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Derivation extensions on Leibniz triple systems
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Abstract. In this paper, we first define a concrete representation on an abelian extension of a Leibniz
triple system L by a Leibniz triple system A. Using this new representation we construct the third-order
cohomology classes by derivations of A and L, which characterize the splitting property of above abelian
extensions. Then we study the obstruction for extensibility of derivation pairs. We prove that the set
of compatible derivation pairs can define a Lie algebra, whose representation can also characterize the
extensibility of the compatible derivation pairs.

1. Introduction

The Kolesnikov-Pozhideav algorithm ([9]) is used to convert identities for algebras into identities for
dialgebras. For example, associative dialgebras can be obtained from associative algebras and Leibniz
algebras can be obtained from Lie algebras by this algorithm. In [3] Bremner and Sánchez-Ortega introduced
Leibniz triple systems by applying Kolesnikov-Pozhideav algorithm on Lie triple systems. Leibniz triple
systems are the natural analogues of Lie triple systems in the context of dialgebras. Therefore, one may
consider generalizing some properties of Lie triple systems to Leibniz triple systems. At present, the root
system theories for Leibniz triple systems were introduced in [1, 4]. The representation theory and Levi’s
theorem for Leibniz triple systems were determined in [11]. In [14], we considered the cohomology theory
of Leibniz triple systems.

Derivations are very important subjects in the research of algebras. For instance, the authors constructed
a homotopy Lie algebra out of a graded Lie algebra with a special derivation, see [13]. One could construct
deformation formula on associative algebras by noncommuting derivations [5]. Since derivations can
be considered as infinitesimals of automorphisms and in [2], the authors studied extension of a pair of
automorphisms of Lie algebras, they considered the extension of a pair of automorphisms. Naturally, one
can consider the extension of a pair of derivations. The authors studied algebras with derivations from
operadic point of view, see [8, 10]. In [12], the authors investigated Lie algebras with derivations from
cohomologies point of view and extensions, deformation problems were considered. Extension of a pair
of derivations on 3-Lie algebras, Leibniz algebras, associative algebras and Lie triple systems have been
studied, refer to [6, 7, 15, 16]. We attempt to consider Leibniz triple systems with derivations. Inspired by
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[16], we use a pair of derivation (Da,Dl) to construct 3-cocycles on Leibniz triple systems. This construction
leads to a Lie algebra GA, where A is anL-module for the Leibniz triple systemL, and the space of first-order
cohomology classes admits a certain representation of the Lie algebra GA, then the certain representation
can be used to characterize the extensibility of the compatible derivation pairs.

This paper is organized as follows. In Section 2, we recall some basic definitions and properties of Leibniz
triple systems, and for an abelian extension we use the third-order cohomology group to characterize the
splitting property. In Section 3, first, we characterize the extensibility of a pair (Da,Dl) ∈ Der(A) × Der(L)
by a necessary condition. Then we define compatible derivation pairs, which are denoted by GA. Later, we
study the obstruction for extensibility of (Da,Dl) ∈ GA. Finally, we prove that GA is a Lie algebra, whose
representation can also describe the extensibility of (Da,Dl) ∈ GA.

In this paper, all Leibniz triple systems are defined over a fixed but arbitrary field F.

2. Abelian extension of Leibniz triple systems

In this section, we first recall some basic definitions and properties of Leibniz triple systems, then we
show that the trivial third-order cohomology group is a sufficient condition for an abelian extension to be
split.

Definition 2.1. [3] A Leibniz triple system is a vector spaceL endowed with a trilinear operation {·, ·, ·} : L×L×L −→
L satisfying

{a, b, {c, d, e}} = {{a, b, c}, d, e} − {{a, b, d}, c, e} − {{a, b, e}, c, d} + {{a, b, e}, d, c},
{a, {b, c, d}, e} = {{a, b, c}, d, e} − {{a, c, b}, d, e} − {{a, d, b}, c, e} + {{a, d, c}, b, e},

for all a, b, c, d, e ∈ L.

A Leibniz triple system can be given by a Lie triple system with the same ternary product. Also, a Leibniz
algebra L with product [·, ·] becomes a Leibniz triple system when {x, y, z} := [[x, y], z], for all x, y, z ∈ L.More
examples refer to [3]. Denote by End(L) the set consisting of all linear maps on a Leibniz triple system L.

Definition 2.2. [3] Let L be a Leibniz triple system. A linear map D : L −→ L is called a derivation of L, if for all
a, b, c ∈ L,

D({a, b, c}) = {D(a), b, c} + {a,D(b), c} + {a, b,D(c)}.

Denote by Der(L) the space of derivations of L.

Definition 2.3. [11] Let L be a Leibniz triple system and V a vector space. V is called an L-module, if L+̇V is a
Leibniz triple system such that (1) L is a subsystem, (2) {a, b, c} ∈ V if any one of a, b, c ∈ V; (3) {a, b, c} = 0 if any
two of a, b, c ∈ V.

Definition 2.4. [11] Let L be a Leibniz triple system and V a vector space. Suppose l,m, r : L × L −→ End(V) are
bilinear maps such that

l(a, {b, c, d}) = l({a, b, c}, d) − l({a, c, b}, d) − l({a, d, b}, c) + l({a, d, c}, b),
m(a, d)l(b, c) = m({a, b, c}, d) −m({a, c, b}, d) − r(c, d)m(a, b) + r(b, d)m(a, c),

m(a, d)m(b, c) = r(c, d)l(a, b) − r(c, d)m(a, b) −m({a, c, b}, d) + r(b, d)l(a, c),
m(a, d)r(b, c) = r(c, d)m(a, b) − r(c, d)l(a, b) − r(b, d)l(a, c) +m({a, c, b}, d),
r({a, b, c}, d) = r(c, d)r(a, b) − r(c, d)r(b, a) − r(b, d)r(c, a) + r(a, d)r(c, b),
l(a, b)l(c, d) = l({a, b, c}, d) − l({a, b, d}, c) − r(c, d)l(a, b) + r(d, c)l(a, b),

l(a, b)m(c, d) = m({a, b, c}, d) − r(c, d)l(a, b) − l({a, b, d}, c) +m({a, b, d}, c),
l(a, b)r(c, d) = r(c, d)l(a, b) −m({a, b, c}, d) −m({a, b, d}, c) + l({a, b, d}, c),
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m(a, {b, c, d}) = r(c, d)m(a, b) − r(b, d)m(a, c) − r(b, c)m(a, d) + r(c, b)m(a, d),
r(a, {b, c, d}) = r(c, d)r(a, b) − r(b, d)r(a, c) − r(b, c)r(a, d) + r(c, b)r(a, d),

for all a, b, c, d ∈ L. Then (r,m, l) is called a representation of L on V.

Remark 2.5. [11] Let L be a Leibniz triple system and V an L-module. Then L+̇V is a Leibniz triple system, with

{x + u, y + v, z + w}L+̇V = {x, y, z}L + l(x, y)(w) + r(y, z)(u) +m(x, z)(v),

where x, y, z ∈ L, u, v,w ∈ V, and (r,m, l) is a representation of L on V.

Definition 2.6. [14] Let V be an L-module. A (2n + 1)-linear map f : L ⊗ · · · ⊗ L︸       ︷︷       ︸
(2n+1) times

→ V is called a (2n + 1)-cochain

of L on V, for n ≥ 0. Denote by C2n+1(L,V) the set of all (2n + 1)-cochains.

Definition 2.7. [14] Let L be a Leibniz triple system and (r,m, l) a representation of L on V.
A 1-coboundary operator of L on V is defined by

δ1 : C1(L,V)→ C3(L,V)

f 7→ δ1 f

where

δ1 f (x1, x2, x3) = r(x2, x3) f (x1) +m(x1, x3) f (x2) + l(x1, x2) f (x3) − f ({x1, x2, x3}). (1)

A 3-coboundary operator of L on V consists a pair of maps (δ3
1, δ

3
2),

δ3
i : C3(L,V)→ C5(L,V)

f 7→ δ3
i f

where

δ3
1 f (x1, x2, x3, x4, x5)

= f (x1, x2, {x3, x4, x5}) − f ({x1, x2, x3}, x4, x5) + f ({x1, x2, x4}, x3, x5) + f ({x1, x2, x5}, x3, x4)
− f ({x1, x2, x5}, x4, x3) + l(x1, x2) f (x3, x4, x5) − r(x4, x5) f (x1, x2, x3) + r(x3, x5) f (x1, x2, x4)
+ r(x3, x4) f (x1, x2, x5) − r(x4, x3) f (x1, x2, x5),

(2)

δ3
2 f (x1, x2, x3, x4, x5)

= f (x1, {x2, x3, x4}, x5) − f ({x1, x2, x3}, x4, x5) + f ({x1, x3, x2}, x4, x5) + f ({x1, x4, x2}, x3, x5)
− f ({x1, x4, x3}, x2, x5) +m(x1, x5) f (x2, x3, x4) − r(x4, x5) f (x1, x2, x3) + r(x4, x5) f (x1, x3, x2)
+ r(x3, x5) f (x1, x4, x2) − r(x2, x5) f (x1, x4, x3).

(3)

Let L be a Leibniz triple system and V an L-module. The set

Z1(L,V) = { f ∈ C1(L,V) | δ1 f = 0}

is called the space of 1-cocycles of L on V. The set

Z3(L,V) = { f ∈ C3(L,V) | δ3
1 f = δ3

2 f = 0}

is called the space of 3-cocycles of L on V. The set

B3(L,V) = {δ1 f | f ∈ C1(L,V)}
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is called the space of 3-coboundaries of L on V.
In [14], it is proved that δ3

i δ
1 = 0 (i = 1, 2), then the 1-cohomology space and 3-cohomology space of L

can be defined as

H1(L,V) :=Z1(L,V).

H3(L,V) :=Z3(L,V)/B3(L,V).

Next, we will use H3(L,V) to characterize the splitting property of abelian extensions.

Definition 2.8. Let L and A be Leibniz triple systems. If

0 −−−−−→ A ↪−−−−→ L̃
π

−−−−−→ L −−−−−→ 0

is an exact sequence of Leibniz triple systems, and {A,A, L̃} = {A, L̃,A} = {L̃,A,A} = 0, then we call L̃ an abelian
extension of L by A. A linear map s : L→ L̃ is called a section of π if it satisfies π ◦ s = idL. If there exists a section
which is also a homomorphism between Leibniz triple systems, we say that the abelian extension is split.

Let L̃ be an abelian extension of L by A. We construct a representation of L on A. Fix any section
s : L −→ L̃ of π and define rA,mA, lA : L × L −→ End(A) by

rA(x, y)(v) = {v, s(x), s(y)}L̃,mA(x, y)(v) = {s(x), v, s(y)}L̃, lA(x, y)(v) = {s(x), s(y), v}L̃, (4)

for all x, y ∈ L, v ∈ A. It is easy to check that (rA,mA, lA) is independent of the choice of s. Note that

{s(x), s(y), s(z)}L̃ − s({x, y, z}L) ∈ A, ∀ x, y, z ∈ L.

Then one deduces that (rA,mA, lA) is a representation of L on A.
For a fixed section s, consider the map ω : L × L × L −→ A,

ω(x, y, z) = {s(x), s(y), s(z)}L̃ − s({x, y, z}L), (5)

for all x, y, z ∈ L. It is routine to check that ω is a 3-cocycle associated to (rA,mA, lA). The proof is similar to
that of [14, Theorem 3.3]. One may notice that ω does depend on a certain section, however, we will show
that the cohomology class of ω does not.

Lemma 2.9. If s1 and s2 are sections of π, then ω1 − ω2 = δ1λ, where λ = s1 − s2 and ωi is defined by Eq. (5)
corresponding to si, for i = 1, 2.

Proof. Note that λ(x) = s1(x) − s2(x) ∈ kerπ = A, for all x ∈ L. Then λ ∈ C1(L,A) and

ω1(x, y, z) − ω2(x, y, z)
= {s1(x), s1(y), s1(z)}L̃ − s1({x, y, z}L) − {s2(x), s2(y), s2(z)}L̃ + s2({x, y, z}L)
= {s2(x) + λ(x), s2(y) + λ(y), s2(z) + λ(z)}L̃ − (s2({x, y, z}L + λ({x, y, z}L))
− {s2(x), s2(y), s2(z)}L̃ + s2({x, y, z}L)
= {s2(x), s2(y), s2(z)}L̃ + {s2(x), s2(y), λ(z)}L̃ + {s2(x), λ(y), s2(z)}L̃ + {s2(x), λ(y), λ(z)}L̃
+ {λ(x), s2(y), s2(z)}L̃ + {λ(x), s2(y), λ(z)}L̃ + {λ(x), λ(y), s2(z)}L̃ + {λ(x), λ(y), λ(z)}L̃
− (s2({x, y, z}L + λ({x, y, z}L)) − {s2(x), s2(y), s2(z)}L̃ + s2({x, y, z}L)
= {s2(x), s2(y), λ(z)}L̃ + {s2(x), λ(y), s2(z)}L̃ + {λ(x), s2(y), s2(z)}L̃ − λ({x, y, z}L)
= − λ({x, y, z}L) + lA(x, y)(λ(z)) +mA(x, z)(λ(y)) + rA(y, z)(λ(x))

= (δ1λ)(x, y, z),

which completes the proof.
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By Lemma 2.9, one has the following proposition.

Proposition 2.10. The cohomology class [ω] does not depend on the choice of s.

Proposition 2.11. If (r,m, l) is a representation of L on V and f is a 3-cocycle, then L+̇V is a Leibniz triple system
with the bracket given by

{x + u, y + v, z + w}L+̇V = {x, y, z}L + f (x, y, z) + l(x, y)(w) + r(y, z)(u) +m(x, z)(v),

where x, y, z ∈ L, u, v,w ∈ V.

Proof. It follows by combining Remark 2.5 and δ3
1 f = δ3

2 f = 0 in Eqs. (2) and (3).

By Proposition 2.11, one could check that the canonical projection π : L+̇V −→ L is a homomorphism
between Leibniz triple systems. Then we have the following corollary.

Corollary 2.12. Retain all the notions and assumptions in Proposition 2.11. Then there is an abelian extension
L̃ = L+̇V of the Leibniz triple system L by V.

Theorem 2.13. Let (rA,mA, lA) be a representation of a Leibniz triple system L on a Leibniz triple system A that
satisfies Eq. (4). If H3(L,A) = 0 then the abelian extension of L by A is split.

Proof. It suffices to show that there is a section of πwhich is also a homomorphism. Let s be any section of
π. Recall that the map ω defined by Eq. (5) is a 3-cocycle. Since H3(L,A) = 0, there exists α ∈ C1(L,A), such
that, for any x, y, z ∈ L,

ω(x, y, z) = δ1α(x, y, z) = −α({x, y, z}L) + lA(x, y)(α(z)) + rA(y, z)(α(x)) +mA(x, z)(α(y)).

Define a linear map s′ : L −→ L̃ by s′ = s − α. Then s′ is also a section of π, and for any x, y, z ∈ L,

{s′(x), s′(y), s′(z)}L̃
= {s(x) − α(x), s(y) − α(y), s(z) − α(z)}L̃
= {s(x), s(y), s(z)}L̃ − {s(x), s(y), α(z)} − {α(x), s(y), s(z)} − {s(x), α(y), s(z)}
= {s(x), s(y), s(z)}L̃ − lA(x, y)(α(z)) −mA(x, z)(α(y)) − rA(y, z)(α(x))
= s({x, y, z}L) + ω(x, y, z) − lA(x, y)(α(z)) −mA(x, z)(α(y)) − rA(y, z)(α(x))
= s({x, y, z}L) − α({x, y, z}L)
= s′({x, y, z}L).

Hence, s′ is a homomorphism.

3. Extensibility of derivations

Throughout this section, L and A denote Leibniz triple systems, and L̃ is an abelian extension of L by
A. Let (rA,mA, lA) denote the representation defined by Eq. (4). First, we give a necessary condition for the
extensibility of a pair (Da,Dl) ∈ Der(A) × Der(L) and use it to define compatible derivation pairs, which
are denoted by GA. Then we study the obstruction for extensibility of derivation pairs belonging to GA,
see Theorem 3.6. Finally, we show that GA is a Lie algebra, whose representation can also characterize the
extensibility of (Da,Dl).

Definition 3.1. Keep notations as above. A pair (Da,Dl) ∈ Der(A)×Der(L) is called extensible if there is a derivation
Dl̃ ∈ Der(L̃) such that the diagram

0 −−−−−→ A ↪−−−−→ L̃
π

−−−−−→ L −−−−−→ 0yDa

yDl̃

yDl

0 −−−−−→ A ↪−−−−→ L̃
π

−−−−−→ L −−−−−→ 0

(6)

is commutative.
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Proposition 3.2. Keep notations as above. Then (Da,Dl) is extensible only if

DalA(x, y) − lA(x, y)Da = lA(Dl(x), y) + lA(x,Dl(y)),
DamA(x, y) −mA(x, y)Da = mA(Dl(x), y) +mA(x,Dl(y)),

DarA(x, y) − rA(x, y)Da = rA(Dl(x), y) + rA(x,Dl(y)).
(7)

Proof. Since (Da,Dl) is extensible, there exists a derivation Dl̃ ∈ Der(L̃) such that the diagram (6) commutes.
Then Dl̃(s(x)) − s(Dl(x)) ∈ A, for x ∈ L. Since Dl̃|A = Da and Dl̃ ∈ Der(L̃),we obtain

Da(lA(x, y)(v)) − lA(x, y)(Da(v)) = Da({s(x), s(y), v}L̃) − {s(x), s(y),Da(v)}L̃
= Dl̃({s(x), s(y), v}L̃) − {s(x), s(y),Da(v)}L̃
= {Dl̃(s(x)), s(y), v}L̃ + {s(x),Dl̃(s(y)), v}L̃
+ {s(x), s(y),Dl̃(v)}L̃ − {s(x), s(y),Da(v)}L̃
= {Dl̃(s(x)) − s(Dl(x)), s(y), v}L̃ + {s(Dl(x)), s(y), v}L̃
+ {s(x),Dl̃(s(y)) − s(Dl(y)), v}L̃ + {s(x), s(Dl(y)), v}L̃
+ {s(x), s(y),Da(v)}L̃ − {s(x), s(y),Da(v)}L̃
= {s(Dl(x)), s(y), v}L̃ + {s(x), s(Dl(y)), v}L̃
= lA(Dl(x), y)(v) + lA(x,Dl(y))(v).

Similarly, we have

Da(mA(x, y)(v)) −mA(x, y)(Da(v)) = mA(Dl(x), y)(v) +mA(x,Dl(y))(v),
Da(rA(x, y)(v)) − rA(x, y)(Da(v)) = rA(Dl(x), y)(v) + rA(x,Dl(y))(v),

which completes the proof.

Definition 3.3. Keep notations as above. A pair (Da,Dl) ∈ Der(A) × Der(L) is called compatible if Eq. (7) holds.
All such pairs are denoted by GA.

Proposition 3.2 says that an extensible derivation pair (Da,Dl) is compatible, i.e., (Da,Dl) ∈ GA. Then a
natural question is: when is (Da,Dl) ∈ GA extensible? We need the following preparations.

For any pair (Da,Dl) ∈ Der(A) ×Der(L) and ω defined by Eq. (5), define a 3-cochain Obω(Da,Dl) ∈ C3(L,A)
as

Obω(Da,Dl) = Daω − ω(Dl ⊗ id ⊗ id) − ω(id ⊗Dl ⊗ id) − ω(id ⊗ id ⊗Dl), (8)

or equivalently,

Obω(Da,Dl)(x, y, z) = Daω(x, y, z) − ω(Dl(x), y, z) − ω(x,Dl(y), z) − ω(x, y,Dl(z)), (9)

for all x, y, z ∈ L.

Lemma 3.4. Keep notations as above. Then Obω(Da,Dl) does not depend on the choice of sections of π.

Proof. For i = 1, 2, let si be sections of π, ωi be defined by Eq. (5), and Obωi
(Da,Dl)

be defined by Eq. (9). Then

Obω1
(Da,Dl)

(x, y, z) −Obω2
(Da,Dl)

(x, y, z)

=Da(ω1(x, y, z)) − ω1(Dl(x), y, z) − ω1(x,Dl(y), z) − ω1(x, y,Dl(z))
−Da(ω2(x, y, z)) + ω2(Dl(x), y, z) + ω2(x,Dl(y), z) + ω2(x, y,Dl(z))
=Da(ω1(x, y, z) − ω2(x, y, z))︸                            ︷︷                            ︸

I1

− (ω1(Dl(x), y, z) − ω2(Dl(x), y, z))︸                                   ︷︷                                   ︸
I2

− (ω1(x,Dl(y), z) − ω2(x,Dl(y), z))︸                                   ︷︷                                   ︸
I3

− (ω1(x, y,Dl(z)) − ω2(x, y,Dl(z)))︸                                   ︷︷                                   ︸
I4

.

(10)
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Define a map λ : L −→ A by λ(x) = s1(x) − s2(x), for all x ∈ L. By Lemma 2.9, we have

ω1(x, y, z) − ω2(x, y, z) = −λ({x, y, z}) + lA(x, y)(λ(z)) +mA(x, z)(λ(y)) + rA(y, z)(λ(x)),

for any x, y, z ∈ L. Therefore, one obtains

I1 = Da(−λ({x, y, z}) + lA(x, y)(λ(z)) +mA(x, z)(λ(y)) + rA(y, z)(λ(x))).

Similarly, we have

I2 = −λ({Dl(x), y, z}) + lA(Dl(x), y)(λ(z)) +mA(Dl(x), z)(λ(y)) + rA(y, z)(λ(Dl(x))),

I3 = −λ({x,Dl(y), z}) + lA(x,Dl(y))(λ(z)) +mA(x, z)(λ(Dl(y))) + rA(Dl(y), z)(λ(x)),

and

I4 = −λ({x, y,Dl(z)}) + lA(x, y)(λ(Dl(z))) +mA(x,Dl(z))(λ(y)) + rA(y,Dl(z))(λ(x)).

Substituting I1, I2, I3, I4 into Eq. (10), one has

Obω1
(Da,Dl)

(x, y, z) −Obω2
(Da,Dl)

(x, y, z)

=
(
DalA(x, y) − lA(Dl(x), y) − lA(x,Dl(y))

)
(λ(z)) +

(
DarA(y, z) − rA(Dl(y), z) − rA(y,Dl(z))

)
(λ(x))

+
(
DamA(x, z) −mA(Dl(x), z) −mA(x,Dl(z))

)
(λ(y)) − lA(x, y)(λ(Dl(z))) −mA(x, z)(λ(Dl(y)))

− rA(y, z)(λ(Dl(x))) −Da(λ({x, y, z})) + λ(Dl({x, y, z}))
(7)
= lA(x, y)Da(λ(z)) +mA(x, z)Da(λ(y)) + rA(y, z)Da(λ(x)) − rA(y, z)(λ(Dl(x))) − lA(x, y)(λ(Dl(z)))
−mA(x, z)(λ(Dl(y))) −Da(λ({x, y, z})) + λ(Dl({x, y, z}))

= δ1(Da ◦ λ − λ ◦Dl)(x, y, z) = 0.

The proof is finished.

By the independency of Obω(Da,Dl) on sections, we use the notation ObL̃(Da,Dl) instead of Obω(Da,Dl). In what

follows, we will use ObL̃(Da,Dl) to obtain a necessary and sufficient condition for (Da,Dl) to be extensible.
First, we have

Lemma 3.5. For (Da,Dl) ∈ GA, ObL̃(Da,Dl) is a 3-cocycle.

Proof. It suffices to show that δ3
i Obω(Da,Dl) = 0 (i = 1, 2). Since ω is a 3-cocycle, δ3

iω = 0 (i = 1, 2), here we use
δ3

1ω = 0 to prove δ3
1Obω(Da,Dl) = 0 as an example. By Eq. (2) it follows that, for any x1, x2, x3, x4, x5 ∈ L,

0 = δ3
1ω(x1, x2, x3, x4, x5)

= ω(x1, x2, {x3, x4, x5}) − ω({x1, x2, x3}, x4, x5) + ω({x1, x2, x4}, x3, x5) + ω({x1, x2, x5}, x3, x4)
− ω({x1, x2, x5}, x4, x3) + lA(x1, x2)ω(x3, x4, x5) − rA(x4, x5)ω(x1, x2, x3) + rA(x3, x5)ω(x1, x2, x4)
+ rA(x3, x4)ω(x1, x2, x5) − rA(x4, x3)ω(x1, x2, x5).

(11)

Then for any x1, x2, x3, x4, x5 ∈ L,

(δ3
1Obω(Da,Dl))(x1, x2, x3, x4, x5)

= Obω(Da,Dl)(x1, x2, {x3, x4, x5}) −Obω(Da,Dl)({x1, x2, x3}, x4, x5) +Obω(Da,Dl)({x1, x2, x4}, x3, x5)

+Obω(Da,Dl)({x1, x2, x5}, x3, x4) −Obω(Da,Dl)({x1, x2, x5}, x4, x3) + lA(x1, x2)Obω(Da,Dl)(x3, x4, x5)



X. Wu et al. / Filomat 37:23 (2023), 7905–7918 7912

− rA(x4, x5)Obω(Da,Dl)(x1, x2, x3) + rA(x3, x5)Obω(Da,Dl)(x1, x2, x4)

+ rA(x3, x4)Obω(Da,Dl)(x1, x2, x5) − rA(x4, x3)Obω(Da,Dl)(x1, x2, x5)

= Da(ω(x1, x2, {x3, x4, x5}))︸                        ︷︷                        ︸
(a1)

−ω(Dl(x1), x2, {x3, x4, x5})︸                          ︷︷                          ︸
(b1)

−ω(x1,Dl(x2), {x3, x4, x5})︸                          ︷︷                          ︸
(c1)

−ω(x1, x2, {Dl(x3), x4, x5})︸                          ︷︷                          ︸
(d1)

−ω(x1, x2, {x3,Dl(x4), x5})︸                          ︷︷                          ︸
(e1)

−ω(x1, x2, {x3, x4,Dl(x5)})︸                          ︷︷                          ︸
( f1)

−Da(ω({x1, x2, x3}, x4, x5))︸                          ︷︷                          ︸
(a2)

+ω({Dl(x1), x2, x3}, x4, x5)︸                          ︷︷                          ︸
(b2)

+ω({x1,Dl(x2), x3}, x4, x5)︸                          ︷︷                          ︸
(c2)

+ω({x1, x2,Dl(x3)}, x4, x5)︸                          ︷︷                          ︸
(d2)

+ω({x1, x2, x3},Dl(x4), x5)︸                          ︷︷                          ︸
(e2)

+ω({x1, x2, x3}, x4,Dl(x5))︸                          ︷︷                          ︸
( f2)

+Da(ω({x1, x2, x4}, x3, x5))︸                          ︷︷                          ︸
(a3)

−ω({Dl(x1), x2, x4}, x3, x5)︸                          ︷︷                          ︸
(b3)

−ω({x1,Dl(x2), x4}, x3, x5)︸                          ︷︷                          ︸
(c3)

−ω({x1, x2,Dl(x4)}, x3, x5)︸                          ︷︷                          ︸
(e3)

−ω({x1, x2, x4},Dl(x3), x5)︸                          ︷︷                          ︸
(d3)

−ω({x1, x2, x4}, x3,Dl(x5))︸                          ︷︷                          ︸
( f3)

+Da(ω({x1, x2, x5}, x3, x4))︸                          ︷︷                          ︸
(a4)

−ω({Dl(x1), x2, x5}, x3, x4)︸                          ︷︷                          ︸
(b4)

−ω({x1,Dl(x2), x5}, x3, x4)︸                          ︷︷                          ︸
(c4)

−ω({x1, x2,Dl(x5)}, x3, x4)︸                          ︷︷                          ︸
( f4)

−ω({x1, x2, x5},Dl(x3), x4)︸                          ︷︷                          ︸
(d4)

−ω({x1, x2, x5}, x3,Dl(x4))︸                          ︷︷                          ︸
(e4)

−Da(ω({x1, x2, x5}, x4, x3))︸                          ︷︷                          ︸
(a5)

+ω({Dl(x1), x2, x5}, x4, x3)︸                          ︷︷                          ︸
(b5)

+ω({x1,Dl(x2), x5}, x4, x3)︸                          ︷︷                          ︸
(c5)

+ω({x1, x2,Dl(x5)}, x4, x3)︸                          ︷︷                          ︸
( f5)

+ω({x1, x2, x5},Dl(x4), x3)︸                          ︷︷                          ︸
(e5)

+ω({x1, x2, x5}, x4,Dl(x3))︸                          ︷︷                          ︸
(d5)

+lA(x1, x2)Daω(x3, x4, x5)−lA(x1, x2)ω(Dl(x3), x4, x5)︸                           ︷︷                           ︸
(d6)

− lA(x1, x2)ω(x3,Dl(x4), x5)︸                         ︷︷                         ︸
(e6)

−lA(x1, x2)ω(x3, x4,Dl(x5))︸                           ︷︷                           ︸
( f6)

−rA(x4, x5)Daω(x1, x2, x3)

+rA(x4, x5)ω(Dl(x1), x2, x3)︸                           ︷︷                           ︸
(b7)

+rA(x4, x5)ω(x1,Dl(x2), x3)︸                           ︷︷                           ︸
(c7)

+rA(x4, x5)ω(x1, x2,Dl(x3))︸                           ︷︷                           ︸
(d7)

+ rA(x3, x5)Daω(x1, x2, x4)−rA(x3, x5)ω(Dl(x1), x2, x4)︸                           ︷︷                           ︸
(b8)

−rA(x3, x5)ω(x1,Dl(x2), x4)︸                           ︷︷                           ︸
(c8)

−rA(x3, x5)ω(x1, x2,Dl(x4))︸                           ︷︷                           ︸
(e8)

+rA(x3, x4)Daω(x1, x2, x5)−rA(x3, x4)ω(Dl(x1), x2, x5)︸                           ︷︷                           ︸
(b9)

−rA(x3, x4)ω(x1,Dl(x2), x5)︸                           ︷︷                           ︸
(c9)

−rA(x3, x4)ω(x1, x2,Dl(x5))︸                           ︷︷                           ︸
( f9)

−rA(x4, x3)Daω(x1, x2, x5)

+rA(x4, x3)ω(Dl(x1), x2, x5)︸                           ︷︷                           ︸
(b10)

+rA(x4, x3)ω(x1,Dl(x2), x5)︸                           ︷︷                           ︸
(c10)

+rA(x4, x3)ω(x1, x2,Dl(x5))︸                           ︷︷                           ︸
( f10)

(11)
= lA(Dl(x1), x2)ω(x3, x4, x5)︸                         ︷︷                         ︸

(b6)

+lA(x1,Dl(x2))ω(x3, x4, x5)︸                           ︷︷                           ︸
(c6)

+rA(Dl(x3), x5)ω(x1, x2, x4)︸                           ︷︷                           ︸
(d8)

+rA(Dl(x3), x4)ω(x1, x2, x5)︸                           ︷︷                           ︸
(d9)

−rA(x4,Dl(x3))ω(x1, x2, x5)︸                           ︷︷                           ︸
(d10)

−rA(Dl(x4), x5)ω(x1, x2, x3)︸                           ︷︷                           ︸
(e7)
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+rA(x3,Dl(x4))ω(x1, x2, x5)︸                           ︷︷                           ︸
(e9)

−rA(Dl(x4), x3)ω(x1, x2, x5)︸                           ︷︷                           ︸
(e10)

−rA(x4,Dl(x5))ω(x1, x2, x3)︸                           ︷︷                           ︸
( f7)

+rA(x3,Dl(x5))ω(x1, x2, x4)︸                           ︷︷                           ︸
( f8)

−Da(lA(x1, x2)ω(x3, x4, x5))︸                            ︷︷                            ︸
(a6)

+Da(rA(x4, x5)ω(x1, x2, x3))︸                            ︷︷                            ︸
(a7)

−Da(rA(x3, x5)ω(x1, x2, x4))︸                            ︷︷                            ︸
(a8)

−Da(rA(x3, x4)ω(x1, x2, x5))︸                            ︷︷                            ︸
(a9)

+Da(rA(x4, x3)ω(x1, x2, x5))︸                            ︷︷                            ︸
(a10)

+ lA(x1, x2)Daω(x3, x4, x5) − rA(x4, x5)Daω(x1, x2, x3) + rA(x3, x5)Daω(x1, x2, x4)
+ rA(x3, x4)Daω(x1, x2, x5) − rA(x4, x3)Daω(x1, x2, x5)

= (−Da(lA(x1, x2) + lA(x1, x2)Da + lA(Dl(x1), x2) + lA(x1,Dl(x2)))ω(x3, x4, x5)
− (−Da(rA(x4, x5) + rA(x4, x5)Da + rA(Dl(x4), x5) + rA(x4,Dl(x5)))ω(x1, x2, x3)
+ (−Da(rA(x3, x5) + rA(x3, x5)Da + rA(Dl(x3), x5) + rA(x3,Dl(x5)))ω(x1, x2, x4)
+ (−Da(rA(x3, x4) + rA(x3, x4)Da + rA(Dl(x3), x4) + rA(x3,Dl(x4)))ω(x1, x2, x5)
− (−Da(rA(x4, x3) + rA(x4, x3)Da + rA(Dl(x4), x3) + rA(x4,Dl(x3)))ω(x1, x2, x5)

(7)
= 0.

Similarly, it is straightforward to check that δ3
2Obω(Da,Dl) = 0, as required.

Theorem 3.6. Suppose (Da,Dl) ∈ GA. Then (Da,Dl) is extensible if and only if [ObL̃(Da,Dl)] ∈ H3(L,A) is trivial.

Proof. (⇒) Fix any section s ofπ. Suppose that (Da,Dl) is extensible, then there exists a derivation Dl̃ ∈ Der(L̃)
such that the associated diagram (6) is commutative. Since π ◦Dl̃ = Dl ◦ π, we have Dl̃(s(x)) − s(Dl(x)) ∈ A,
for x ∈ L. Thus there is a map µ : L −→ A given by

µ(x) = Dl̃(s(x)) − s(Dl(x)).

It is sufficient to show that

ObL̃(Da,Dl)(x, y, z) = (δ1µ)(x, y, z), (12)

for all x, y, z ∈ L,which will be proved by computing both hand sides of the following identity

Dl̃

(
{s(x1) + v1, s(x2) + v2, s(x3) + v3}L̃

)
= {Dl̃(s(x1) + v1), s(x2) + v2, s(x3) + v3}L̃ + {s(x1) + v1,Dl̃(s(x2) + v2), s(x3) + v3}L̃

+ {s(x1) + v1, s(x2) + v2,Dl̃(s(x3) + v3)}L̃,

(13)

for any x1, x2, x3 ∈ L, v1, v2, v3 ∈ A.
At first, since L̃ is an abelian extension of L by A,we have {A,A, L̃} = {A, L̃,A} = {L̃,A,A} = 0 and

{s(x1) + v1, s(x2) + v2, s(x3) + v3}L̃

= {s(x1), s(x2), s(x3)}L̃ + {s(x1), s(x2), v3}L̃ + {s(x1), v2, s(x3)}L̃ + {v1, s(x2), s(x3)}L̃
= {s(x1), s(x2), s(x3)}L̃ + lA(x1, x2)(v3) +mA(x1, x3)(v2) + rA(x2, x3)(v1),

and by Eq. (5),

LHS of Eq. (13) = Dl̃

(
{s(x1), s(x2), s(x3)}L̃ + lA(x1, x2)(v3) +mA(x1, x3)(v2) + rA(x2, x3)(v1)

)
,

= Dl̃

(
s({x1, x2, x3}L) + ω(x1, x2, x3) + lA(x1, x2)(v3) +mA(x1, x3)(v2) + rA(x2, x3)(v1)

)
.



X. Wu et al. / Filomat 37:23 (2023), 7905–7918 7914

Since the diagram (6) is commutative, it follows that

LHS of Eq. (13) = s(Dl({x1, x2, x3}L)) + µ({x1, x2, x3}L) +Da(ω(x1, x2, x3))
+Da(lA(x1, x2)(v3)) +Da(rA(x2, x3)(v1)) +Da(mA(x1, x3)(v2))
= s({Dl(x1), x2, x3}L) + s({x1,Dl(x2), x3}L) + s({x1, x2,Dl(x3)}L) + µ({x1, x2, x3}L)
+Da(ω(x1, x2, x3)) +Da(lA(x1, x2)(v3)) +Da(rA(x2, x3)(v1)) +Da(mA(x1, x3)(v2)).

(14)

Now we compute the right-hand side of Eq. (13). Note that, since Dl̃|A = Da, it holds that

Dl̃(s(xi) + vi) = Dl̃(s(xi)) +Da(vi)
= Dl̃(s(xi)) − s(Dl(xi)) + s(Dl(xi)) +Da(vi)
= s(Dl(xi)) + µ(xi) +Da(vi) ∈ s(L)+̇A,

where i = 1, 2, 3,which combining with {A,A, L̃} = {A, L̃,A} = {L̃,A,A} = 0 show

RHS of Eq. (13) = {s(Dl(x1)) + µ(x1) +Da(v1), s(x2) + v2, s(x3) + v3}L̃

+ {s(x1) + v1, s(Dl(x2)) + µ(x2) +Da(v2), s(x3) + v3}L̃

+ {s(x1) + v1, s(x2) + v2, s(Dl(x3)) + µ(x3) +Da(v3)}L̃
= {s(Dl(x1)), s(x2), s(x3)}L̃ + {s(Dl(x1)), s(x2), v3}L̃ + {s(Dl(x1)), v2, s(x3)}L̃
+ {µ(x1), s(x2), s(x3)}L̃ + {s(x1), µ(x2), s(x3)}L̃ + {Da(v1), s(x2), s(x3)}L̃
+ {s(x1), s(Dl(x2)), v3}L̃ + {v1, s(Dl(x2)), s(x3)}L̃ + {s(x1),Da(v2), s(x3)}L̃
+ {s(x1), s(x2), s(Dl(x3))}L̃ + {s(x1), s(x2), µ(x3)}L̃ + {s(x1), s(x2),Da(v3)}L̃
+ {s(x1), v2, s(Dl(x3))}L̃ + {v1, s(x2), s(Dl(x3))}L̃ + {s(x1), s(Dl(x2)), s(x3)}L̃.

(15)

By Eq. (14) and Eq. (15), one has

s({Dl(x1), x2, x3}L) + s({x1,Dl(x2), x3}L) + s({x1, x2,Dl(x3)}L) + µ({x1, x2, x3}L)
+Da(ω(x1, x2, x3)) +Da(lA(x1, x2)(v3)) +Da(rA(x2, x3)(v1)) +Da(mA(x1, x3)(v2))
= {s(Dl(x1)), s(x2), s(x3)}L̃ + lA(Dl(x1), x2)(v3) +mA(Dl(x1), x3)(v2) + rA(x2, x3)(µ(x1))
+ rA(x2, x3)(Da(v1)) + {s(x1), s(Dl(x2)), s(x3)}L̃ + lA(x1,Dl(x2))(v3) +mA(x1, x3)(µ(x2))
+mA(x1, x3)(Da(v2)) + rA(Dl(x2), x3)(v1) + {s(x1), s(x2), s(Dl(x3))}L̃ + lA(x1, x2)(µ(x3))
+ lA(x1, x2)(Da(v3)) +mA(x1,Dl(x3))(v2) + rA(x2,Dl(x3))(v1).

Then

0 = − ω(Dl(x1), x2, x3) − ω(x1,Dl(x2), x3) − ω(x1, x2,Dl(x3)) +Da(ω(x1, x2, x3))
− lA(x1, x2)(µ(x3)) − rA(x2, x3)(µ(x1)) −mA(x1, x3)(µ(x2)) + µ({x1, x2, x3}L)

+
(
DalA(x1, x2) − lA(x1, x2)Da − lA(Dl(x1), x2) − lA(x1,Dl(x2))

)
(v3)

+
(
DarA(x2, x3) − rA(x2, x3)Da − rA(Dl(x2), x3) − rA(x2,Dl(x3))

)
(v1)

+
(
DamA(x1, x3) −mA(x1, x3)Da −mA(Dl(x1), x3) −mA(x1,Dl(x3))

)
(v2).

Since (Da,Dl) is compatible and by the proof of Lemma 8,(
DalA(x1, x2) − lA(x1, x2)Da − lA(Dl(x1), x2) − lA(x1,Dl(x2))

)
(v3) = 0,(

DarA(x2, x3) − rA(x2, x3)Da − rA(Dl(x2), x3) − rA(x2,Dl(x3))
)
(v1) = 0,(

DamA(x1, x3) −mA(x1, x3)Da −mA(Dl(x1), x3) −mA(x1,Dl(x3))
)
(v2) = 0.

(16)
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Thus we have

Da(ω(x1, x2, x3)) − ω(Dl(x1), x2, x3) − ω(x1,Dl(x2), x3) − ω(x1, x2,Dl(x3))
− lA(x1, x2)(µ(x3)) − rA(x2, x3)(µ(x1)) −mA(x1, x3)(µ(x2)) + µ({x1, x2, x3}L) = 0,

(17)

which is exactly Eq. (12) due to Eqs. (1) and (9). So [ObL̃(Da,Dl)] = 0, as required.

(⇐) Suppose that [ObL̃(Da,Dl)] is trivial. Then there is a map µ : L −→ A such that ObL̃(Da,Dl) = δ
1µ. For any

element s(x) + v ∈ L̃, define Dl̃ : L̃ −→ L̃ by

Dl̃(s(x) + v) = s(Dl(x)) + µ(x) +Da(v),

then the associated diagram in (6) is commutative: for any x ∈ L, v ∈ A,

(π ◦Dl̃)(s(x) + v) = π(s(Dl(x)) + µ(x) +Da(v)) = Dl(x) = (Dl ◦ π)(s(x) + v);
Dl̃ ◦ ι(v) = Dl̃(v) = Da(v) = ι ◦Da(v).

Moreover, since (Da,Dl) is compatible satisfying Eq. (7), by Eq. (16) and Eq. (17), it follows that Eq. (13)
holds by Eq. (14) and Eq. (15), that is, Dl̃ ∈ Der(L̃), as required.

Hence, for a pair (Da,Dl) ∈ GA, the cohomology class [ObL̃(Da,Dl)] can be regarded as an obstruction to the
extensibility of (Da,Dl). We also have the following straightforward corollary.

Corollary 3.7. If H3(L,A) = 0, then (Da,Dl) ∈ GA if and only if (Da,Dl) is extensible.

Recall that the condition H3(L,A) = 0 is in general not equivalent to split property of extensions.
However, we still have the following result.

Corollary 3.8. Let L̃ be a split abelian extension of a Leibniz triple system L by A. Then any pair (Da,Dl) ∈
Der(A) ×Der(L) is compatible if and only if it is extensible.

Proof. (⇐) It holds due to Proposition 3.2.
(⇒) Since the extension is split there exists a section s′ which is a homomorphism. Suppose that

(rs′ ,ms′ , ls′ ) (resp., ωs′ ) is defined by Eq. (4) (resp., Eq. (5)) with respect to s′. Then we get ωs′ = 0. By
the definition of ObL̃(Da,Dl) (see Eq. (8)), we have Obωs′

(Da,Dl)
= 0. In view of Lemmas 3.4 and 3.5, one has

[ObL̃(Da,Dl)] = [Obωs′

(Da,Dl)
] = 0. Then by Theorem 3.6, we deduce that (Da,Dl) is extensible as required.

At the end of this section, we will show that GA is a Lie algebra and construct a representation of GA to
characterize the extensibility of (Da,Dl).

Proposition 3.9. GA is a Lie algebra.

Proof. It suffices to prove that GA is a subalgebra of Der(A)×Der(L). Suppose (Da1 ,Dl1 ), (Da2 ,Dl2 ) ∈ GA.Note
that, for all x, y ∈ L,we have

(Da1 Da2 −Da2 Da1 )lA(x, y) − lA(x, y)(Da1 Da2 −Da2 Da1 )
= Da1 (Da2 lA(x, y)) −Da2 (Da1 lA(x, y)) − lA(x, y)Da1 Da2 + lA(x, y)Da2 Da1

= Da1

(
lA(x, y)Da2 + lA(Dl2 (x), y) + lA(x,Dl2 (y))

)
︸                                                    ︷︷                                                    ︸

I1

−Da2

(
lA(x, y)Da1 + lA(Dl1 (x), y) + lA(x,Dl1 (y))

)
︸                                                    ︷︷                                                    ︸

I2

− lA(x, y)Da1 Da2 + lA(x, y)Da2 Da1 .

(18)
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By Eq. (7) it follows that

I1 = lA(x, y)Da1 Da2 + lA(Dl1 (x), y)Da2 + lA(x,Dl1 (y))Da2 + lA(Dl2 (x), y)Da1 + lA(Dl1 Dl2 (x), y)
+ lA(Dl2 (x),Dl1 (y)) + lA(x,Dl2 (y))Da1 + lA(Dl1 (x),Dl2 (y)) + lA(x,Dl1 Dl2 (y)),

(19)

I2 = lA(x, y)Da2 Da1 + lA(Dl2 (x), y)Da1 + lA(x,Dl2 (y))Da1 + lA(Dl1 (x), y)Da2 + lA(Dl2 Dl1 (x), y)
+ lA(Dl1 (x),Dl2 (y)) + lA(x,Dl1 (y))Da2 + lA(Dl2 (x),Dl1 (y)) + lA(x,Dl2 Dl1 (y)).

(20)

Then substituting Eq. (19) and Eq. (20) into Eq. (18) gives that

[Da1 ,Da2 ]lA(x, y) − lA(x, y)[Da1 ,Da2 ] = lA
(
[Dl1 ,Dl2 ](x), y

)
+ lA
(
x, [Dl1 ,Dl2 ](y)

)
.

Similarly, we have

[Da1 ,Da2 ]rA(x, y) − rA(x, y)[Da1 ,Da2 ] = rA

(
[Dl1 ,Dl2 ](x), y

)
+ rA

(
x, [Dl1 ,Dl2 ](y)

)
,

and

[Da1 ,Da2 ]mA(x, y) −mA(x, y)[Da1 ,Da2 ] = mA

(
[Dl1 ,Dl2 ](x), y

)
+mA

(
x, [Dl1 ,Dl2 ](y)

)
,

which implies that [(Da1 ,Dl1 ), (Da2 ,Dl2 )] = ([Da1 ,Da2 ], [Dl1 ,Dl2 ]) is compatible.

Lemma 3.10. Define a linear map Φ : GA −→ gl(H3(L,A)) by

Φ(Da,Dl)([ω]) = [Obω(Da,Dl)], ∀ ω ∈ Z3(L,A), (21)

where Obω(Da,Dl) is given by Eq. (8). Then Φ is a representation of GA on H3(L,A).

Proof. Since (Da,Dl) is compatible with respect to (rA,mA, lA) by Lemma 3.5 it follows that Obω(Da,Dl) is a
3-cocycle whenever ω is a 3-cocycle. Therefore, it suffices to show that if δ1λ is a 3-coboundary, then
Φ(Da,Dl)(δ1λ) = 0,which implies that Φ is well-defined. In fact,

(Φ(Da,Dl)(δ1λ))(x, y, z)

=
(
Da(δ1λ) − (δ1λ)(Dl ⊗ id ⊗ id) − (δ1λ)(id ⊗Dl ⊗ id) − (δ1λ)(id ⊗ id ⊗Dl)

)
(x, y, z)

= Da

(
− λ({x, y, z}) + lA(x, y)(λ(z)) +mA(x, z)(λ(y)) + rA(y, z)(λ(x))

)
−

(
− λ({Dl(x), y, z}) + lA(Dl(x), y)(λ(z)) +mA(Dl(x), z)(λ(y)) + rA(y, z)(λ(Dl(x)))

)
−

(
− λ({x,Dl(y), z}) + lA(x,Dl(y))(λ(z)) +mA(x, z)(λ(Dl(y))) + rA(Dl(y), z)(λ(x)))

)
−

(
− λ({x, y,Dl(z)}) + lA(x, y)(λ(Dl(z))) +mA(x,Dl(z))(λ(y)) + rA(y,Dl(z))(λ(x)))

)
.

Since Dl is a derivation on L,we have

λ({Dl(x), y, z}) + λ({x,Dl(y), z}) + λ({x, y,Dl(z)}) = λ(Dl({x, y, z})).

Then

(Φ(Da,Dl)(δ1λ))(x, y, z)
= DalA(x, y)(λ(z)) +DamA(x, z)(λ(y)) +DarA(y, z)(λ(x)) − lA(Dl(x), y)(λ(z)) −mA(Dl(x), z)(λ(y))
− rA(y, z)(λ(Dl(x)) − lA(x,Dl(y))(λ(z)) −mA(x, z)(λ(Dl(y))) − rA(Dl(y), z)(λ(x)) − lA(x, y)(λ(Dl(z)))
−mA(x,Dl(z))(λ(y)) − rA(y,Dl(z))(λ(x)) −Da(λ({x, y, z})) + λ(Dl({x, y, z}))
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=
(
DalA(x, y) − lA(Dl(x), y) − lA(x,Dl(y))

)
(λ(z)) +

(
DamA(x, z) −mA(Dl(x), z) −mA(x,Dl(z))

)
(λ(y))

+
(
DarA(y, z) − rA(Dl(y), z) − rA(y,Dl(z))

)
(λ(x)) − rA(y, z)(λ(Dl(x))) − lA(x, y)(λ(Dl(z)))

−mA(x, z)(λ(Dl(y))) −Da(λ({x, y, z})) + λ(Dl({x, y, z}))
= lA(x, y)Da(λ(z)) +mA(x, z)Da(λ(y)) + rA(y, z)Da(λ(x)) − rA(y, z)(λ(Dl(x)))
− lA(x, y)(λ(Dl(z))) −mA(x, z)(λ(Dl(y))) −Da(λ({x, y, z})) + λ(Dl({x, y, z}))

= δ1(Da ◦ λ − λ ◦Dl)(x, y, z) = 0.

Next, we prove thatΦ is a Lie homomorphism, for any (Da1 ,Dl1 ), (Da2 ,Dl2 ) ∈ GA, [ω] ∈ H3(L,A),we have

[Φ(Da1 ,Dl1 ),Φ(Da2 ,Dl2 )]([ω]) = Φ(Da1 ,Dl1 )Φ(Da2 ,Dl2 )([ω]) −Φ(Da2 ,Dl2 )Φ(Da1 ,Dl1 )([ω]).

Combining Eqs. (8) and (21), we see that

Φ(Da1 ,Dl1 )Φ(Da2 ,Dl2 )([ω])

= Φ(Da1 ,Dl1 )
(
Da2ω − ω(Dl2 ⊗ id ⊗ id) − ω(id ⊗Dl2 ⊗ id) − ω(id ⊗ id ⊗Dl2 )

)
=
[
Da1

(
Da2ω − ω(Dl2 ⊗ id ⊗ id) − ω(id ⊗Dl2 ⊗ id) − ω(id ⊗ id ⊗Dl2 )

)
−

(
Da2ω − ω(Dl2 ⊗ id ⊗ id) − ω(id ⊗Dl2 ⊗ id) − ω(id ⊗ id ⊗Dl2 )

)
(Dl1 ⊗ id ⊗ id)

−

(
Da2ω − ω(Dl2 ⊗ id ⊗ id) − ω(id ⊗Dl2 ⊗ id) − ω(id ⊗ id ⊗Dl2 )

)
(id ⊗Dl1 ⊗ id)

−

(
Da2ω − ω(Dl2 ⊗ id ⊗ id) − ω(id ⊗Dl2 ⊗ id) − ω(id ⊗ id ⊗Dl2 )

)
(id ⊗ id ⊗Dl1 )

]
=
[
Da1 Da2ω −Da1ω(Dl2 ⊗ id ⊗ id) −Da1ω(id ⊗Dl2 ⊗ id) −Da1ω(id ⊗ id ⊗Dl2 )

−

(
Da2ω(Dl1 ⊗ id ⊗ id) − ω(Dl2 Dl1 ⊗ id ⊗ id) − ω(Dl1 ⊗Dl2 ⊗ id) − ω(Dl1 ⊗ id ⊗Dl2 )

)
−

(
Da2ω(id ⊗Dl1 ⊗ id) − ω(Dl2 ⊗Dl1 ⊗ id) − ω(id ⊗Dl2 Dl1 ⊗ id) − ω(id ⊗Dl1 ⊗Dl2 )

)
−

(
Da2ω(id ⊗ id ⊗Dl1 ) − ω(Dl2 ⊗ id ⊗Dl1 ) − ω(id ⊗Dl2 ⊗Dl1 ) − ω(id ⊗ id ⊗Dl2 Dl1 )

)]
.

Then, we deduce that

[Φ(Da1 ,Dl1 ),Φ(Da2 ,Dl2 )]([ω])

=
(
Φ(Da1 ,Dl1 )Φ(Da2 ,Dl2 ) −Φ(Da2 ,Dl2 )Φ(Da1 ,Dl1 )

)
([ω])

= [[Da1 ,Da2 ]ω − ω([Dl1 ,Dl2 ] ⊗ id ⊗ id) − ω(id ⊗ [Dl1 ,Dl2 ] ⊗ id) − ω(id ⊗ id ⊗ [Dl1 ,Dl2 ])]
= [Obω([Da1 ,Da2 ],[Dl1 ,Dl2 ])]

= Φ([Da1 ,Da2 ], [Dl1 ,Dl2 ])([ω])
= Φ[(Da1 ,Dl1 ), (Da2 ,Dl2 )]([ω]),

as desired.

Theorem 3.11. The pair (Da,Dl) ∈ GA is extensible if and only if Φ(Da,Dl) = 0.

Proof. (⇒) For any [φ] ∈ H3(L,A), by Corollary 2.12, there exists an abelian extension

0 −−−−−→ A ↪−−−−→ L̃
π

−−−−−→ L −−−−−→ 0

where π is the canonical projection and the bracket on L̃ := L+̇A is given by

{x + u, y + v, z + w}L̃ = {x, y, z}L + φ(x, y, z) + lA(x, y)(w) + rA(y, z)(u) +mA(x, z)(v),
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for any x, y, z ∈ L, u, v,w ∈ A. Choose the section s of π defined by s(x) = x, for any x ∈ L. The associated
representation (rA,mA, lA) is given by Eq. (4). Let H3

A(L,A) denote the cohomology group with respect to
(rA,mA, lA). Since we defined ω by Eq. (5) (resp. φ) is a 3-cocycle in H3

A(L,A) (resp. in H3(L,A)), we have
[ω] = [φ]. Then it follows that

Φ(Da,Dl)([φ]) = Φ(Da,Dl)([ω]) (by Lemma 3.10)

= [ObL̃(Da,Dl)]

= 0. (by Theorem 3.6)

(⇐) Suppose Φ(Da,Dl) = 0. For any abelian extension

0 −−−−−→ A ↪−−−−→ L̃
π

−−−−−→ L −−−−−→ 0

there exists a section s of π and the associated representation (rA,mA, lA), ω defined by Eq. (5) is a 3-cocycle
in H3(L,A). Then we have

[ObL̃(Da,Dl)] = Φ(Da,Dl)([ω]) = 0.

By Theorem 3.6 again, (Da,Dl) is extensible. This complete the proof.

The following corollary is straightforward.

Corollary 3.12. Any pair (Da,Dl) ∈ GA is extensible if and only if Φ ≡ 0.
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