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Abstract. In this article, we establish complete convergence theorems for weighted sums in sub-linear
expectations space. As corollaries, we obtain Marcinkiewicz strong laws for weighted sums under the sub-
linear expectations. Our results extend and improve the corresponding results of Bai and Cheng (Statist.
Probab. Lett. 46: 105-112, 2000) and Cuzick (J. Theoret. Probab. 8: 625-641, 1995) from classical probability
space to sub-linear expectation space.

1. Introduction

In the classical probability theory, probability and expectation are both additive. But the uncertainty
phenomenon can not be modeled using additive probabilities or additive expectations in many areas
of applications. Non-additive probabilities and non-additive expectations are useful tools for studying
uncertainties in statistics, measures of risk, superhedging in finance and non-linear stochastic calculus
(see Denis and Martini[1] and Peng [2-5]). Peng [4-6] introduced the general framework of the sub-linear
expectation in a general function space by relaxing the linear property of the classical expectation to the
sub-additivity and positive homogeneity (cf. Definition 1.1 below). Under Peng’s sub-linear expectation
framework, many limit theorems have been established recently, including the central limit theorem and
weak law of large numbers (see Peng [6-8]), strong law of large numbers (see Chen [9], Hu [10], Wu and
Jiang [11], Tang et al. [12]), the law of the iterated logarithm (see Chen and Hu [13], Zhang [14], Donsker’s
invariance principle and Chung’s law of the iterated logarithm (see Zhang [15]), Rosenthal’s inequalities
(see Zhang [16]) and Three series theorem (see Xu and Zhang [17]), complete convergence theorems (see
Feng et al. [18], Wu and Jiang [19], Xi et al. [20]), self-normalized moderate deviation and law of the iterated
logarithm (see Zhang [21]), and so on. Because sub-linear expectation and capacity are not additive, the
study of the limit theorems under sub-linear expectation becomes much more complex and challenging.
Extending the limit theorems in the traditional probability space to the case of sub-linear expectation space
is of great significance in the theory and application. Complete convergence theorems are important limit
theorems in probability theory. Many of related results have been obtained in the probability space. We
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refer the reader to Baum and Katz [22], Peligrad and Gut [23], Wang et al. [24], Huang et al. [25] and
Wang et al. [26]. Complete convergence for weighted sums are also important in sub-linear expectation
space, which can be applied to nonparametric regression models (see Xi et al. [20]). In fact, the limiting
behavior of weighted sums is very important in many statistical problems such as least-squares estimators,
nonparametric regression function estimators and jackknife estimators among others. We will establish
stronger complete convergence theorems for weighted sums in sub-linear expectations space. As corollaries,
we obtain Marcinkiewicz strong laws for weighted sums under the sub-linear expectations.

We use the framework and notations of Peng [6]. Let (Ω,F ) be a given measurable space and letH be a
linear space of real functions defined on (Ω,F ) such that if X1, · · ·,Xn ∈ H then φ(X1, · · ·,Xn) ∈ H for each
φ ∈ Cl.Lip(Rn), where Cl.Lip(Rn) denotes the linear space of (local Lipschitz) functions φ satisfying

|φ(x) − φ(y)| ≤ C(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ Rn,

for some C > 0,m ∈ N depending on φ. H is considered as a space of ”random variables”. If X is an
element of setH , then we denote X ∈ H .

Definition 1.1. (Peng [6]) A sub-linear expectation Ê on H is a function Ê : H → R̄ satisfying the following
properties: for all X,Y ∈ H , we have
(a) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y];
(b) Constant preserving: Ê[c] = c;
(c) Sub-additivity: Ê[X + Y] ≤ Ê[X] + Ê[Y] whenever Ê[X] + Ê[Y] is not of the form +∞−∞ or −∞ +∞;
(d) Positive homogeneity: Ê[λX] = λÊ[X], λ > 0.
Here R̄ = [−∞,+∞]. The triple (Ω,H , Ê) is called a sub-linear expectation space. Given a sub-linear expectation Ê,
let us denote the conjugate expectation Ê of Ê by

Ê[X] := −Ê[−X], ∀X ∈ H .

From the definition, we can easily get that Ê[X] ≤ Ê[X], Ê[X + c] = Ê[X] + c, Ê[X − Y] ≥ Ê[X] − Ê[Y] and
|Ê[X] − Ê[Y]| ≤ Ê[|X − Y|]. Further, if Ê[|X|] is finite, then Ê[X] and Ê[X] are both finite.

Definition 1.2. (Peng [6])
(i) (Identical distribution) Let X1 and X2 be two n-dimensional random vectors defined respectively in sub-linear

expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically distributed, denoted by X1
d
=X2, if

Ê1[φ(X1)] = Ê2[φ(X2)], ∀φ ∈ Cl.Lip(Rn), whenever the sub-expectations are finite.
(ii) (Independence) In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1,Y2, · · ·,Yn), Yi ∈ H

is said to be independent to another random vector X = (X1,X2, · · ·,Xm), Xi ∈ H under Ê if for each test function
φ ∈ Cl.Lip(Rm

× Rn) we have Ê[φ(X,Y)] = Ê[Ê[φ(x,Y)]|x=X ], whenever φ̄(x) := Ê[|φ(x,Y)|] < ∞ for all x and
Ê[|φ̄(X)|] < ∞.

(iii) (IID random variables) A sequence of random variables {Xn; n ≥ 1} is said to be independent if Xi+1 is

independent to (X1,X2, · · ·,Xi) for each i ≥ 1, and it is said to be identically distributed if Xi
d
= X1, for each i ≥ 1.

Next, we introduce the capacities corresponding to the sub-linear expectations. Let G ⊂ F . A function
V : G → [0, 1] is called a capacity if

V(ϕ) = 0, V(Ω) = 1, and V(A) ≤ V(B) ∀A ⊆ B,A,B ∈ G.

It is called to be sub-additive if V(A ∪ B) ≤ V(A) + V(B) for all A,B ∈ Gwith A ∪ B ∈ G.
Let (Ω,H , Ê) be a sub-linear expectation space. We define (V,V) as a pair of capacities with the

properties that
Ê[ f ] ≤ V(A) ≤ Ê[1], if f ≤ I(A) ≤ 1, f , 1 ∈ H andA ∈ F , (1.1)
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V is sub-additive

andV(A) := 1 −V(Ac), ∀A ∈ F . It is obvious that

V(A ∪ B) ≤ V(A) +V(B)

We callV andV the upper and lower capacity, respectively. In general, we chooseV as

V(A) := inf{Ê[ξ] : I(A) ≤ ξ, ξ ∈ H}, ∀A ∈ F . (1.2)

To distinguish this capacity from others, we denote it by V̂ and V̂(A) = 1− V̂(Ac). V̂ is the largest capacity
satisfying (1.1).

It should be known that (1.1) implies Markov inequality: ∀X ∈ H ,

V(|X| ≥ x) ≤ Ê[|X|p]/xp, ∀x > 0, p > 0

from I(|X| ≥ x) ≤ |X|p/xp
∈ H . By Lemma 4.1 in Zhang [14], we have Hölder inequality: ∀X,Y ∈ H , p, q > 1,

satisfying p−1 + q−1 = 1,

Ê[|XY|] ≤ (Ê[|X|p])
1
p (Ê[|Y|q])

1
q ,

particularly, Jensen inequality:

(Ê[|X|r])
1
r ≤ (Ê[|X|s])

1
s , for 0 < r ≤ s.

Definition 1.3. (Zhang [14]) A function V : F → [0, 1] is called to be countably sub-additive if

V

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

V(An), ∀An ∈ F .

We define the Choquet integrals/expecations (CV,CV) by

CV(X) :=
∫
∞

0
V(X ≥ x)dx +

∫ 0

−∞

(V(X ≥ x) − 1)dx

with V being replaced byV andV, respectively. If limc→+∞ Ê[(|X| − c)+] = 0, then Ê[|X|] ≤ CV(|X|) ( Lemma
4.5(iii) of Zhang [14]).

Throughout this paper, C stands for a positive constant which may differ from one place to another and
I(.) denote an indicator function.

2. Main results

Theorem 2.1. Let {X,Xn; n ≥ 1} be a sequence of independent and identically distributed random variables with
Ê[X] = Ê[X] = 0 in a sub-linear expectation space (Ω,H , Ê). Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of
positive real numbers satisfying

∑n
i=1 |ani|

α = O(n) and Tn = aniXi. Let 1
p =

1
α +

1
β , 1 ≤ p < 2, 1 < α, β < ∞. If

Ê[|X|β] ≤ CV[|X|β] < ∞, Then for any ε > 0,

∞∑
n=1

n−1V

(
max
1≤ j≤n

|T j| > εn
1
p

)
< ∞. (2.1)
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Corollary 2.2. Under the conditions of Theorem 2.1, suppose that V is countably sub-additive and {ai, i ≥ 1} is a
sequence of positive real numbers satisfying

∑n
i=1 |ai|

α = O(n). Then for any ε > 0,

∞∑
n=1

n−1V

max
1≤ j≤n

|

j∑
i=1

|aiXi| > εn
1
p

 < ∞ (2.2)

and

lim
n→∞

∑n
i=1 |aiXi|

n
1
p

= 0 a.s. V. (2.3)

In Theorem 2.1, let p = 1, we can easily get the following theorem.

Theorem 2.3. Let {X,Xn; n ≥ 1} be a sequence of independent and identically distributed random variables with
Ê[X] = Ê[X] = 0 in a sub-linear expectation space (Ω,H , Ê). Assume that {ani, 1 ≤ i ≤ n,n ≥ 1} is an
array of positive real numbers satisfying

∑n
i=1 |ani|

α = O(n), 1 < α < ∞ and Tn = aniXi. Let 1
α +

1
β = 1. If

Ê[|X|β] ≤ CV[|X|β] < ∞, Then for any ε > 0,

∞∑
n=1

n−1V

(
max
1≤ j≤n

|T j| > εn
1
p

)
< ∞. (2.4)

Corollary 2.4. Under the conditions of Theorem 2.3, suppose that V is countably sub-additive and {ai, i ≥ 1} is a
sequence of positive real numbers satisfying

∑n
i=1 |ai|

α = O(n). Then for any ε > 0,

∞∑
n=1

n−1V

max
1≤ j≤n

|

j∑
i=1

|aiXi| > εn

 < ∞ (2.5)

and

lim
n→∞

∑n
i=1 |aiXi|

n
= 0 a.s. V. (2.6)

Remark 2.5 From our Theorem 2.1 and Corollary 2.2, we can see that the result of our Theorem 2.1 is
stronger than the corresponding result in Bai and Cheng [27]. Our results not only extend the corresponding
result in Bai and Cheng [27] from classical probability space to sub-linear expectation space, but also improve
the corresponding result.

Remark 2.6 Our Corollary 2.4 extends the corresponding result of Cuzick [28] from classical probability
space to sub-linear expectation space.

3. Proof of main result

In order to prove our results, we need the following lemmas.

Lemma 3.1. (Rosenthal-type inequality (see Zhang[16])) Let {Xn; n ≥ 1} be a sequence of independent random
variables in (Ω,H , Ê) and Sn =

∑n
i=1 Xi. Suppose p ≥ 2. Then

Ê
[
max
1≤k≤n

|Sk|
p
]
≤ Cp


n∑

k=1

Ê[|Xk|
p] +

 n∑
k=1

Ê[X2
k ]


p/2


+ Cp

 n∑
k=1

[(Ê[Xk])− + (Ê[Xk])+]


p

.
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Lemma 3.2. (Borel-Cantellis Lemma (see Zhang[14])) Let {An; n ≥ 1} be a sequence of events in F . Suppose that V
is a countably sub-additive capacity. If

∑
∞

n=1 V(An) < ∞, then V(An; i.o.) = 0, where V(An; i.o.) =
⋂
∞

n=1
⋃
∞

m=n Am.

Proof of Theorem 2.1 For 0 < µ < 1, let 1(x) ∈ Cl.Lip(R), 0 ≤ 1(x) ≤ 1 for all x, 1(x) = 1 if x ≤ µ, 1(x) = 0 if
x > 1. Then

I(|x| ≤ µ) ≤ 1(|x|) ≤ I(|x| ≤ 1), I(|x| > 1) ≤ 1 − 1(|x|) ≤ I(|x| > µ). (3.1)

For i ≥ 1, let Yi = Xi1

(
|Xi |

n
1
p

)
and T(n)

j =
∑ j

i=1(aniYi − Ê[aniYi]). Then for any ε > 0, we can easily get

V

(
max
1≤ j≤n

|T j| > εn
1
p

)
≤ V

(
max
1≤i≤n

|Xi| > n
1
p

)
+V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniYi

∣∣∣∣∣∣∣ > εn 1
p


≤

n∑
i=1

V
(
|Xi| > n

1
p
)
+V

max
1≤ j≤n

∣∣∣∣T(n)
j

∣∣∣∣ > εn 1
p −max

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Ê[aniYi]

∣∣∣∣∣∣∣
 .

(3.2)

We first show that, when n→∞,

n−
1
p max

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Ê[aniYi]

∣∣∣∣∣∣∣→ 0. (3.3)

∀1 ≤ k ≤ α, by
∑n

i=1 |ani|
α = O(n) and Hölder inequality, we have

n∑
i=1

|ani|
k
≤ (

n∑
i=1

|ani|
α)

k
α (

n∑
i=1

1)1− k
α ≤ Cn. (3.4)

By Ê[Xi] = 0, 1
p =

1
α +

1
β , β > 1 and (3.4), we have

n−
1
p max

1≤ j≤n
|

j∑
i=1

Ê[aniYi]| ≤ n−
1
p

n∑
i=1

|Ê[aniYi]|

= n−
1
p

n∑
i=1

|Ê[aniXi] − Ê[aniYi]|

≤ n−
1
p

n∑
i=1

Ê|ani|[|Xi − Yi|]

≤ n−
1
p

n∑
i=1

|ani|Ê

[
|Xi|

(
1 − 1

(
|Xi|

n
1
p

))]
= Cn1− 1

p Ê

[
|X|

(
1 − 1

(
|X|

n
1
p

))]
≤ Cn1− 1

p n−
1
p (β−1)Ê

[
|X|β

(
1 − 1

(
|X|

n
1
p

))]
= Cn1− βp Ê

[
|X|β

(
1 − 1

(
|X|

n
1
p

))]
→ 0 as n→∞.

Hence (3.3) holds. For n large enough, by (3.2) and (3.3), we have

V

(
max
1≤ j≤n

|T j| > εn
1
p

)
≤

n∑
i=1

V
(
|Xi| > n

1
p
)
+V

(
max
1≤ j≤n

∣∣∣∣T(n)
j

∣∣∣∣ > ε2n
1
p

)
.
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Hence we only need to prove

I =:
∞∑

n=1

n−1
n∑

i=1

V
(
|Xi| > n

1
p
)
< ∞ (3.5)

and

II =:
∞∑

n=1

n−1V

(
max
1≤ j≤n

∣∣∣∣T(n)
j

∣∣∣∣ > ε2n
1
p

)
< ∞. (3.6)

By (3.1) and CV[|X|β] < ∞, we get

I =
∞∑

n=1

n−1
n∑

i=1

V
(
|Xi| > n

1
p
)

≤

∞∑
n=1

n−1
n∑

i=1

Ê

[
1 − 1

(
|Xi|

n
1
p

)]
=

∞∑
n=1

Ê

[
1 − 1

(
|X|

n
1
p

)]
≤

∞∑
n=1

V
(
|X| > µn

1
p
)

≤ CV[|X|p] ≤ CV[|X|β] < ∞.

(3.7)

For q > 2, by Lemma 3.1, we have

II ≤
∞∑

n=1

Cn−1− q
p Ê

[
max
1≤ j≤n

∣∣∣∣T(n)
j

∣∣∣∣q]

≤ C
∞∑

n=1

n−1− q
p

n∑
i=1

|ani|
qÊ[|Yi|

q] + C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|
2Ê[|Yi|

2]


q/2

+ C
∞∑

n=1

n−1− q
p

 n∑
i=1

[
(Ê[aniYi − Ê[aniYi]])+ + (Ê[aniYi − Ê[aniYi]])−

]
q

=: II1 + II2 + II3.

(3.8)

∀k ≥ α, by
∑n

i=1 |ani|
α = O(n) and Hölder inequality, we have

n∑
i=1

|ani|
k
≤ (

n∑
i=1

|ani|
α)

k
α ≤ Cn

k
α . (3.9)

Take max(2, α, β) ≤ q < αβp , by (3.9), we have

II1 = C
∞∑

n=1

n−1− q
p

n∑
i=1

|ani|
qÊ

[
|X|q1

(
|X|

n
1
p

)]
≤ C

∞∑
n=1

n−1− q
p+

q
α n

1
p (q−β)Ê[|X|β]

= C
∞∑

n=1

n−1+ q
α−

β
p < ∞.

(3.10)
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When β ≥ 2 and 1 < α < 2, by (3.9), then we get

II2 = C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|
2


q/2 (
Ê

[
|X|21

(
|X|

n
1
p

)])q/2

≤ C
∞∑

n=1

n−1− q
p (n

2
α )q/2

= C
∞∑

n=1

n−1− q
p+

q
α < ∞.

(3.11)

When β ≥ 2 and α ≥ 2, by (3.4), then we have

II2 = C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|
2


q/2 (
Ê

[
|X|21

(
|X|

n
1
p

)])q/2

≤ C
∞∑

n=1

n−1− q
p nq/2

= C
∞∑

n=1

n−1− q
p+

q
2 < ∞.

(3.12)

When 1 < β < 2 and 1 < α < 2, by (3.9), then we get

II2 = C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|
2


q/2 (
Ê

[
|X|21

(
|X|

n
1
p

)])q/2

≤ C
∞∑

n=1

n−1− q
p (n

2
α )q/2(n

2−β
p )q/2

(
Ê

[
|X|β1

(
|X|

n
1
p

)])q/2

= C
∞∑

n=1

n−1−q( β2p−
1
α ) < ∞.

(3.13)

When 1 < β < 2 and α ≥ 2, by (3.4), then we have

II2 = C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|
2


q/2 (
Ê

[
|X|21

(
|X|

n
1
p

)])q/2

≤ C
∞∑

n=1

n−1− q
p nq/2(n

2−β
p )q/2

(
Ê

[
|X|β1

(
|X|

n
1
p

)])q/2

≤ C
∞∑

n=1

n−1+ q
2−
βq
2p < ∞.

(3.14)

Now we consider II3. By the fact Ê[X + C] = Ê[X] + C, we have Ê[aniYi − Ê[aniYi]] = 0. Hence, by
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Ê[Xi] = Ê[Xi] = 0, we have

II3 = C
∞∑

n=1

n−1− q
p

 n∑
i=1

[
(Ê[aniYi − Ê[aniYi]])−

]
q

≤ C
∞∑

n=1

n−1− q
p

 n∑
i=1

| − Ê[−aniYi + Ê[aniYi]]|


q

= C
∞∑

n=1

n−1− q
p

 n∑
i=1

|Ê[−aniYi] + Ê[aniYi]|


q

≤ C
∞∑

n=1

n−1− q
p

 n∑
i=1

(|Ê[−aniYi]| + |Ê[aniYi]|)


q

≤ C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani||Ê[−Yi]|


q

+ C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani||Ê[Yi]|


q

= C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani||Ê[−Xi] − Ê[−Yi]|


q

+ C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani||Ê[Xi] − Ê[Yi]|


q

≤ C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|Ê| − Xi − (−Yi)|


q

+ C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|Ê|Xi − Yi|


q

≤ C
∞∑

n=1

n−1− q
p

 n∑
i=1

|ani|Ê

[
|X|

(
1 − 1

(
|X|

n
1
p

))]
q

≤ C
∞∑

n=1

n−1− q
p

(
nn

1−β
p Ê

[
|X|β1

(
|X|

n
1
p

)])q

= C
∞∑

n=1

n−1+q− qβ
p < ∞.

(3.15)

By (3.7), (3.9)-(3.14), we have II < ∞. We complete the proof of Theorem 2.1.
Proof of Corollary 2.2 The proof of (2.2) is the same as that of (2.1), so we omit it. By (2.2), we get

∞ >
∞∑

n=1

n−1V

max
1≤ j≤n

|

j∑
i=1

|aiXi|| > εn
1
p


=

∞∑
i=1

2i+1
−1∑

n=2i

n−1V

max
1≤ j≤n

|

j∑
i=1

|aiXi|| > εn
1
p


≥

1
2

∞∑
i=1

V

max
1≤ j≤2i

|

j∑
i=1

|aiXi|| > ε2
i+1
p

 .
By Borel-Cantelli Lemma, we have

V

max
1≤ j≤2i

|

j∑
i=1

|aiXi| > ε2
i+1
p i.o.

 = 0

Hence,

lim
n
→∞

max1≤ j≤2i |
∑ j

i=1 |aiXi|

2
i+1
p

= 0 a.s. V.
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Combining

max
2i−1≤n≤2i

|
∑n

i=1 |aiXi|

n
1
p

≤ 2
2
p

max1≤ j≤2i |
∑ j

i=1 |aiXi|

2
i+1
p

,

we have

lim
n→∞

∑n
i=1 |aiXi|

n
1
p

= 0 a.s. V.

We complete the proof of Corollary 2.2.
From Theorem 2.1, we can obtain Theorem 2.3. The proof of Corollary 2.4 is similar to that of Corollary

2.2, so we omit it.

4. Conclusions

Optimal complete convergence theorems are established for weighted sums in sub-linear expectations
space. As corollaries, Marcinkiewicz strong laws are obtained for weighted sums under the sub-linear
expectations. These results extend and improve the corresponding results from classical probability space
to sub-linear expectation space.
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