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Abstract. Our first objective is to present equivalent conditions for the solvability of the system of matrix
equations ADA = A, DAB = B and CAD = C, where D is unknown, A,B,C are of appropriate dimensions,
and to obtain its general solution in terms of appropriate inner inverses. Our leading idea is to find
characterizations and representations of a subclass of inner inverses that satisfy some properties of outer
inverses. AG-(B,C) inverse of A is defined as a solution of this matrix system. In this way, G-(B,C) inverses
are defined and investigated as an extension of G-outer inverses. One-sided versions of G-(B,C) inverse
are introduced as weaker kinds of G-(B,C) inverses and generalizations of one-sided versions of G-outer
inverse. Applying the G-(B,C) inverse and its one-sided versions, we propose three new partial orders on
the set of complex matrices. These new partial orders extend the concepts of G-outer (T,S)-partial order
and one-sided G-outer (T,S)-partial orders.

1. Introduction

Standardly, A∗, rank(A), R(A) and N(A), respectively, represent the conjugate transpose, rank, range
(column space) and null space of A ∈ Cm×n, where Cm×n is the set of all m× n complex matrices. If A ∈ Cn×n,
the symbol ind(A) denotes its index, that is, the minimal integer k ≥ 0 which satisfies the rank-invariant
property rank(Ak) = rank(Ak+1).

The definitions of significant generalized inverses are firstly given. In the case if the matrix equation
XAX = X (or AXA = A) is satisfied, the matrix X ∈ Cn×m is an outer (or inner) inverse of A ∈ Cm×n. The set
of all outer (or inner) inverses of A is denoted by A{2} (or A{1}). The uniquely determined outer inverse of
A with prescribed range T and null space S is a matrix X ∈ Cn×m (represented by A(2)

T,S) for which

XAX = X, R(X) = T, N(X) = S,

where T is a subspace of Cn of dimension s ≤ r = rank(A), and S is a subspace of Cm of dimension m − s.
Note that AT ⊕ S = Cm if and only if A(2)

T,S exists [3]. For a given A ∈ Cm×n and appropriately chosen T,S, the
notation Cm×n

T,S = {A ∈ C
m×n : AT ⊕ S = Cm

} ⊆ Cm×n will be used.
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* Corresponding author: Dijana Mosić
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Denote by℧H1,...,Hk
the relation rank(H1) = · · · = rank(Hk) between the matrices H1, . . . ,Hk of appropriate

order. For A ∈ Cm×n, F ∈ Cn×k and H ∈ Cl×m, consider the sets

A{2}R(F),∗ =
{
X ∈ Cn×m : XAX = X, R(X) = R(F)

}
;

A{2}∗,N(H) =
{
X ∈ Cn×m : XAX = X, N(X) = N(H)

}
.

Evidently, the set {X ∈ Cn×m : XAX = X, R(X) = R(F),N(X) = N(H)} contains only one element A(2)
R(F),N(H).

If A(2)
R(F),N(H) is an inner inverse of A, it will be denoted by A(1,2)

R(F),N(H). The expressions ∁1 := F(HAF)(1)H are

important generalizations of A(2)
R(F),N(H), as presented in Proposition 1.1, summarized from [3] .

Proposition 1.1. (Urquhart formula). For arbitrary A ∈ Cm×n, F ∈ Cn×k, H ∈ Cl×m and a fixed but arbitrary
element (HAF)(1)

∈ (HAF){1}, it follows

∁1 := F(HAF)(1)H =


A(2)
R(F),∗ ⇐⇒℧HAF,F;

A(2)
∗,N(H) ⇐⇒℧HAF,H;

A(2)
R(F),N(H) ⇐⇒℧HAF,F,H;

A(1,2)
R(F),N(H) ⇐⇒℧HAF,F,H,A,

(1)

where A(2)
R(F),∗ ∈ A{2}R(F),∗ and A(2)

∗,N(H) ∈ A{2}∗,N(H).

According to Proposition 1.1, the expression ∁1 := F(HAF)(1)H is an outer inverse A(2)
R(F),∗ with known

only range when℧FAH,F, an outer inverse A(2)
∗,N(H) with known only kernel when℧HAF,H, and becomes the

outer inverse with defined both range and null space A(2)
R(F),N(H) if℧HAF,F or℧HAF,F,H,A.

Recall that, for A ∈ Cm×n, the unique solver of the system: AXA = A, XAX = X, (AX)∗ = AX and
(XA)∗ = XA is the Moore-Penrose inverse A† of A [3, 26]. The system: Ak+1X = Ak, XAX = X and AX = XA,
where A ∈ Cn×n and k = ind(A), has the unique solution called the Drazin inverse AD of A [3, 26]. For recent
results related to the Moore-Penrose and Drazin inverses see [1, 2, 4, 6–8, 13, 14, 23, 28, 29, 31, 32].

Several partial orders were presented and investigated in terms of generalized inverses [9, 15–17, 27, 30].
For A,B ∈ Cm×n, we say that A is below B with respect to the minus partial order (and denote as A ≤− B) if
there exists A− ∈ A{1} satisfying AA− = BA− and A−A = A−B [12].

A G-Drazin inverse for a square matrix was defined by Wang and Liu in [25]. Let A ∈ Cn×n and
k = ind(A). A matrix D ∈ Cn×n is a G-Drazin inverse of A if it satisfies the system

ADA = A, DAk+1 = Ak and Ak+1D = Ak. (2)

Recall that (2) is equivalent to the system:

ADA = A, DAAD = AD and ADAD = AD. (3)

The symbol A{GD} will stand for the set of all G-Drazin inverses of A. More interesting results related to
G-Drazin inverses can be found in [5, 10, 11, 20].

A G-outer inverse was introduced for a rectangular matrix in [18] extending the G-Drazin inverse using
outer inverse with prescribed range and null space. Precisely, D ∈ Cn×m is defined as a G-outer (GO-)
(T,S)-inverse of A ∈ Cm×n

T,S when it realizes

ADA = A, DAA(2)
T,S = A(2)

T,S and A(2)
T,SAD = A(2)

T,S. (4)

We use the notation A{GO,T,S} for the set of GO-(T,S)-inverses of A. Obviously, A{GO,T,S} ⊆ A{1}. Further
results about GO inverses can be found in [21].
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The so-called GO-(T,S)-partial order was defined on Cm×n
T,S [18] based on G-outer (T,S)-inverses. For

A ∈ Cm×n
T,S and B ∈ Cm×n, A is below B with respect to the GO-(T,S)-partial order (denoted by A ≤GO,T,S B) if

there are C1,C2 ∈ A{GO,T,S} satisfying AC1 = BC1 and C2A = C2B.
The left and rightGO-inverses were introduced [22] as weakened versions ofGO-inverses. A leftG-outer

(l-G-outer shortly) (T,S)-inverse of A ∈ Cm×n
T,S is a matrix D ∈ Cn×m such that

ADA = A and DAA(2)
T,S = A(2)

T,S.

A right G-outer (r-G-outer shortly) (T,S)-inverse of A ∈ Cm×n
T,S is a matrix D ∈ Cn×m satisfying

ADA = A and A(2)
T,SAD = A(2)

T,S.

The class of left (or right) GO-(T,S)-inverses of A is marked as A{l,GO,T,S} (A{r,GO,T,S}). In the particular
choice m = n and A(2)

T,S = AD, the left (resp. right) GO-(T,S)-inverse reduces to the left (resp. right) G-Drazin
inverse [22].

2. Preliminaries and motivation

Under the assumptions C ∈ Cq×m, B ∈ Cn×p, A ∈ Cm×n
R(B),N(C) and A{GO,R(B),N(C)} , ∅, the general solution

to the system with unknown matrix D (termed as G-(B,C) system)

ADA = A, DAB = B and CAD = C (5)

was presented using a G-outer (R(B),N(C))-inverse of A and corresponding inner inverses in [19]. Notice
that, by [18, Theorem 2.2], the system (4) is equivalent to the system (5) when A(2)

T,S = A(2)
R(B),N(C). Also, the

system (3) is a particular case B = C = AD of the system (5).
Motivated by recent investigations aboutG-outer, l-G-outer and r-G-outer inverses, our research presents

extensions of these inverses without the hypothesis related to the existence of corresponding outer inverse.
Precisely, the following results are proved in this paper.

(1) The first aim of this research is to solve the system (5) for matrices A ∈ Cm×n, C ∈ Cq×m and B ∈ Cn×p.
Thus, we present necessary and sufficient conditions for the solvability of the system (5) without the
assumptions A ∈ Cm×n

R(B),N(C) and A{GO,R(B),N(C)} , ∅. In particular, the general solution to the system (5)
is given in terms of inner inverses of A, AB and CA, omitting a G-outer (R(B),N(C))-inverse of A.

(2) A generalization of G-outer inverse, called a G-(B,C) inverse of A, is introduced as a solution to the
system (5) in the case A ∈ Cm×n, C ∈ Cq×m and B ∈ Cn×p. Replacing B and C in (5) with arbitrary ∁ ∈ Cn×m,
a G-∁ inverse of A is defined as a solution of the obtained system. Remark that for ∁ = A(2)

T,S, the G-∁
inverse is equal to the GO-(T,S)-inverse of A [18], and when m = n and ∁ = AD, the G-∁ inverse reduces to
G-Drazin inverse of A [25]. So, the G-(B,C) inverse, as well as its particular case - the G-∁ inverse, present
new classes of generalized inverses and extend the notion of the G-outer inverse.

(3) The set of all G-(B,C) inverses is described (and as consequences sets of GO-(T,S)-inverses and G-
Drazin inverses, respectively) based on adequate inner inverses. We prove that the G-outer (T,S)-inverse
of A exists if A(2)

T,S exists.

(4) By the Urquhart formula (1), the expression∁1 := F(HAF)(1)H is equal to outer inverses A(2)
R(F),∗, A(2)

∗,N(H)

and A(2)
R(F),N(H) under additional assumptions. This fact inspired us to investigate G-∁1 inverses as new

extensions of G-outer inverses. Furthermore, for (HAF)(2)
∈ (HAF){2} and∁2 := F(HAF)(2)H, it is interesting

to study G-∁2 inverses as generalizations of G-outer inverses.
(5) One-sided versions of G-(B,C) inverse are defined as weaker kinds of G-(B,C) inverses and investi-

gated as new generalized inverses. Precisely, l-G-B inverses and r-G-C inverses are proposed as solutions of
systems obtained omitting the third equation or the second equation in (5). Notice that one-sided versions
of G-(B,C) inverse present extensions of one-sided kinds of G-outer inverse.
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(6) Based on the G-(B,C) inverse and its one-sided versions, we introduce three kinds of partial orders
on the corresponding subsets of Cm×n. These new relations generalize the concepts of G-outer (T,S)-partial
order from [18] and one-sided G-outer (T,S)-partial orders from [22].

A global content of involved sections and subsections is described now. After the survey of necessary
facts in Section 1, some preliminary results and a detailed motivation are given in Section 2. Extensions
of G-outer inverses are proposed and considered in Section 3. Solvability of system (5) is considered
in Subsection 3.1. Definitions and characterizations of G-(B,C) inverse and G-∁ inverse are proved in
Subsection 3.2. Subsection 3.3 investigates properties of G-∁1 and G-∁2 inverses. Extensions of one-
sided G-outer inverses are introduced and considered in Section 4. The sets of l-G-B and r-G-C inverses
are studied in Subsection 4.1, while Subsection 4.2 gives characterizations of one-sided G-∁1 and G-∁2
inverses. Examples in the numerical and symbolic form are presented in Section 5. In Section 6, partial
orders defined employing the G-(B,C) inverse and its one-sided versions are introduced and investigated.
Final remarks are stated in Section 7.

3. Extensions of G-outer inverse

Solving the G-(B,C) system (5) leads to the definition of new classes of generalized inverses which
extend the notions of G-outer and G-Drazin inverses.

3.1. Solvability of G-(B,C) system

In this subsection, our intent is to solve the system (5) for A ∈ Cm×n, C ∈ Cq×m and B ∈ Cn×p, and without
the conditions A ∈ Cm×n

R(B),N(C) or A{GO,R(B),N(C)} , ∅.
The following result will be very useful in solving certain systems of matrix equations. In further, M−

is used to denote arbitrary M−
∈M{1}.

Lemma 3.1. [3, p. 52] The matrix equation AYB = C that involves arbitrary A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q,
possesses a solution Y ∈ Cn×p if and only if AA−CB−B = C for some A− and B−. In addition, the general solution is
Y = A−CB− + Z − A−AZBB− for arbitrary Z ∈ Cn×p.

A necessary and sufficient condition for the solvability of system (5) is established in Theorem 3.2 as
well as the general solution of this system employing corresponding inner inverses. To simplify notation,
the common situation A ∈ Cm×n, B ∈ Cn×p and C ∈ Cq×m will be denoted by {A,B,C} ∈ C[m,n,p,q].

Theorem 3.2. Let {A,B,C} ∈ C[m,n,p,q]. Then the G-(B,C) system (5) has a solution if and only if

B(I − (AB)−AB) = 0 and (I − CA(CA)−)C = 0, (6)

for some inner inverses (AB)− and (CA)−. Furthermore, the general solution to (5) is equal to

D = A−AA− + (I − A−A)B(AB)− + (CA)−C(I − AA−)
+K − (CA)−CAK(I − AA−) − (I − A−A)KAB(AB)− − A−AKAA−, (7)

for arbitrary K ∈ Cn×m and A−.

Proof. If D is a solution to the system (5), it can be verified

B(AB)−AB = D(AB(AB)−AB) = DAB = B,
CA(CA)−C = (CA(CA)−CA)D = CAD = C,

which implies (6).



D. Mosić et al. / Filomat 37:22 (2023), 7407–7429 7411

If (6) is satisfied, we conclude that D = A−AA− + (I −A−A)B(AB)− + (CA)−C(I −AA−) is a solution to the
system (5) by

ADA = AA−AA−A = A,
DAB = A−AB + (I − A−A)B(AB)−AB = A−AB + (I − A−A)B = B,
CAD = CAA− + CA(CA)−C(I − AA−) = CAA− + C(I − AA−) = C.

In order to obtain the general solution to the system (5), firstly, using Lemma 3.1, notice that the general
solution to the equation ADA = A is of the form

D = A−AA− + Z − A−AZAA−, (8)

for arbitrary Z ∈ Cn×m. A substitution of (8) in DAB = B leads to

(I − A−A)ZAB = (I − A−A)B. (9)

By I − A−A ∈ (I − A−A){1}, (6) and Lemma 3.1, the general solution to (9) is represented by

Z = (I − A−A)B(AB)− + Y − (I − A−A)YAB(AB)− (10)

for arbitrary Y ∈ Cn×m. From CAD = C, (8) and (10), we obtain

CAY(I − AA−) = C(I − AA−). (11)

According to I − AA− ∈ (I − AA−){1}, (6) and Lemma 3.1, the general solution to (11) is expressed by

Y = (CA)−C(I − AA−) + K − (CA)−CAK(I − AA−), (12)

for arbitrary K ∈ Cn×m. Applying (8), (10) and (12), we deduce that (7) is the general solution to the system
(5).

Computationally effective conditions of the constraints (6) follow results obtained in [24].

Corollary 3.3. [24] Let {A,B,C} ∈ C[m,n,p,q].
(a) The subsequent statements are mutually equivalent for arbitrary (AB)−:

(i) B(I − (AB)−AB) = 0;

(ii) N(B) = N(AB);

(iii) ℧AB,B;

(iv) there exists Υ ∈ Cp×m satisfying BΥAB = B;

(v) there exists A(2)
R(B),∗ = B(AB)− = BΥ.

(b) The subsequent statements are mutually equivalent for arbitrary (CA)−:

(i) (I − CA(CA)−)C = 0;

(ii) R(C) = R(CA);

(iii) ℧CA,C;

(iv) there existsΨ ∈ Cn×q satisfying CAΨC = C;

(v) there exists A(2)
∗,N(C) = (CA)−C = ΨC.
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According to Corollary 3.3 and Theorem 3.2, a set of equivalent conditions for the solvability of system
(5) can be obtained by corresponding conjunctions of equivalent conditions. Some of them are presented
in Corollary 3.4.

Corollary 3.4. Let {A,B,C} ∈ C[m,n,p,q]. Then the following statements are equivalent for some (AB)− and (CA)−:

(i) the G-(B,C) system (5) is solvable;

(ii) N(B) = N(AB) and R(C) = R(CA);

(iii) ℧AB,B and℧CA,C;

(iv) there exists Υ ∈ Cp×m satisfying BΥAB = B andΨ ∈ Cn×q satisfying CAΨC = C;

(v) there exist A(2)
R(B),∗ = B(AB)− = BΥ and A(2)

∗,N(C) = (CA)−C = ΨC.

In the particular case ∁ = B = C in Theorem 3.2, we obtain the existence criterion for solvability and the
general solution of the next system of matrix equations.

Corollary 3.5. Let A ∈ Cm×n and ∁ ∈ Cn×m. Then the system

ADA = A, DA∁ = ∁ and ∁AD = ∁ (13)

has a solution if and only if

∁
(
I − (A∁)−A∁

)
= 0 and

(
I −∁A(∁A)−

)
∁ = 0,

for some (A∁)− and (∁A)−. Afterwards, an arbitrary solution D is of the form

D = A−AA− + (I − A−A)∁(A∁)− + (∁A)−∁(I − AA−)

+ K − (∁A)−∁AK(I − AA−) − (I − A−A)KA∁(A∁)− − A−AKAA−,

for arbitrary K ∈ Cn×m and A−.

For ∁ = A∗ in Corollary 3.5, we get the solution of the next system of equations.

Corollary 3.6. Let A ∈ Cm×n. Then the system

ADA = A, DAA∗ = A∗ and A∗AD = A∗

has a solution of the form

D = A−AA− + (I − A−A)A∗(AA∗)− + (A∗A)−A∗(I − AA−)
+ K − (A∗A)−A∗AK(I − AA−) − (I − A−A)KAA∗(AA∗)− − A−AKAA−,

for arbitrary K ∈ Cn×m and A−, and for some (AA∗)− and (A∗A)−. In addition, DAD = A†.

Remark that, by Corollary 3.6, A† is the unique solution to the system DAD = D, ADA = A, DAA∗ = A∗

and A∗AD = A∗.
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3.2. G-(B,C) inverses

Considering the system (5) imposes us to define two new classes of generalized inverses. Precisely, we
generalize the G-outer and G-Drazin inverses presenting broader classes of generalized inverses.

Definition 3.7. Let {A,B,C} ∈ C[m,n,p,q]. A matrix D ∈ Cn×m is:

(i) a G-(B,C) inverse of A if it satisfies (5);

(ii) a G-∁ inverse of A if it satisfies (13).

Theorem 3.2 implies that G-(B,C) inverse is not uniquely determined. So, it is convenient to denote by
A{G,B,C} (or A{G,∁}) the set of G-(B,C) (G-∁) inverses of A. Evidently, A{G,B,C} ⊆ A{1}.

Applying Theorem 3.2, the set A{G,B,C} can be described in terms of one parameter K or two parameters
L and M.

Corollary 3.8. Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cq×m. If (6) is satisfied, then

A{G,B,C} = {A−AA− + (I − A−A)B(AB)− + (CA)−C(I − AA−)
+ (I − (CA)−CA)K(I − AA−) − (I − A−A)K(I − AB(AB)−)
− (I − A−A)K(I − AA−) : K ∈ Cn×m is arbitrary} (14)
= {A−AA− + (I − A−A)B(AB)− + (CA)−C(I − AA−)
+ (I − (CA)−CA)L(I − AA−) − (I − A−A)M(I − AB(AB)−) :

L,M ∈ Cn×m are arbitrary}. (15)

Proof. The equality (14) follows from (7) and direct calculations.
For K = L(I−AA−)+ (I−A−A)M in (14), where L,M ∈ Cn×m are arbitrary, we observe that (15) is satisfied.

Choosing L = K and M = (I − A−A)K − K(I − AA−) in (15), when K ∈ Cn×m is arbitrary, we obtain (14).

Corollary 3.9. Let {A,B,C} ∈ C[m,n,p,q]. If (6) is satisfied, then

A{G,B,C}= {A−AA− + (I − A−A)A(2)
R(B),∗ + A(2)

∗,N(C)(I − AA−)

+
(
I − A(2)

∗,N(C)A
)

K(I − AA−) − (I − A−A)K
(
I − AA(2)

R(B),∗

)
− (I − A−A)K(I − AA−) : K ∈ Cn×m is arbitrary}
= {A−AA− + (I − A−A)BΥ +ΨC(I − AA−)
+ (I −ΨCA) K(I − AA−) − (I − A−A)K (I − ABΥ) − (I − A−A)K(I − AA−) :
K ∈ Cn×m is arbitrary,Υ ∈ Cp×m,BΥAB = B, Ψ ∈ Cn×q,CAΨC = C}

= {A−AA− + (I − A−A)A(2)
R(B),∗ + A(2)

∗,N(C)(I − AA−)

+ (I − A(2)
∗,N(C)A)L(I − AA−) − (I − A−A)M

(
I − AA(2)

R(B),∗

)
:

L,M ∈ Cn×m are arbitrary}.

Proof. Follows from the replacements A(2)
R(B),∗ = B(AB)− = BΥ and A(2)

∗,N(C) = (CA)−C = ΨC in Corollary 3.8,
which is ensured after the application of Corollary 3.4.

Corollary 3.10. Suppose that {A,B,C} ∈ C[m,n,p,q] and (6) is satisfied. Then

A{G,B,C} = A{G,P,Q},

where P and Q are arbitrary matrices satisfyingN(P) = N(AP), R(Q) = R(QA), R(P) = R(B) andN(Q) = N(C).
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Proof. On the basis of Corollary 3.4, it follows that the system G-(P,Q) is solvable and the next identities
hold:

P(AP)− = A(2)
R(P),∗ = A(2)

R(B),∗ = B(AB)−;

(QA)−Q = A(2)
∗,N(Q) = A(2)

∗,N(C) = (CA)−C.
(16)

Further, Corollary 3.8 in common with (16) implies A{G,B,C} = A{G,P,Q}.

Specializing B,C and ∁ in Definition 3.7, some important cases can be obtained.

(i) When ∁ = A(2)
T,S, the G-∁ inverse reduces to the G-outer (T,S)-inverse of A [18], which implies

A{G,A(2)
T,S} = A{GO,T,S}.

(ii) Provided m = n and ∁ = AD, the G-∁ inverse coincides with the G-Drazin inverse of A [25], which
implies A{G,AD

} = A{G,Ak
} = A{GO,Ak,Ak

} = A{GO,AD,AD
}, k = ind(A).

For∁ = A(2)
T,S or∁ = AD in Corollary 3.5, we describe the sets A{GO,T,S} and A{GD} in terms of adequate

inner inverses.

Corollary 3.11. Suppose that A ∈ Cm×n.

(i) If A(2)
T,S exists, then

A{GO,T,S} = {A−AA− + (I − A−A)A(2)
T,S + A(2)

T,S(I − AA−)

+ K − A(2)
T,SAK(I − AA−) − (I − A−A)KAA(2)

T,S − A−AKAA− :

K ∈ Cn×m is arbitrary}.

(ii) If m = n and ind(A) = k, then

A{GD} = {A−AA− + (I − A−A)AD + AD(I − AA−)

+ K − ADAK(I − AA−) − (I − A−A)KAAD
− A−AKAA− :

K ∈ Cn×m is arbitrary}

= {A−AA− + (I − A−A)Ak(Ak+1)− + (Ak+1)−Ak(I − AA−) − A−AKAA−

+ K − (Ak+1)−Ak+1K(I − AA−) − (I − A−A)KAk+1(Ak+1)− :
K ∈ Cn×m is arbitrary}.

Proof. (i) For (AA(2)
T,S)− = AA(2)

T,S ∈ (AA(2)
T,S){1} and (A(2)

T,SA)− = A(2)
T,SA ∈ (A(2)

T,SA){1}, it follows

A(2)
T,S

(
I − (AA(2)

T,S)−AA(2)
T,S

)
= A(2)

T,SAA(2)
T,S

(
I − (AA(2)

T,S)−AA(2)
T,S

)
= 0

and (
I − A(2)

T,SA(A(2)
T,SA)−

)
A(2)

T,S =
(
I − A(2)

T,SA(A(2)
T,SA)−

)
A(2)

T,SAA(2)
T,S = 0.

The rest is clear by Corollary 3.5 when ∁ = A(2)
T,S.

(ii) In the cases ∁ = AD or ∁ = Ak in Corollary 3.5, we prove this part.

Remark that, when A(2)
T,S exists, A{GO,T,S} , ∅, i.e., the G-outer (T,S)-inverse of A exists.

Theorem 3.12 investigates a necessary and sufficient condition for the existence of a G-(B,C) inverse.
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Theorem 3.12. For {A,B,C} ∈ C[m,n,p,q] and D ∈ Cn×m, the following statements are equivalent:

(i) D ∈ A{G,B,C};

(ii) ADA = A, R(B) ⊆ R(DA) andN(AD) ⊆ N(C).

Proof. (i)⇒ (ii): It is obvious.
(ii)⇒ (i): The conditions ADA = A, R(B) ⊆ R(DA) andN(AD) ⊆ N(C) implyR(B) ⊆ R(DA) = N(I−DA)

and R(I −AD) = N(AD) ⊆ N(C). Therefore, DAB = B and CAD = C, that is, D is a G-(B,C) inverse of A.

For arbitrary G-(B,C) inverses D1 and D2 of A, Theorem 3.13 confirms that D1AD2 is a G-(B,C) inverse
of A.

Theorem 3.13. For {A,B,C} ∈ C[m,n,p,q], the next inclusions hold:
A{G,B,C} · A · A{G,B,C} ⊆ A{G,B,C}.

Proof. Let D1,D2 ∈ A{G,B,C} and D = D1AD2. Then

ADA = (AD1A)D2A = AD2A = A,
DAB = D1A(D2AB) = D1AB = B,
CAD = (CAD1)AD2 = CAD2 = C,

which is equivalent with D ∈ A{G,B,C}.

One characterization of G-(B,C) invertible matrices can be given in terms of appropriate idempotents.

Theorem 3.14. For {A,B,C} ∈ C[m,n,p,q], there is equivalence between the subsequent assertions:

(i) A{G,B,C} , ∅;

(ii) there are two idempotents T1 ∈ Cm×m and T2 ∈ Cn×n such that

R(T1) = R(A), N(T2) = N(A), R(B) ⊆ R(T2) and N(T1) ⊆ N(C).

Subsequently, T2A− T1 ∈ A{G,B,C} for arbitrary A−, which implies

T2 · A{1} · T1 ⊆ A{G,B,C}.

Proof. (i) ⇒ (ii): For D ∈ A{G,B,C}, if T1 = AD and T2 = DA, we observe by ADA = A, that T1 = T2
1,

T2 = T2
2, R(T1) = R(A), and N(T2) = N(A). Since DAB = B and CAD = C, we deduce R(B) ⊆ R(T2) and

N(T1) ⊆ N(C).
(ii)⇒ (i): Note that, for A− ∈ A{1}, the assumption R(T1) = R(A) gives A = T1A and T1 = AA−T1. From

N(A) = N(T2), it follows A = AT2 and T2 = T2A−A. The conditions R(B) ⊆ R(T2) and N(T1) ⊆ N(C) imply
B = T2B and C = CT1. If we take D = T2A−T1, notice that

ADA = (AT2)A−(T1A) = AA−A = A,
DAB = T2A−(T1A)B = (T2A−A)B = T2B = B,
CAD = C(AT2)A−T1 = C(AA−T1) = CT1 = C.

Thus, D ∈ A{G,B,C}.

Taking ∁ = B = C in Theorem 3.12, Theorem 3.13 and Theorem 3.14, we obtain corresponding results
for G-∁ inverse, which reveal appropriate results from [18] in the complex matrix case.
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3.3. G-∁1 and G-∁2 inverses
In this subsection, let A ∈ Cm×n, F ∈ Cn×k, H ∈ Cl×m and let (HAF)(1)

∈ (HAF){1} and (HAF)(2)
∈ (HAF){2}

be fixed but arbitrary. If we state ∁1 := F(HAF)(1)H or ∁2 := F(HAF)(2)H instead of ∁ in Definition 3.7(ii) of
the G-∁ inverse, we obtain G-∁1 and G-∁2 inverses.

Under extra assumptions, by Urquhart formula (1), the expression ∁1 := F(HAF)(1)H is equal to A(2)
R(F),∗,

A(2)
∗,N(H) or A(2)

R(F),N(H). According to this fact, G-∁1 inverses can be considered as new extensions of G-outer
inverses.

Theorem 3.15. The set of G-∁1 inverses of A satisfies

A{G,∁1} =


A{G,A(2)

R(F),∗} = A{G,F,∁1}, ℧HAF,F;

A{G,A(2)
∗,N(H)} = A{G,∁1,H}, ℧HAF,H;

A{GO,R(F),N(H)} = A{G,F,H}, ℧HAF,F,H.

Proof. By Proposition 1.1, an arbitrary D ∈ A{G,∁1} satisfies

(i) ℧HAF,F =⇒ D ∈ A{G,A(2)
R(F),∗};

(ii) ℧HAF,H =⇒ D ∈ A{G,A(2)
∗,N(H)};

(iii) ℧HAF,F,H =⇒ D ∈ A{GO,R(F),N(H)},

which confirms mentioned equalities. According to [18, Theorem 2.2], note that℧HAF,F,H gives A{G,F,H} =
A{GO,R(F),N(H)}.

As a consequence of Theorem 3.15, we obtain the next result about G-∁2 inverses.

Corollary 3.16. If P and Q be suitable Hermitian idempotents satisfying (HAF)(2) = Q(PHAFQ)†P, then

A{G,∁2} =


A{G,A(2)

R(FQ),∗} = A{G,FQ,∁1}, ℧PHAFQ,FQ;

A{G,A(2)
∗,N(PH)} = A{G,∁1,PH}, ℧PHAFQ,PH;

A{GO,R(FQ),N(PH)} = A{G,FQ,PH}, ℧PHAFQ,FQ,PH.

Proof. Notice that, by [3], Z ∈ (HAF){2} if and only if Z = (PHAFQ)†, where P and Q are suitable Hermitian
idempotents. In this case, (HAF)(2) = (PHAFQ)† = Q(PHAFQ)† = (PHAFQ)†P. An application of Theorem
3.15 implies that an arbitrary G-∁2 inverse D of A satisfies

(i) ℧PHAFQ,FQ =⇒ D ∈ A{G,A(2)
R(FQ),∗};

(ii) ℧PHAFQ,PH =⇒ D ∈ A{G,A(2)
∗,N(PH)};

(iii) ℧PHAFQ,FQ,PH =⇒ D ∈ A{GO,R(FQ),N(PH)}.

The proof follows immediately.

Because ∁2 := F(HAF)(2)H is an outer inverse of A, we have the following characterizations of G-∁2
inverses.

Theorem 3.17. For D ∈ Cn×m, the following statements are equivalent:

(i) D ∈ A{G,∁2};

(ii) ADA = A and DA∁2 = ∁2AD;
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(iii) ADA = A, DA∁2A = ∁2A and A∁2 = A∁2AD.

Proof. (i)⇒ (ii): This implication is clear by the definition of a G-∁2 inverse.
(ii) ⇒ (iii): Since ADA = A and DA∁2 = ∁2AD, then DA∁2A = ∁2(ADA) = ∁2A and A∁2AD =

(ADA)∁2 = A∁2.
(iii)⇒ (i): Assume that ADA = A, DA∁2A = ∁2A and A∁2 = A∁2AD. Because ∁2 ∈ A{2}, we get

∁2 = (∁2A)∁2 = DA(∁2A∁2) = DA∁2

and
∁2 = ∁2(A∁2) = (∁2A∁2)AD = ∁2AD.

Hence, D ∈ A{G,∁2}.

4. Extensions of one-sided G-outer inverses

Considering weaker versions of the system (5), we introduce one-sided kinds of G-(B,C) inverses and
generalize l-G-outer and r-G-outer inverses.

4.1. L- G-B and r- G-C inverses
By omitting the second or third equation involved in the system (5), we present two classes of novel

generalized inverses that represent weaker versions of G-(B,C) invertibility. By Corollary 3.3, Theorem 4.1
can be verified by a similar procedure as in the verification of Theorem 3.2.

Theorem 4.1. Then the following statements hold for {A,B,C} ∈ C[m,n,p,q]:
(a) The system (termed as L-G-B system)

ADA = A and DAB = B (17)

has a solution if and only if one of the following two conditions is satisfied:

(i) B(I − (AB)−AB) = 0, for some (AB)−

(ii) BΥAB = B, Υ ∈ Cp×m.
(18)

Furthermore, the general solution to (17) is equal to

D = A−AA− + (I − A−A)B(AB)− + Y − (I − A−A)YAB(AB)− − A−AYAA−

= A−AA− + (I − A−A)BΥ + Y − (I − A−A)YAΥ − A−AYAA−, BΥAB = B, Υ ∈ Cp×m

for arbitrary Y ∈ Cn×m and A−.
(b) The system (termed as R-G-C system)

ADA = A and CAD = C (19)

has a solution if and only if one of the following two conditions is satisfied:

(i) (I − CA(CA)−)C = 0, for some (CA)−

(ii) CAΨC = C, Ψ ∈ Cn×q.
(20)

Furthermore, the general solution is equal to

D = A−AA− + (CA)−C(I − AA−) + Y − (CA)−CAY(I − AA−) − A−AYAA−

= A−AA− +ΨC(I − AA−) + Y −ΨCAY(I − AA−) − A−AYAA−, CAΨC = C, Ψ ∈ Cn×q

for arbitrary Y ∈ Cn×m and A−.
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Definition 4.2. The following definitions are valid for {A,B,C} ∈ C[m,n,p,q]:

(a) a matrix D ∈ Cn×m satisfying (17) is a left G-B (l-G-B) inverse of A;

(b) a matrix D ∈ Cn×msatisfying (19) is a right G-C (r-G-C) inverse of A.

We will write A{l,G,B} (or A{r,G,C}), respectively, as labels for the set of l-G-B (r-G-C) inverses of
A. Observe the inclusions A{G,B,C} ⊆ A{l,G,B}, A{G,B,C} ⊆ A{r,G,C} and the equality A{G,B,C} =
A{l,G,B} ∩ A{r,G,C}.

For B = A(2)
T,S (or B = AD), a l-G-B inverse of A reduces to the l-G-outer (T,S)-inverse (l-G-Drazin inverse)

of A. Analogously, for C = A(2)
T,S (or C = AD), a r-G-C inverse of A reduces to the r-G-outer (T,S)-inverse

(r-G-Drazin inverse) of A.
Some set identities can be verified as in Corollary 3.10.

Corollary 4.3. Suppose that {A,B,C} ∈ C[m,n,p,q].
(a) If (18) is satisfied, we have

A{l,G,B} = A{l,G,P},

where P is an arbitrary matrix satisfyingN(P) = N(AP) and R(P) = R(B).
(b) If (20) is satisfied, we have

A{r,G,C} = A{r,G,Q},

where Q is an arbitrary matrix satisfying R(Q) = R(QA) andN(Q) = N(C).

Applying Theorem 4.1, the sets of one-sided G-outer as well as G-Drazin inverses are characterized as
in Corollary 3.11.

Corollary 4.4. Let A ∈ Cm×n.

(i) If A(2)
T,S exists, then

A{l,GO,T,S} = {A−AA− + (I − A−A)A(2)
T,S + Y − (I − A−A)YAA(2)

T,S − A−AYAA− :

Y ∈ Cn×m is arbitrary}

and
A{r,GO,T,S} = {A−AA− + A(2)

T,S(I − AA−) + Y − A(2)
T,SAY(I − AA−) − A−AYAA− :

Y ∈ Cn×m is arbitrary}

for A− ∈ A{1}.

(ii) If m = n and ind(A) = k, then

A{l,GD} = {A−AA− + (I − A−A)AD + Y − (I − A−A)YAAD
− A−AKAA− :

Y ∈ Cn×m is arbitrary}

= {A−AA− + (I − A−A)Ak(Ak+1)− + Y − (I − A−A)YAk+1(Ak+1)− − A−AYAA− :
Y ∈ Cn×m is arbitrary}

and
A{r,GD} = {A−AA− + AD(I − AA−) + Y − ADAY(I − AA−) − A−AYAA− :

Y ∈ Cn×m is arbitrary}

= {A−AA− + (Ak+1)−Ak(I − AA−) + Y − (Ak+1)−Ak+1Y(I − AA−) − A−AYAA− :
Y ∈ Cn×m is arbitrary}

for A− ∈ A{1} and (Ak+1)− ∈ (Ak+1){1}.
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Theorem 4.5 gives the subsequent characterizations of l-G-B and r-G-C inverses, as a continuation of
Theorem 3.12.

Theorem 4.5. Let {A,B,C} ∈ C[m,n,p,q] and D ∈ Cn×m.
(a) The next statements are equivalent:

(i) D ∈ A{l,G,B};

(ii) ADA = A and R(B) ⊆ R(DA).

(b) The next statements are mutually equivalent:

(i) D ∈ A{r,G,C};

(ii) ADA = A andN(AD) ⊆ N(C).

In Theorem 4.6, we check some additional inclusions for the l-G-B and r-G-C inverses as in Theorem
3.13.

Theorem 4.6. Let {A,B,C} ∈ C[m,n,p,q]. The next inclusions hold:

A{l,G,B} · A · A{l,G,B} ⊆ A{l,G,B} and A{r,G,C} · A · A{r,G,C} ⊆ A{r,G,C}.

Identities included in Corollary 4.7 follow immediately from corresponding definitions, Theorem 3.13
and Theorem 4.6.

Corollary 4.7. The next identities hold for {A,B,C} ∈ C[m,n,p,q]:
(a) A · A{G,B,C} · A = A · A{l,G,B} · A = A · A{r,G,C} · A = A;
(b) A{G,B,C} · AB = A{l,G,B} · AB

= A{G,B,C} · A · A{G,B,C} · AB = A{l,G,B} · A · A{l,G,B} · AB
= B;

(c) CA · A{G,B,C} = CA · A{r,G,C}
= CA · A{G,B,C} · A · A{G,B,C} = CA · A{r,G,C} · A · A{r,G,C}
= C.

Some characterizations for A{l,G,B} and A{r,G,C} that involve idempotents are introduced in Theorem
4.8.

Theorem 4.8. Consider {A,B,C} ∈ C[m,n,p,q].
(a) The next claims are mutually equivalent:

(i) A{l,G,B} , ∅;

(ii) there are idempotents T1 ∈ Cm×m and T2 ∈ Cn×n satisfying

R(A) = R(T1), N(A) = N(T2) and R(B) ⊆ R(T2).

Moreover, for arbitrary A− ∈ A{1}, it follows T2A− T1 ∈ A{l,G,B}, which implies

T2 · A{1} · T1 ⊆ A{l,G,B}.

(b) The subsequent claims are mutually equivalent:

(i) A{r,G,C} , ∅;
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(ii) there are idempotents T1 ∈ Cm×m and T2 ∈ Cn×n satisfying

R(A) = R(T1), N(A) = N(T2) and N(T1) ⊆ N(C).

Furthermore, for any A− ∈ A{1}, we have T2A− T1 ∈ A{r,G,C}, which implies

T2 · A{1} · T1 ⊆ A{r,G,C}.

Theorem 4.9. For {A,B,C} ∈ C[m,n,p,q], there is equivalence between the subsequent assertions:

(i) D1 ∈ A{l,G,B}, D2 ∈ A{r,G,C} and D1AD2 = D2AD1;

(ii) D1,D2 ∈ A{G,B,C}, AD2 = AD1 and D1A = D2A.

Proof. (i)⇒ (ii): Multiplying the equality D1AD2 = D2AD1 by A from the left (or right) hand side, we get
AD2 = AD1 (D1A = D2A). Since B = (D1A)B = D2AB and C = CAD2 = CAD1, we deduce D1,D2 ∈ A{G,B,C}.

(ii)⇒ (i): It is clear by D1(AD2) = (D1A)D1 = D2AD1.

4.2. One-sided G-∁1 and G-∁2 inverses

Consider A ∈ Cm×n, F ∈ Cn×k, H ∈ Cl×m and fixed but arbitrary (HAF)(1)
∈ (HAF){1}, and (HAF)(2)

∈

(HAF){2} in this subsection. It is interesting to state ∁1 := F(HAF)(1)H or ∁2 := F(HAF)(2)H instead of B
and C in the definition of the l-G-B inverse and r-G-C inverse and characterize one-sided G-∁1 and G-∁2
inverses.

Applying Urquhart formula (1), l- and r-G-∁1 inverses are additional extensions of l- and r-G-outer
inverses.

Theorem 4.10. (a) Arbitrary element D ∈ A{l,G,∁1} satisfies:

(i) ℧HAF,F =⇒ D ∈ A{l,G,A(2)
R(F),∗};

(ii) ℧HAF,H =⇒ D ∈ A{l,G,A(2)
∗,N(H)};

(iii) ℧HAF,F,H =⇒ D ∈ A{l,GO,R(F),N(H)}.

(b) Arbitrary element D ∈ A{r,G,∁1} satisfies:

(i) ℧HAF,F =⇒ D ∈ A{r,G,A(2)
R(F),∗};

(ii) ℧HAF,H =⇒ D ∈ A{r,G,A(2)
∗,N(H)};

(iii) ℧HAF,F,H =⇒ D ∈ A{r,GO,R(F),N(H)}.

Corollary 4.11. The following set equalities are valid:

(a) A{l,G,∁1} =


A{l,G,A(2)

R(F),∗} = A{l,G,F}, ℧HAF,F;

A{l,G,A(2)
∗,N(H)}, ℧HAF,H;

A{l,GO,R(F),N(H)}, ℧HAF,F,H.

(b) A{r,G,∁1} =


A{r,G,A(2)

R(F),∗}, ℧HAF,F;

A{r,G,A(2)
∗,N(H)} = A{r,G,H}, ℧HAF,H;

A{r,GO,R(F),N(H)}, ℧HAF,F,H.
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Corollary 4.12. If P and Q be suitable Hermitian idempotents satisfying (HAF)(2) = Q(PHAFQ)†P, then it follows:

(a) A{l,G,∁2} =


A{l,G,A(2)

R(FQ),∗} = A{l,G,FQ}, ℧PHAFQ,FQ;

A{l,G,A(2)
∗,N(PH)}, ℧PHAFQ,PH;

A{l,GO,R(FQ),N(PH)}, ℧PHAFQ,FQ,PH.

(b) A{r,G,∁2} =


A{r,G,A(2)

R(FQ),∗}, ℧PHAFQ,FQ;

A{r,G,A(2)
∗,N(PH)} = A{r,G,PH}, ℧PHAFQ,PH;

A{r,GO,R(FQ),N(PH)}, ℧PHAFQ,FQ,PH.

Proof. (a) Similarly as in Corollary 3.16, we verify using Theorem 4.10 that an arbitrary element D ∈
A{l,G,∁2} satisfies:

(i) ℧PHAFQ,FQ =⇒ D ∈ A{l,G,A(2)
R(FQ),∗};

(ii) ℧PHAFQ,PH =⇒ D ∈ A{l,G,A(2)
∗,N(PH)};

(iii) ℧PHAFQ,FQ,PH =⇒ D ∈ A{l,GO,R(FQ),N(PH)}.

(b) Arbitrary element D ∈ A{r,G,∁2} satisfies:

(i) ℧PHAFQ,FQ =⇒ D ∈ A{r,G,A(2)
R(FQ),∗};

(ii) ℧PHAFQ,PH =⇒ D ∈ A{r,G,A(2)
∗,N(PH)};

(iii) ℧PHAFQ,FQ,PH =⇒ D ∈ A{r,GO,R(FQ),N(PH)}.

The rest of the proof is evident.

The next characterizations of l- and r-G-∁2 inverses are proposed in Theorem 3.17.

Theorem 4.13. Let D ∈ Cn×m.
(a) Then the next claims are equivalent:

(i) D ∈ A{l,G,∁2};

(ii) ADA = A and DA∁2A = ∁2A.

(b) Then the next claims are equivalent:

(i) D ∈ A{r,G,∁2};

(ii) ADA = A and A∁2 = A∁2AD.

5. Examples in numerical and symbolic form

Example 5.1. Let

A =
[

a b
0 0

]
, F =

[
1 0
1 0

]
, H =

[
1 0
0 0

]
∈ C2×2,

where a, b , 0 are unassigned variables. Unknown matrix D is of the general form

D =
[

d1,1 d1,2
d2,1 d2,2

]
, d1,2, d1,2, d2,1, d2,2 ∈ C.
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Since F and H satisfy rank(AF) = rank(F) = rank(HA) = rank(H) = 1, Corollary 3.3 implies solvability of the
system (5). The form of general solution to the system

ADA = A, DAF = F, HAD = H

gives

A{G,F,H} =
{[ 1

a+b 0
1

a+b −
ad1,2

b

]
: d1,2 ∈ C

}
.

Further, the general solution to
ADA = A, DAF = F

gives

A{l,G,F} =
{[

1
a+b d1,2

1
a+b d2,2

]
: d1,1, d2,2 ∈ C

}
.

Finally, the general solution to
ADA = A, HAD = H

is equal to

A{r,G,H} =
{[

d1,1 d1,2
1−ad1,1

b −
ad1,2

b

]
: d1,1, d1,2 ∈ C

}
.

Further, for

∁1 = F(HAF)†H =
[

1
a+b 0

1
a+b 0

]
,

the general solution to
ADA = A, DA∁1 = ∁1, ∁1AD = ∁1

gives A{G,∁1} = A{G,F,H} = A{GO,R(F),N(H)}. In this case, rank(HAF) = rank(H) = rank(F) = rank(A) = 1,
so that ∁1 = A(1,2)

R(F),N(H), which is a verification of Theorem 3.15, part (iii). Further, the general solution to

ADA = A, DA∁1 = ∁1

gives A{l,G,∁1} = A{l,G,F} = A{l,GO,R(F),N(H)}, which is a confirmation of Theorem 4.10, part (a)(iii). Finally,
the general solution to

ADA = A, ∁1AD = ∁1

gives A{r,G,∁1} = A{r,G,H} = A{r,GO,R(F),N(H)}, which is a confirmation of Theorem 4.10, part (b)(iii) and
Corollary 4.3.

Example 5.2. Consider

A =


8 8 4
12 12 2
8 8 4
8 8 2

 , F =

 12 13 17
12 13 17
18 20 25

 , H =
[

12 15 6 9
8 2 0 8

]
.

Let us mention that rank(HAF) = rank(H) = rank(F) = rank(A) = 2, so that ∁1 = A(1,2)
R(F),N(H). Unknown matrix

D is in symbolic form

D =

 d1,1 d1,2 d1,3 d1,4
d2,1 d2,2 d2,3 d2,4
d3,1 d3,2 d3,3 d3,4

 , di, j ∈ C.

The general solution to
ADA = A, DAF = F, HAD = H
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defines the set

A{G,F,H} =




d1,1 d1,2 −d1,1 +
d1,2

2 −
1

16
1
8 − 2d1,2

−d1,1 −
1
7

45
196 − d1,2 d1,1 −

d1,2

2 +
153
784 2d1,2 −

131
392

4
7 −

31
49 −

19
49

75
98

 : d1,1, d1,2 ∈ C

 .
Further, the general solution to the matrix system

ADA = A, DAF = F

is equal to

A{l,G,F} =




d1,1 d1,2 −d1,1 +
d1,2

2 −
1

16
1
8 − 2d1,2

d2,1 d2,2 −d2,1 +
d2,2

2 −
1

16
1
8 − 2d2,2

d3,1 d3,2 −d3,1 +
d3,2

2 +
1
2 −2d3,2 −

1
2

 : di, j ∈ C


and the general solution to

ADA = A, HAD = H

is

A{r,G,H} =


 d1,1 d1,2 d1,3 d1,4

−d1,1 −
1
7

45
196 − d1,2

13
98 − d1,3 −d1,4 −

41
196

4
7 −

31
49 −

19
49

75
98

 : di, j ∈ C

 .
For

∁1 = F(HAF)†H =


−

1
14

45
392

13
196 −

41
392

−
1

14
45
392

13
196 −

41
392

4
7 −

31
49 −

19
49

75
98

 ,
symbolic calculation gives

A{G,∁1} = A{G,F,H} = A{GO,R(F),N(H)},

A{l,G,∁1} = A{l,G,F} = A{l,GO,R(F),N(H)},

A{r,G,∁1} = A{r,G,H} = A{r,GO,R(F),N(H)},

which is a verification of Theorem 3.15, part (iii) and Theorem 4.10, parts (a)(iii) and (b)(iii) and Corollary 4.3.

Example 5.3. Let

A =


2 4 4 2
4 6 8 0
0 4 4 0
1 6 6 1
6 10 12 2

 , F =


2 2 0
3 3 2
0 0 0
3 3 2

 , H =


3 0 6 3 0
0 0 0 0 0
1 0 2 1 0
0 0 0 0 0

 .
Unknown matrix D is of the general form

D =


d1,1 d1,2 d1,3 d1,4 d1,5 d1,6
d2,1 d2,2 d2,3 d2,4 d2,5 d2,6
d3,1 d3,2 d3,3 d3,4 d3,5 d3,6
d4,1 d4,2 d4,3 d4,4 d4,5 d4,6

 , di, j ∈ C.

Matrices F and H satisfy rank(AB) = rank(B) and rank(CA) = rank(C). So, according to Corollary 3.3, the system
(5) is solvable. The general solution to

ADA = A, DAF = F, HAD = H,
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corresponding to (5), is given as

A{G,F,H} =




d1,1 d1,2 d1,3

d2,1 d2,2 2
(
−2d1,1 + 2d1,2 + d1,3 + d2,1 − d2,2

)
d3,1 d3,2 4d1,1 − 4d1,2 − 2d1,3 + 2d3,1 − 2d3,2 +

1
4

−d1,1 − 6d2,1 − 6d3,1 +
1
3 −d1,2 − 6

(
d2,2 + d3,2

)
−d1,3 − 12d2,1 + 12d2,2 − 12d3,1 + 12d3,2 −

5
6

1
30

(
−8d1,1 − 22d1,2 + 4d1,3 + 7

)
1
5

(
16d1,1 − 16d1,2 − 8d1,3 − 10d2,1 + 10d2,2 + 1

) 1
30

(
−16d1,1 + 16d1,2 + 8d1,3 − 30d2,2 − 1

)
1
5

(
−16d1,1 + 16d1,2 + 8d1,3 − 10d3,1 + 10d3,2 − 1

) 1
30

(
16d1,1 − 16d1,2 − 8d1,3 − 30d3,2 + 1

)
2d1,1

5 −
2d1,2

5 +
4d1,3

5 + 12d2,1 − 12d2,2 + 12d3,1 − 12d3,2 +
11
15

1
30

(
8d1,1 + 22d1,2 − 4d1,3 + 180d2,2 + 180d3,2 − 7

)

 .

Simplification in symbolic computation gives

A · A{G,F,H} · A − A = A{G,F,H} · AF − F = HA · A{G,F,H} −H = {0}.

Further, the general solution to
ADA = A, DAF = F

is given by

A{l,G,F} =




d1,1 d1,2 d1,3

d2,1 d2,2 2
(
−2d1,1 + 2d1,2 + d1,3 + d2,1 − d2,2

)
d3,1 d3,2 4d1,1 − 4d1,2 − 2d1,3 + 2d3,1 − 2d3,2 +

1
4

d4,1 d4,2 2d1,1 − 2d1,2 − d1,3 + 2d4,1 − 2d4,2 −
3
2

−
2
5

(
d1,1 − d1,2 + 2d1,3 + 1

) 1
30

(
−8d1,1 − 22d1,2 + 4d1,3 + 7

)
1
5

(
16d1,1 − 16d1,2 − 8d1,3 − 10d2,1 + 10d2,2 + 1

) 1
30

(
−16d1,1 + 16d1,2 + 8d1,3 − 30d2,2 − 1

)
1
5

(
−16d1,1 + 16d1,2 + 8d1,3 − 10d3,1 + 10d3,2 − 1

) 1
30

(
16d1,1 − 16d1,2 − 8d1,3 − 30d3,2 + 1

)
1
5

(
−8d1,1 + 8d1,2 + 4d1,3 − 10d4,1 + 10d4,2 + 7

) 1
30

(
8d1,1 − 8d1,2 − 4d1,3 − 30d4,2 − 7

)



and the general solution to
ADA = A, HAD = H

is

A{r,G,H} =




d1,1 d1,2 d1,3

d2,1 d2,2 2
(
−2d1,1 + 2d1,2 + d1,3 + d2,1 − d2,2

)
d3,1 d3,2 4d1,1 − 4d1,2 − 2d1,3 + 2d3,1 − 2d3,2 +

1
4

−d1,1 − 6d2,1 − 6d3,1 +
1
3 −d1,2 − 6

(
d2,2 + d3,2

)
−d1,3 − 12d2,1 + 12d2,2 − 12d3,1 + 12d3,2 −

5
6

d1,4 d1,5

4d1,1 − 4d1,2 + 2d1,4 − 2d2,1 + 2d2,2 + 1 2d1,2 + 2d1,5 − d2,2 −
1
2

−4d1,1 + 4d1,2 − 2d1,4 − 2d3,1 + 2d3,2 − 1 −2d1,2 − 2d1,5 − d3,2 +
1
2

−d1,4 + 12d2,1 − 12d2,2 + 12d3,1 − 12d3,2 +
1
3 6

(
d2,2 + d3,2

)
− d1,5


 .

Further,

∁1 = F(HAF)†H =


46

1881 0 92
1881

46
1881 0

83
1881 0 166

1881
83

1881 0
0 0 0 0 0
83

1881 0 166
1881

83
1881 0

 .
Ranks relevant in view of Proposition 1.1 satisfy rank(HAF) = 1 = rank(H) < 2 = rank(F) < 3 = rank(A), so that
∁1 = A(2)

∗,N(H). The general solution to the matrix system

ADA = A, DA∁1 = ∁1, ∁1AD = ∁1
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is equal to

A{G,∁1} =




d1,1 d1,2 d1,3

d2,1 d2,2 2
(
−2d1,1 + 2d1,2 + d1,3 + d2,1 − d2,2

)
d3,1 d3,2 4d1,1 − 4d1,2 − 2d1,3 + 2d3,1 − 2d3,2 +

1
4

−d1,1 − 6d2,1 − 6d3,1 +
1
3 −d1,2 − 6

(
d2,2 + d3,2

)
−d1,3 − 12d2,1 + 12d2,2 − 12d3,1 + 12d3,2 −

5
6

d1,4
−590d1,1−682d1,2−332d1,3−627d1,4+46

1272
4d1,1 − 4d1,2 + 2d1,4 − 2d2,1 + 2d2,2 + 1 1

636

(
−590d1,1 + 590d1,2 − 332d1,3 − 627d1,4 − 636d2,2 − 272

)
−4d1,1 + 4d1,2 − 2d1,4 − 2d3,1 + 2d3,2 − 1 1

636

(
590d1,1 − 590d1,2 + 332d1,3 + 627d1,4 − 636d3,2 + 272

)
−d1,4 + 12d2,1 − 12d2,2 + 12d3,1 − 12d3,2 +

1
3

590d1,1+682d1,2+332d1,3+627d1,4+7632d2,2+7632d3,2−46
1272


 .

Further, the general solution to
ADA = A, DA∁1 = ∁1

gives

A{l,G,∁1} =




d1,1 d1,2 d1,3

d2,1 d2,2 2
(
−2d1,1 + 2d1,2 + d1,3 + d2,1 − d2,2

)
d3,1 d3,2 4d1,1 − 4d1,2 − 2d1,3 + 2d3,1 − 2d3,2 +

1
4

−d1,1 − 6d2,1 − 6d3,1 +
1
3 −d1,2 − 6

(
d2,2 + d3,2

)
−d1,3 − 12d2,1 + 12d2,2 − 12d3,1 + 12d3,2 −

5
6

d1,4 d1,5

4d1,1 − 4d1,2 + 2d1,4 − 2d2,1 + 2d2,2 + 1 2d1,2 + 2d1,5 − d2,2 −
1
2

−4d1,1 + 4d1,2 − 2d1,4 − 2d3,1 + 2d3,2 − 1 −2d1,2 − 2d1,5 − d3,2 +
1
2

−d1,4 + 12d2,1 − 12d2,2 + 12d3,1 − 12d3,2 +
1
3 6

(
d2,2 + d3,2

)
− d1,5


 .

Finally, the general solution to
ADA = A, ∁1AD = ∁1

gives
A{r,G,∁1} = A{r,G,H} = A{r,G,A(2)

∗,N(H)},

which confirms part (ii) of Theorem 4.10 because of℧HAF,H and Corollary 4.3.

6. G-(B,C) partial orders

In this section, suppose that A ∈ Cm×n, B ∈ Cn×p and C ∈ Cq×m. Based on the G-(B,C) inverse, l-G-B
inverse and r-G-C inverse, we present three new binary relations on Cm×n. We can observe that these
new relations generalized the concepts of G-outer (T,S)-partial order proposed in [18] and l- and r-G-outer
(T,S)-partial orders given in [22].

Definition 6.1. Let E ∈ Cm×n. Then

(a) A is below E with respect to the G-(B,C) relation (marked as A ≤G,B,C E) if there is D1,D2 ∈ A{G,B,C} such
that

AD1 = ED1 and D2A = D2E;

(b) A is below E with respect to the l-G-B relation (marked as A ≤l,G,B E) if there is D1,D2 ∈ A{l,G,B} such that

AD1 = ED1 and D2A = D2E;

(c) A is below E with respect to the r-G-C relation (marked as A ≤r,G,C E) if there is D1,D2 ∈ A{r,G,C} such that

AD1 = ED1 and D2A = D2E.

Several necessary and sufficient conditions to fulfilling the relation A ≤G,B,C E are developed.
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Theorem 6.2. For E ∈ Cm×n, the next statements are equivalent one to another:

(i) A ≤G,B,C E;

(ii) there is D ∈ A{G,B,C} such that

AD = ED and DA = DE;

(iii) there is D ∈ A{G,B,C} such that
ADE = A = EDA;

(iv) there are idempotents T1 ∈ Cm×m and T2 ∈ Cn×n satisfying

R(T1) = R(A), N(T2) = N(A), R(B) ⊆ R(T2), N(T1) ⊆ N(C) and T1E = A = ET2.

Proof. (i)⇒ (ii): Observe that A ≤G,B,C E implies the existence of D1,D2 ∈ A{G,B,C} such that AD1 = ED1 and
D2A = D2E. By Theorem 3.13, D = D1AD2 ∈ A{G,B,C}. We observe that AD = (AD1)AD2 = E(D1AD2) = ED
and in a same way DA = DE.

(ii) ⇒ (iii): For D ∈ A{G,B,C}, the equalities AD = ED and DA = DE yield A = (AD)A = EDA and
A = A(DA) = ADE.

(iii)⇒ (i): If ADE = A = EDA for D ∈ A{G,B,C}, it follows D′ = DAD ∈ A{G,B,C}. Also,

AD′ = (ADA)D = AD = E(DAD) = ED′

and similarly D′A = D′E.
(ii) ⇒ (iv): Assume that AD = ED and DA = DE for some D ∈ A{G,B,C}. Using Theorem 3.14 for

T1 = AD and T2 = DA, one can see R(T1) = R(A),N(T2) = N(A), R(B) ⊆ R(T2), andN(T1) ⊆ N(C). Further,
T1E = A(DE) = ADA = A = E(DA) = ET2.

(iv)⇒ (ii): According to Theorem 3.14, we obtain D = T2A− T1 ∈ A{G,B,C}, where A− ∈ A{1}. Therefore,
AD = (AT2)A−T1 = AA−T1 = E(T2A− T1) = ED and analogously DA = DE.

Similarly as in Theorem 6.2, we characterize l-G-B and r-G-C relations.

Corollary 6.3. Let E ∈ Cm×n.
(a) The subsequent claims are mutually equivalent:

(i) A ≤l,G,B E;

(ii) there is D ∈ A{l,G,B} satisfying
AD = ED and DA = DE;

(iii) there is D ∈ A{l,G,B} satisfying
A = ADE = EDA;

(iv) there are idempotents T1 ∈ Cm×m and T2 ∈ Cn×n satisfying

R(A) = R(T1), N(A) = N(T2), R(B) ⊆ R(T2) and T1E = A = ET2.

(b) The subsequent claims are mutually equivalent:

(i) A ≤r,G,C E;

(ii) there is D ∈ A{r,G,C} satisfying

AD = ED and DA = DE;
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(iii) there is D ∈ A{r,G,C} satisfying
A = ADE = EDA;

(iv) there are idempotents T1 ∈ Cm×m and T2 ∈ Cn×n satisfying

R(A) = R(T1), N(A) = N(T2), N(T1) ⊆ N(C) and T1E = A = ET2.

Under the hypothesis A ≤G,B,C E, we verify that arbitrary G-(B,C) inverse of E is G-(B,C) inverse of A.
The analog results hold for l- and r-G-(B,C) inverses.

Theorem 6.4. The following implications are valid for E ∈ Cm×n:

(a) A ≤G,B,C E =⇒ E{G,B,C} ⊆ A{G,B,C};

(b) A ≤l,G,B E =⇒ E{l,G,B} ⊆ A{l,G,B};

(c) A ≤r,G,C E =⇒ E{r,G,C} ⊆ A{r,G,C}.

Proof. (a) The hypothesis A ≤G,B,C E and Theorem 6.2 imply the existence of D ∈ A{G,B,C} satisfying
AD = ED and DA = DE. If F ∈ E{G,B,C}, then

EFE = E, FEB = B and CEF = C,

which give

AFA = A(DA)F(AD)A = AD(EFE)DA = A(DE)DA = ADADA = A,
FAB = F(AD)AB = FE(DAB) = FEB = B
CAF = CA(DA)F = (CAD)EF = CEF = C.

Thus, F ∈ A{G,B,C}, which yields B{G,B,C} ⊆ A{G,B,C}.
Similarly, we can verify the parts (b) and (c).

In the next theorem, we check that partial orders on Cm×n are relations G-(B,C), l-G-B and r-G-C.

Theorem 6.5. The G-(B,C), l-G-B and r-G-C relations are partial orders, respectively, on {A ∈ Cm×n : A{G,B,C} ,
∅}, {A ∈ Cm×n : A{l,G,B} , ∅} and {A ∈ Cm×n : A{r,G,C} , ∅}.

Proof. We will prove that the G-(B,C) is a partial order, because the rest follows in a similar way. It is clear
that ≤G,B,C is reflexive.

If A,E ∈ Cm×n satisfy A ≤G,B,C E and E ≤G,B,C A, then A ≤− E and E ≤− A. Because the relation ≤− is
antisymmetric, we deduce that A = B and so ≤G,B,C is antisymmetric.

To prove that ≤G,B,C is transitive, assume the existence of A,E,G ∈ Cm×n satisfying A ≤G,B,C E and
E ≤G,B,C G. Applying Theorem 6.2, there are D ∈ A{G,B,C} and F ∈ E{G,B,C} satisfying AD = ED,
DA = DE, EF = GF and FE = FG. According to Theorem 6.4, it follows F ∈ A{G,B,C}. Now, by

A = A(DA) = ADE = ADE(FE) = (ADE)FG = AFG,
A = (AD)A = EDA = (EF)EDA = GF(EDA) = GFA

and Theorem 6.2(iii), we conclude that A ≤G,B,C G.
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7. Conclusion

The system of matrix equations (5) involving A ∈ Cm×n, C ∈ Cq×m and B ∈ Cn×p is investigated. This
system is an atypical combination of the equation AXA = A corresponding to inner inverses and the
equations XAB = B, CAX =C used in the characterization of outer inverses. Firstly, equivalent conditions
for solvability of system (5) are given. The general solution of (5) is determined in terms of inner inverses
of A, AB, and CA. So, we omit the conditions A ∈ Cm×n

R(B),N(C) and A{GO,R(B),N(C)} , ∅ which appeared in
[19], and prove that the hypothesis A{GO,R(B),N(C)} , ∅ is satisfied when A ∈ Cm×n

R(B),N(C) holds.
Our contributions are some extensions ofG-outer andG-Drazin inverses which are proposed as solutions

of the system (5) and its particular cases. Precisely, we define and characterize aG-(B,C) andG-∁ inverses as
new classes of generalized inverses. Using Urquhart formula, for ∁1 := F(HAF)(1)H and ∁2 := F(HAF)(2)H,
G-∁1 and G-∁2 inverses are also new generalizations of G-outer inverses.

One-sided versions of G-(B,C) inverse are introduced as weaker versions of G-(B,C) inverses and
extensions of one-sided kinds of G-outer inverse from [22]. We also characterize one-sided G-∁1 and G-∁2
inverses.

Tree new kinds of partial orders on the adequate subsets ofCm×n are presented using theG-(B,C) inverse
and its one-sided versions. Notice that these partial orders generalize the concepts of G-outer (T,S)-partial
order [18] and one-sided G-outer (T,S)-partial orders [22].
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[21] D. Mosić, Weighted G-outer inverse of Banach spaces operators, Numer. Funct. Anal. Optim. 43(5) (2022), 558–579.
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[29] D. Zhang, D. Mosić, T. Tam, On the existence of group inverses of Peirce corner matrices, Linear Algebra Appl. 582 (2019), 482–498.
[30] H. H. Zhu, P. Patrı́cio, Several types of one-sided partial orders in rings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM

113 (2019), 3177–3184.
[31] H. H. Zhu, F. Peng, Projections generated by Moore-Penrose inverses and core inverses, J. Algebra its Appl. 20(03) (2021), 2150027.
[32] H. Zou, J. Chen, H. Zhu, Y. Wei, Characterizations for the n-strong Drazin invertibility in a ring, J. Algebra its Appl. 20(08) (2021),

2150141.


