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Abstract. In this paper, a hybrid method is presented via combination of the Ramadan Group Integral
method (RGITM) with method of Projected Differential Transform(PDTM) for the purpose of solving
nonlinear partial differential equations systems. The method’s goal is to produce analytical solutions
in series form. In comparison to existing methods, the suggested method makes handling such partial
differential equations simple. The outcome demonstrated the method’s effectiveness, accuracy, and validity.
The technique can be easily applied to a wide variety of nonlinear issues, and it has the potential to
both reduce the amount of computation required and deal with the flaw brought about by the nonlinear
components that cannot be resolved by employing recognized integral transforms. Examples will be looked
at to help illustrate the proposed analysis.

1. Introduction

The nonlinear equations are used in a wide range of scientific and engineering applications, including
fluid dynamics, plasma physics, hydrodynamics, solid state physics, optical fibers, and other areas. Since
these systems are too complex to be exactly answered, it is still highly challenging to find closed-form
answers to the majority of issues. Such problems have been addressed using a wide range of analytical and
numerical techniques, such as Adomian decomposition approach [7], approach of homotopy perturbation
[8, 11], first integral technique [12], Jacobi’s elliptic function method [13], variational iteration method [21],
modified B-spline differential quadrature approach [22], He-Laplace technique [23] and many other tech-
niques.

However, there are many other approaches introduced a hybrid method to reduce computational re-
strictions. A hybrid approach is a combination of two or more procedures that is used to solve various
types of differential equations, which include: partial differential equations [24, 25], fractional differential
equations [26], Integro-differential equations [28]. Many hybrid methods are featured in the literature
such as: Laplace homotopy perturbation method (LHPM) [29], Laplace Adominan decomposition method
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(LADM) [30, 31], homotopy perturbation and Sumudu transform Method [32], Laplace differential trans-
form method (LDTM) [33].

In the above mentioned hybrid techniques many integral transform methods have been proposed, an
integral transform is a specific kind of mathematical operator, and numerous integral transform approaches
have been put forth. Any transform T that has the following form is an integral transform in mathematics.

T( f (u)) =

t2∫
t1

K(t,u) f (t)dt.

There are many different integral transforms, and the choice of the function K specifies each one. Here
we concern with RG- transform, we refer the reader to the papers [14–18] and references cited therein.
For piece-wise continuous functions on the subintervals of [0,∞) of exponential order , RG-Transform is
defined as follows:

Definition 1.1 (See [17]). Think about the functions in the set A described by

A = { f (t) | ∃, t1, t2 > 0, | f (t) |≤M exp
|t|
ti , i f t ∈ (−1)i

× [0,∞), i = 1, 2}.

Noting that the constant M must be a finite number, but t1 and t2 may be finite or infinite numbers.
The definition of the RGT is

K(s,u) = RG( f (t)) =



∞∫
0

e−st f (ut)dt, 0 ≤ u < t2

∞∫
0

e−st f (ut)dt, −t1 ≤ u < 0,

Consequently, a novel hybrid technique which incorporates Ramadan integral transform along with
PDTM , is thus described to offer a well-founded method for solving a system of nonlinear partial differential
equations. Our technique is simple to use and requires minimal computational effort to solve systems of
partial differential equations.

2. Preliminaries

In this section, We provide fundamental definitions and theorems to allow the reader to understand
RGT and its basic properties.

Definition 2.1 (See [17]). If F(s) and G(u) are the Laplace and Sumudu integrals transforms respectively of f (t),
thus, we have the following relationships

F(s) = K(s, 1),G(u) = K(1,u) and K(s,u) =
1
u

F(
s
u

).

Theorem 2.2 (See [14, Theorem 3.1]). Let K1(s,u) and K2(s,u) are RGT of the corresponding functions f (t) and
1(t), then

RG[( f ∗ 1)(t), (s,u)] = uK1(s,u)K2(s,u). (1)

Where ∗ denotes the convolution of f (t) and 1(t).
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Table 1: Ramadan Group Transform of several functions

Original function transformed function

1 1
s

t u
s2

tn−1

(n−1)! , n = 1, 2, ... un−1

sn

eat 1
s−au

sin(wt) wu
s2+u2w2

teat u
(s−au)2

eatcos(wt) s−au
(s−au)2+u2w2

Theorem 2.3 (See [17, Theorem 2]). Let n ≥ 1 and K(s,u) is the RGT of the function f (t), then the following is
how to get the RGT of the nth derivative of f(t):

RG[( f n(t), (s,u)] =
snK(s,u)

un −

n−1∑
k=0

sn−k−1 f k(0)
un−k

.

We display the Ramadan Group Transform of several functions in the following table.
The differential transform method (DTM), initially suggested by J.K. Zhou [5] in 1986, is an iterative pro-

cess for producing an analytical Taylor’s series solution to a differential equation. Its primary applications
include linear and non-linear starting value issues in electric circuit analysis.

The projected differential transform (PDTM) is a modification of DTM , where the projected differential
transform of a function y(x, t) with regard to the variable ′x′ at x0, is defined as:[1, 19, 20]

Yk(t) =
1
k!

[∂ky(x, t)
∂xk

]
x=x0

k ≥ 0, (2)

where y(x, t) is the original function and Yk(t) is the transformed function. The following definition
describes the Yk(t) inverse projected differential transform:

y(x, t) =
k=∞∑
k=0

Yk(t)(x − x0)k. (3)

Substituting equation (2) in (3), we get

y(x, t) =
k=∞∑
k=0

1
k!

[∂ky(x, t)
∂xk

]
x=x0

(x − x0)k. (4)

When x0 are taken as x0 = 0 then equation (4) can be expressed as

y(x, t) =
k=∞∑
k=0

Yk(t)(x)k. (5)

In real application, the function y(x, t) by finite series of equation (5) can be expressed as

y(x, t) =
n∑

k=0

Yk(t)(x)k.
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Usually, the values of n is decided by convergence of the series coefficients. Some basic formulas of PDTM
are listed in Table 2

Table 2: Some basic formulas of projected Differential transform method (PDTM)

Original function transformed function

y(x, t) = f (x, t) ± 1(x, t) Yk(t) = Fk(t) ± Gk(t)
y(x, t) = α f (x, t) Yk(t) = αFk(t)
y(x, t) = ∂

r f (x,t)
∂xr Yk(t) = (k + 1)(k + 2)....(k + r)Fk+r(t)

y(x, t) = (x − x0)r(t − t0)v Yk(t) = (t − t0)vδ(k − r, t) where δ(k − r, t) =

1, k = r
0, r , k

y(x, t) = f (x, t)1(x, t) Yk(t) =
∑k

r=0 Fr(t)Gk−r(t)
y(x, t) = sin(ax + α) Yk(t) = ak

k!

[
sin( kΠ

2 + α)
]

y(x, t) = cos(ax + α) Yk(t) = ak

k!

[
cos( kΠ

2 + α)
]

3. Coupling of Ramadan group transform with projected differential transform method

Think about the system of m nonlinear nonhomogeneous partial differential equations.

Łyi(x, t) +ℜyi(x, t) + ℵyi(x, t) = ϕi, i = 1, 2, ....m (6)

with initiating conditions

yi(x, 0) = 1i0 (x), yit (x, 0) = 1i1 (x), ......, y(n−1)
it

(x, 0) = 1i(n−1) (x), (7)

and spatial conditions

yi(0, t) = hi0 (t), yix (0, t) = hi1 (t), (8)

where Ł is the nth order derivative w.r.t ′t′, ℜ is linear operator and ℵ is non-linear operator. And
ϕi = ϕi(x, t) and yi = yi(x, t) are known and unknown functions respectively. First we apply Ramadan
group transformation on equation (6), with regard to ′t′, therefore we get

RG[Łyi(x, t)] = −RG[ℜyi(x, t) + ℵyi(x, t)] + RG[ϕi], i = 1, 2, ....m

By using I.C. (7), we get

sn

un RG[yi(x, t)] =
n−1∑
j=0

sn− j−11i( j) (x)

un− j + RG[ϕi] − RG[ℜyi(x, t) + ℵyi(x, t)],

Now, multiplying by un

sn on both sides, we get

RG[yi(x, t)] = f̂ (x, s,u) −
un

sn RG[ℜyi(x, t) + ℵyi(x, t)], (9)
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where

f̂i(x, s,u) =
un

sn

n−1∑
j=0

sn− j−11i( j) (x)

un− j +
un

sn RG[ϕi].

Second, the equation (10) is subjected to inverse RG transform in the second step, getting

yi(x, t) = f̂i(x, t) − RG−1
[un

sn RG[ℜyi(x, t) + ℵyi(x, t)]
]
, (10)

Now, we use PDTM to equations (10) and (8) with regard to ′x′, we obtain

Yik (t) = F̂ik (t) − RG−1
[un

sn RG[Vik (t) +ℜYik (t)]
]
, (11)

and

Yi(t) = hi0 (t),Yix (t) = hi1 (t), (12)

where F̂ik (t), and Vik (t) are the transformed functions of f̂i(x, t), and ℵyi(x, t) respectively. By the above
recurrence equations (11) and the initial conditions (12), the solution can be formulated as

yi(x, t) =
∞∑

k=0

Yik (t)x
k, i = 1, 2, ....,m

4. Numerical results

In this section, we solve some instances using our novel methodology. Examples are provided to
demonstrate the effectiveness of our suggested technique. We take into account RGTM with respect to the
variable ′t′ and PDTM with regard to the variable ′x′ for all illustrative examples. .

Example 4.1. Take into account the system below.[1]

yt + vyx + y = 1,
vt + yvx − v = −1. (13)

Given initial conditions;

y(x, 0) = ex, v(x, 0) = e−x,

y(0, t) = e−t, v(0, t) = et.

First, we apply RG-transform to (13) with regard to ′t′, we have

s
u

RG[y(x, t)] −
1
u

y(x, 0) =
1
s
− RG[vyx + y],

s
u

RG[v(x, t)] −
1
u

v(x, 0) =
−1
s
− RG[yvx − v],

using initial conditions, we get

RG[y(x, t)] =
ex

s
+

u
s2 −

u
s

RG[vyx + y],

RG[v(x, t)] =
e−x

s
−

u
s2 −

s
u

RG[yvx − v].
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Now, by taking inverse RG-transform to the previous system, we reach to

y(x, t) = ex + t − RG−1
[u

s
RG[vyx + y]

]
,

v(x, t) = e−x
− t − RG−1

[ s
u

RG[yvx − v]
]
.

Next, we apply PDTM with regard to ′x′, we get

Yk(t) =
1
k!

[
dk

dxk
ex]x=0 + tδ(k − 0, t) − RG−1

[
[
u
s

RG[
r=k∑
r=0

(r + 1)Yr+1(t)Vk−r(t) + Yk(t)]
]
,

Vk(t) =
1
k!

[
dk

dxk
e−x]x=0 − tδ(k − 0, t) − RG−1

[u
s

RG[
r=k∑
r=0

(r + 1)Vr+1(t)Yk−r(t) − Vk(t)]
]
, (14)

also, applying PDTM to y(0, t) = e−t,and v(0, t) = et, we have

Y0(t) = e−t and V0(t) = et.

FIRST, substituting for k = 0 in system (14), we obtain

Y0(t) = 1 + t − RG−1
[u

s
RG[Y1(t)V0(t) + Y0(t)]

]
,

V0(t) = 1 − t − RG−1[
u
s

RG[V1(t)Y0(t) − V0(t)]
]
,

and so,

RG−1
[ s
u

RG[−e−t + t + 1]
]
= Y1(t)et + e−t,

RG−1
[ s
u

RG[−et + −t + 1]
]
= V1(t)e−t

− et,

thus, we get Y1(t) = e−t and V1(t) = −et. Second, substituting for k = 1 in system (14), we obtain

Y1(t) = 1 − RG−1
[u

s
RG[Y1(t)V1(t) + 2Y2(t)V0(t) + Y1(t)]

]
,

V1(t) = 1 − RG−1
[u

s
RG[V1(t)Y1(t) + 2V2(t)Y0(t) − V1(t)]

]
,

then, we have

RG−1
[ s
u

RG[−e−t + 1]
]
= −1 + 2etY2(t) + e−t,

RG−1
[ s
u

RG[et
− 1]
]
= −1 + 2e−tV2(t) + et,

so, we obtain Y2(t) = e−t

2 and V2(t) = et

2 . Now, substituting for k = 2, 3, 4, ... in system (14), the following
approximations are obtained successively

Y3(t) =
e−t

3!
,Y4(t) =

e−t

4!
,Y5(t) =

e−t

5!
, ....

V3(t) =
−et

3!
,V4(t) =

et

4!
,V5(t) =

−et

5!
, .......

The solution is finally provided by

y(x, t) =
∞∑

k=0

Yk(t)xk = e−t[1 +
x
1!
+

x2

2!
+

x3

3!
+ ...] = ex−t,

v(x, t) =
∞∑

k=0

Vk(t)xk = et[1 −
x
1!
+

x2

2!
−

x3

3!
+ ...] = et−x,

which is the exact solution.
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Example 4.2. Take coupled Burger’s equation into consideration.[2, 3]

yt − yxx − 2yyx + (yv)x = 0,
vt − vxx − 2vvx + (yv)x = 0. (15)

With initial conditions;

y(x, 0) = sinx = v(x, 0),

y(0, t) = 0 = v(0, t), yx(0, t) = e−t = vx(0, t).

First, we apply RG-transform to (15) with regard to ′t′, hence

s
u

RG[y(x, t)] −
1
u

y(x, 0) = RG[yxx + 2yyx − (yv)x],

s
u

RG[v(x, t)] −
1
u

v(x, 0) = RG[vxx + 2vvx − (yv)x],

using initial conditions, we get

RG[y(x, t)] =
sinx

s
+

u
s

RG[yxx + 2yyx − (yv)x],

RG[v(x, t)] =
sinx

s
+

s
u

RG[vxx + 2vvx − (yv)x].

Now, by taking inverse RG-transform to the previous system, we obtain

y(x, t) = sinx + RG−1
[u

s
RG[yxx + 2yyx − (yv)x]

]
,

v(x, t) = sinx + RG−1
[ s
u

RG[vxx + 2vvx − (yv)x]
]
.

Next, we apply PDTM with respect to ′x′, we get

Yk(t) =
1
k!

sin(
kΠ
2

) + RG−1
[
[
u
s

RG[(k + 1)(k + 2)Yk+2(t) +
r=k∑
r=0

2(r + 1)Yr+1(t)Yk−r(t)−

(r + 1)Yr+1(t)Vk−r(t) − (r + 1)Vr+1(t)Yk−r(t)]
]
,

Vk(t) =
1
k!

sin(
kΠ
2

) + RG−1
[
[
u
s

RG[(k + 1)(k + 2)Vk+2(t) +
r=k∑
r=0

2(r + 1)Vr+1(t)Vk−r(t)−

(r + 1)Vr+1(t)Yk−r(t) − (r + 1)Yr+1(t)Vk−r(t)]
]
, (16)

also, applying PDTM to initial conditions y(0, t) = 0 = v(0, t),and vx(0, t) = e−t = yx(0, t), we get

Y0(t) = 0 = V0(t) and V1(t) = e−t = Y1(t). (17)

FIRST, substituting for k = 0 in system (16), we obtain

Y0(t) = 0 + RG−1
[u

s
RG[2Y2(t) + 2Y1(t)Y0(t) − Y1(t)V0(t) − V1(t)Y0(t)]

]
,

V0(t) = 0 + RG−1[
u
s

RG[2V2(t) + 2V1(t)V0(t) − V1(t)Y0(t) − Y1(t)V0(t)]
]
,

using (17), we obtain

Y2(t) = 0 = V2(t). (18)
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Second, substituting for k = 1 in system (16), we obtain

Y1(t) = 1 + RG−1
[u

s
RG[6Y3(t) + 2Y1(t)Y1(t) − Y1(t)V1(t) − V1(t)Y1(t) + 4Y2(t)Y0(t)

− 2Y2(t)V0(t) − 2V2(t)Y0(t)]
]

V1(t) = 1 + RG−1
[u

s
RG[6V3(t) + 2V1(t)V1(t) − V1(t)Y1(t) − Y1(t)V1(t) + 4V2(t)V0(t)

− 2V2(t)Y0(t) − 2Y2(t)V0(t)]
]
,

then, we have

RG−1
[ s
u

RG[e−t
− 1]
]
= 6Y3(t) + 2e−2t

− e−2t
− e−2t,

RG−1
[ s
u

RG[e−t
− 1]
]
= 6YV3(t) + 2e−2t

− e−2t
− e−2t,

so, we obtain Y3(t) = −e−t

6 and V3(t) = −e−t

6 . Now, substituting for k = 2, 3, 4, ... in system (16), the following
approximations are obtained successively

Y4(t) = 0,Y5(t) =
e−t

5!
,Y6(t) = 0,Y7(t) =

−e−t

7!
....

V4(t) = 0,V5(t) =
e−t

5!
,V6(t) = 0,V7(t) =

−e−t

7!
....

The solution is finally provided by

y(x, t) =
∞∑

k=0

Yk(t)xk = e−t[x −
x3

3!
+

x5

5!
−

x7

7!
+ ....] = e−tsinx,

v(x, t) =
∞∑

k=0

Vk(t)xk = et[x −
x3

3!
+

x5

5!
−

x7

7!
+ ....] = e−tsinx.

which is the exact solution.

Example 4.3. Take into considerations the following system [4]

yt − wxvt −
1
2

wtyxx = −4xt,

vt − wtyxx = 6t,
wt − yxx − vxwt = 4xt − 2t − 2. (19)

Under initial conditions;

y(x, 0) = x2 + 1, v(x, 0) = x2
− 1, w(x, 0) = x2

− 1

y(0, t) = 1 − t2, v(0, t) = t2
− 1, w(0, t) = −t2

− 1 yx(0, t) = 0.

First, we apply RG-transform to (19) with regard to ′t′, hence

s
u

RG[y(x, t)] −
1
u

y(x, 0) =
−4xu

s2 + RG[wxvt +
1
2

wtyxx],

s
u

RG[v(x, t)] −
1
u

v(x, 0) =
6u
s2 + RG[wtyxx],

s
u

RG[w(x, t)] −
1
u

w(x, 0) =
2(2x − 1)u

s2 −
2
s
+ RG[yxx + vxwt].
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using initial conditions, we get

RG[y(x, t)] =
x2 + 1

s
−

4xu2

s3 +
u
s

RG[wxvt +
1
2

wtyxx],

RG[v(x, t)] =
x2
− 1
s
+

6u2

s3 +
s
u

RG[wtyxx],

RG[w(x, t)] =
x2
− 1
s
+

(4x − 2)u2

s3 −
2u
s2 +

s
u

RG[yxx + vxwt].

Now, by taking inverse RG-transform to the previous system, we obtain

y(x, t) = x2 + 1 −
4xt2

2!
+ RG−1

[u
s

RG[wxvt +
1
2

wtyxx]
]
,

v(x, t) = x2
− 1 +

6ut2

2!
+ RG−1

[ s
u

RG[wtyxx]
]
,

w(x, t) = x2
− 1 + (2x − 1)t2

− 2t + RG−1
[ s
u

RG[yxx + vxwt]
]
.

Next, we apply Projected differential transform method (PDTM) with respect to ′x′, we get

Yk(t) = δ(k − 2, t) + δ(k − 0, t) − 2t2δ(k − 1, t) + RG−1
[u

s
RG[

k∑
r=0

(r + 1)Wr+1(t)
∂
∂t

Vk−r(t)

+
1
2

(r + 1)(r + 2)Yr+2(t)
∂
∂t

Wk−r(t)]
]
,

Vk(t) = δ(k − 2, t) − δ(k − 0, t) + 3t2δ(k − 0, t) + RG−1
[u

s
RG[

k∑
r=0

(r + 1)(r + 2)Yr+2(t)
∂
∂t

Wk−r(t)]
]
,

Wk(t) = δ(k − 0, t)[−1 − 2t − t2] + 2t2δ(k − 1, t) + δ(k − 2, t) + RG−1
[u

s
RG[(k + 1)(k + 2)Yk+2(t)

+

k∑
r=0

(r + 1)Vr+1(t)
∂
∂t

Wk−r(t)]
]
. (20)

also, applying PDTM to initial conditions, we get

Y0(t) = 1 − t2 and V0(t) = t2
− 1 W0(t) = −t2

− 1 Y1(t) = 0.

FIRST, substituting for k = 0 in system (20), we obtain

Y0(t) = 1 + RG−1
[u

s
RG[W1(t)

∂
∂t

V0(t) + Y2(t)
∂
∂t

W0(t)]
]
,

V0(t) = −1 + 3t2 + RG−1[
u
s

RG[2Y2(t)
∂
∂t

W0(t)]
]
,

W0(t) = −1 − 2t − t2 + RG−1[
u
s

RG[2Y2(t) + V1(t)
∂
∂t

W0(t)]
]
.

and so, thus, we get Y2(t) = 1, W1(t) = 0 and V1(t) = 0 . Second, substituting for k = 1 in system (20), we obtain

Y1(t) = −2t2 + RG−1
[u

s
RG[W1(t)

∂
∂t

V1(t) + 2W2(t)
∂
∂t

V0(t) + Y2(t)
∂
∂t

W1(t) + 3Y3(t)
∂
∂t

W0(t)]
]
,

V1(t) = RG−1[
u
s

RG[2Y2(t)
∂
∂t

W1(t) + 6Y3(t)
∂
∂t

W0(t)]
]
,

W1(t) = t2 + RG−1[
u
s

RG[2(3)Y3(t) + V1(t)
∂
∂t

W1(t) + 2V2(t)
∂
∂t

W0(t)]
]
.
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then, we obtain W2(t) = 1, Y3(t) = 0, and V2(t) = 1. Now, substituting for k = 2, 3, 4, ... in system (14), the following
approximations are obtained successively

Y4(t) = 0,Y5(t) = 0, ....
V3(t) = 0,V4(t) = 0,V5(t) = 0, .......

W3(t) = 0,W4(t) = 0,W5(t) = 0, .......

The solution is finally provided by

y(x, t) =
∞∑

k=0

Yk(t)xk = 1 − t2 + x2,

v(x, t) =
∞∑

k=0

Vk(t)xk = t2
− 1 + x2,

w(x, t) =
∞∑

k=0

Wk(t)xk = x2
− t2
− 1,

which is the exact solution.

Example 4.4. Take into consideration the system of nonlinear partial differential equations below.[6]

yt + 2vyx − y = 2
vt − 3yvx + v = 3 (21)

With initial conditions;

y(x, 0) = ex, v(x, 0) = e−x,

y(0, t) = et, v(0, t) = e−t.

First, we apply RG-transform to (21) with regard to ′t′, hence

s
u

RG[y(x, t)] −
1
u

y(x, 0) =
2
s
+ RG[−2vyx + y],

s
u

RG[v(x, t)] −
1
u

v(x, 0) =
3
s
+ RG[3yvx − v],

using initial conditions, we get

RG[y(x, t)] =
ex

s
+

2u
s2 +

u
s

RG[−2vyx + y],

RG[v(x, t)] =
e−x

s
+

3u
s2 +

s
u

RG[3yvx − v].

Now, by taking inverse RG-transform to the previous system, we obtain

y(x, t) = ex + 2t + RG−1
[u

s
RG[−2vyx + y]

]
,

v(x, t) = e−x + 2t + RG−1
[ s
u

RG[3yvx − v]
]
.

Next, we apply (PDTM) with regard to ′x′, we get

Yk(t) =
1
k!

[
dk

dxk
ex]x=0 + 2tδ(k − 0, t) + RG−1

[
[
u
s

RG[Yk(t) − 2
r=k∑
r=0

(r + 1)Yr+1(t)Vk−r(t)]
]

Vk(t) =
1
k!

[
dk

dxk
e−x]x=0 + 3tδ(k − 0, t) + RG−1

[u
s

RG[3
r=k∑
r=0

(r + 1)Vr+1(t)Yk−r(t) − Vk(t)]
]
, (22)
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also, applying PDTM to y(0, t) = et,and v(0, t) = e−t, we get

Y0(t) = et and V0(t) = e−t.

FIRST, substituting for k = 0 in system (22), we obtain

Y0(t) = 1 + 2t + RG−1
[u

s
RG[−2Y1(t)V0(t) + Y0(t)]

]
V0(t) = 1 + 3t + RG−1[

u
s

RG[3V1(t)Y0(t) − V0(t)]
]
,

and so,

RG−1
[ s
u

RG[et
− 2t − 1]

]
= −2Y1(t)e−t + et

RG−1
[ s
u

RG[e−t
− 3t − 1]

]
= 3V1(t)et

− e−t,

thus, we get Y1(t) = et and V1(t) = −e−t. Second, substituting for k = 1 in system (22), we obtain

Y1(t) = 1 + RG−1
[u

s
RG[−2Y1(t)V1(t) − 4Y2(t)V0(t) + Y1(t)]

]
V1(t) = −1 + RG−1

[u
s

RG[3V1(t)Y1(t) + 6V2(t)Y0(t) − V1(t)]
]
,

then, we have

RG−1
[ s
u

RG[et
− 1]
]
= −4e−tY2(t) + 2 + et

RG−1
[ s
u

RG[−e−t + 1]
]
= −3 + 6etV2(t) + e−t,

so, we obtain Y2(t) = et

2 and V2(t) = e−t

2 . Now, substituting for k = 2, 3, 4, ... in system (14), the following
approximations are obtained successively

Y3(t) =
et

3!
,Y4(t) =

et

4!
,Y5(t) =

et

5!
, ....

V3(t) =
−e−t

3!
,V4(t) =

e−t

4!
,V5(t) =

−e−t

5!
, .......

The solution is finally provided by

y(x, t) =
∞∑

k=0

Yk(t)xk = et[1 +
x
1!
+

x2

2!
+

x3

3!
+ ...] = ex+t,

v(x, t) =
∞∑

k=0

Vk(t)xk = e−t[1 −
x
1!
+

x2

2!
−

x3

3!
+ ...] = e−t−x,

which is the exact solution.

5. Conclusion

In order to solve systems of non-linear partial differential equations, the Ramadan Group Integral
method (RGITM) and Projected differential transform method (PDTM) have been combined in this article.
Four examples of the suggested method have been successfully applied, and accurate solutions to the
equations are obtained, as opposed to approximate answers obtained by other conventional methods. As
a result, the findings show that the strategy described is an effective way to solve nonlinear PDE systems
with initial conditions. The fundamental concept presented in this study is sound enough to be applied to
the solution of various kinds of equations. The current work can be extended to handle more complicated
models, for instance [34].
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