + · · · + T jn−1

n,q,α

]
P(n)

m−1(x)
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Figure 1: Some iterates of Tn,q,α( f ; x) for n = 3, q = 0.9 and α = 0.5.

where I denotes the identity operator P(n)
m−1 ∈ πm−1. It follows from Lemma 2.3 that

lim
n→∞

(λ(α,n)
m,q ) jn = 0. (8)

The expression in the brackets is a linear operator on the space πm−1.
Consider the sequence of polynomials in πm−1,

y(α,n)
m−1 =

[
(λ(α,n)

m,q ) jn−1I + (λ(α,n)
m,q ) jn−2Tn,q,α + · · · + T jn−1

n,q,α

]
(P(n)

m−1).

Then,
(λ(α,n)

m,q I − Tn,q,α)y(α,n)
m−1 = (λ(α,n)

m,q ) jn P(n)
m−1 − T jn

n,q,αP
(n)
m−1.

It follows from (4) and (5) that ||P(n)
m−1|| ≤ 2. Since (8) holds, we have

lim
n→∞

(λ(α,n)
m,q ) jn P(n)

m−1 = 0.

It can be readily seen from (5) and Lemma 2.3 that

lim
n→∞

P(n)
m−1(x) = B∞,q(tm; x) − qm(m−1)/2xm = Qm−1(x) ∈ πm−1

In other words,
P(n)

m−1(x) = Qm−1(x) + δn(x)

where lim
n→∞
δn(x) = 0. Thus,

T jn
n,q,α(P

(n)
m−1; x) = T jn

n,q,α(Qm−1; x) + T jn
n,q,α(δn; x).
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Due to (4), ||T jn
n,q,α(δn; x)|| ≤ ||δn||which means that lim

n→∞
T jn

n,q,α(δn) = 0. By induction assumption

lim
n→∞

T jn
n,q,α(Qm−1; x) = cx + d ∈ π1.

Therefore,
lim
n→∞

(λ(α,n)
m,q I − Tn,q,α)y(α,n)

m−1 = cx + d

or
(λ(α,n)

m,q I − Tn,q,α)y(α,n)
m−1 = cx + d + ωn(x)

where lim
n→∞
ωn(x) = 0 uniformly on [0, 1]. As stated in Lemma 2.2, the eigenvector of Tn,q,α corresponding to

the eigenvalue λ(α,n)
m,q is a polynomial of degree m. Therefore, the operators λ(α,n)

m,q I − Tn,q,α are invertible on
πm−1 for n ≥ m and

lim
n→∞

(λ(α,n)
m,q I − Tn,q,α) = qm(m−1)/2I − B∞,q =: A∞,q

is also invertible on πm−1. Hence,
lim
n→∞

(λ(α,n)
m,q I − Tn,q,α)−1 = A−1

∞,q

and it follows that
∥(λ(α,n)

m,q I − Tn,q,α)−1
∥ ≤M for some M > 0.

Therefore,

y(α,n)
m−1 = (λ(α,n)

m,q I − Tn,q,α)−1(cx + d) + (λ(α,n)
m,q I − Tn,q,α)−1(ωn)

Since ||(λ(α,n)
m,q I − Tn,q,α)−1(ωn)|| ≤M||(ωn)|| → 0 as n→∞, and lim

n→∞
(λ(α,n)

m,q I − Tn,q,α)−1 = A∞,q, we conclude that

lim
n→∞

y(α,n)
m−1 = A−1

∞,q(cx + d) =: ax + b

Thus,
lim
n→∞

T jn
n,q,α(t

m; x) = ax + b.

The induction is completed and it follows that for any polynomial p,

lim
n→∞

T jn
n,q,α(p; x) = Lp(x) for x ∈ [0, 1].

2) Let f ∈ C[0, 1], and let ε > 0 be given. Then f (x) = p(x)+ δ(x), where p is a polynomial and ||δ(x)|| < ε. We
have

T jn
n,q,α( f ; x) = T jn

n,q,α(p; x) + T jn
n,q,α(δ; x)

Since lim
n→∞

T jn
n,q,α(p; x) = Lp(x), there exists n0 ∈ N such that ∥T jn

n,q,α(p; x) − Lp(x)∥ < ε for all n > n0. Obviously,
||Lδ(x)|| ≤ ||δ|| < ε, and finally, as L f = Lp + Lδ,we obtain

∥T jn
n,q,α( f ; x) − L f (x)|| ≤ ∥T jn

n,q,α(p; x) − Lp(x)∥ + ∥T jn
n,q,α(δ; x) − Lδ(x)∥

≤ ∥T jn
n,q,α(p; x) − Lp(x)∥ + ∥T jn

n,q,α(δ; x)∥ + ||δ|| < 3ε for all n > n0.

Thus,
lim
n→∞

T jn
n,q,α( f ; x) = L f (x)

uniformly on [0, 1].

In the case q > 1, the situation is different. For this purpose, we shall need the following two lemmas.



B.Köroğlu, F.T.Yeşildal / Filomat 37:22 (2023), 7663–7671 7670

Lemma 3.4. Let λ(α,n)
k,q be as in Lemma 2.2. Then, for q > 1,

lim
n→∞

[n]q ln(λ(α,n)
k,q ) = −(1 − α)[k]q(1 − q1−k) −

k−1∑
m=1

[m]q

where an empty sum is taken to be 0.

Proof. As it is shown in [10], the eigenvalues λ(α,n)
k,q can be expressed as

λ(α,n)
k,q =

(
α + (1 − α)

[n − k]q[n + k − 1]q

[n]q[n − 1]q

) k−1∏
m=1

(
1 −

[m]q

[n]q

)
Thus,

ln(λ(α,n)
k,q ) = ln

(
α + (1 − α)

[n − k]q[n + k − 1]q

[n]q[n − 1]q

)
+

k−1∑
m=1

ln
(
1 −

[m]q

[n]q

)

= ln

1 − (1 − α)
qn−k[k]q[k − 1]q

[n]q[n − 1]q

 + k−1∑
m=1

ln
(
1 −

[m]q

[n]q

)
.

As ln(1 + u) = u +O(u2) as u→ 0,we get

[n]q ln(λ(α,n)
k,q ) = −(1 − α)

qn−k[k]q[k − 1]q

[n − 1]q
−

k−1∑
m=1

[m]q +O(1/[n]q).

Taking the limit on both sides as n→∞, yields

lim
n→∞

[n]q ln(λ(α,n)
k,q ) = −(1 − α)q1−k(q − 1)[k]q[k − 1]q −

k−1∑
m=1

[m]q

= −(1 − α)(1 − q1−k)[k]q −

k−1∑
m=1

[m]q

as desired.

Lemma 3.5. Let q > 1 and { jn} be a sequence of positive integers such that limn→∞ jn/[n]q = t. Then,

lim
n→∞

(λ(α,n)
k,q ) jn = exp

−
(1 − α)[k]q(1 − q1−k) +

k−1∑
m=1

[m]q

 t

 , k = 0, 1, . . . , (9)

when 0 ≤ t < ∞, and

lim
n→∞

(λ(α,n)
k,q ) jn = 0, k = 2, 3, . . . (10)

when t = ∞.

Proof. Let y = (λ(α,n)
k,q ) jn−[n]qt and z = (λ(α,n)

k,q )[n]qt. Then,

ln y = ( jn − [n]qt) ln(λ(α,n)
k,q ) =

(
jn

[n]q
− t

)
[n]q ln(λ(α,n)

k,q ).
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As lim
n→∞

[n]q ln(λ(α,n)
k,q ) is finite by Lemma 3.4, we get lim

n→∞
ln y = 0, implying

lim
n→∞

(λ(α,n)
k,q ) jn−[n]qt = 1 (11)

Also, since ln z = t[n]q ln(λ(α,n)
k,q ), using Lemma 3.4, we get

lim
n→∞

(λ(α,n)
k,q )[n]qt = exp

−
(1 − α)[k]q(1 − q1−k) +

k−1∑
m=1

[m]q

 t

 . (12)

Using (11) and (12), we derive (9). To obtain (10), let t→∞.

Using Lemmas 3.4 and 3.5, one can state the following theorem, whose proof is omitted here since it is
similar to the case q = 1 considered in [5].

Theorem 3.6. Let q ∈ (1,∞) and jn be a sequence of positive integers such that limn→∞ jn/[n]q = t. Then, for any
polynomial p and any 0 ≤ t ≤ ∞, the sequence {T jn

n,q,α(p, x)} is uniformly convergent on [0, 1]. Specifically, for t = 0,

lim
n→∞

T jn
n,q,α(p; x) = p(x) on x ∈ [0, 1]

and for t = ∞,
lim
n→∞

T jn
n,q,α(p; x) = Lp(x) on x ∈ [0, 1].
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