Some comments on τ-distance and existence theorems in complete metric spaces

Tomonari Suzuki ${ }^{\text {a }}$
${ }^{a}$ Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

Abstract

Very recently, we have introduced the concept of τ^{\prime}-distance, which is slightly weaker than that of τ-distance. We discuss the difference between both concepts, proving some existence theorems in complete metric spaces and giving an example of a τ^{\prime}-distance which is not a τ-distance.

1. Introduction

Throughout this paper, we denote by \mathbb{N}, \mathbb{Q} and \mathbb{R} the sets of all positive integers, all rational numbers and all real numbers, respectively.

In 2001, the concept of τ-distance was introduced in order to generalize results in $[1,4,5,19-21]$ and others.

Definition 1 ([12]). Let (X, d) be a metric space. Then a function p from $X \times X$ into $[0, \infty)$ is called a τ-distance on X if there exists a function η from $X \times[0, \infty)$ into $[0, \infty)$ and the following are satisfied:
$\left(\tau_{d} 1\right) p(x, z) \leq p(x, y)+p(y, z)$ for any $x, y, z \in X$.
$\left(\tau_{d} 2\right) \eta(x, 0)=0$ and $\eta(x, t) \geq t$ for any $x \in X$ and $t \in[0, \infty)$, and η is concave and continuous in its second variable.
$\left(\tau_{d} 3\right) \lim _{n} x_{n}=x$ and $\lim _{n} \sup \left\{\eta\left(z_{n}, p\left(z_{n}, x_{m}\right)\right): m \geq n\right\}=0 \operatorname{imply} p(w, x) \leq \liminf _{n} p\left(w, x_{n}\right)$ for any $w \in X$.
$\left(\tau_{d} 4\right) \lim _{n} \sup \left\{p\left(x_{n}, y_{m}\right): m \geq n\right\}=0$ and $\lim _{n} \eta\left(x_{n}, t_{n}\right)=0 \operatorname{imply} \lim _{n} \eta\left(y_{n}, t_{n}\right)=0$.
$\left(\tau_{d} 5\right) \lim _{n} \eta\left(z_{n}, p\left(z_{n}, x_{n}\right)\right)=0$ and $\lim _{n} \eta\left(z_{n}, p\left(z_{n}, y_{n}\right)\right)=0 \operatorname{imply} \lim _{n} d\left(x_{n}, y_{n}\right)=0$.
We note that the metric d is one of τ-distances on X with $\eta=((x, t) \mapsto t)$. Every w-distance is also a τ-distance; see $[8,12]$. See $[8,12-17]$ and references therein for many examples and theorems concerning τ-distance. For instance, using τ-distance, Suzuki [16] gave a simple proof of Zhong's theorem [20].

Very recently, strongly inspired by τ-function in Lin and Du [10], we introduced τ^{\prime}-distance in [18].
Definition 2 ([18]). Let (X, d) be a metric space and let p be a function from $X \times X$ into $[0, \infty)$. Then p is called a τ^{\prime}-distance on X if the following hold:

[^0]($\left.\tau^{\prime} 1\right) p(x, z) \leq p(x, y)+p(y, z)$ for any $x, y, z \in X$.
($\tau^{\prime} 2$) If $\lim _{n} \sup \left\{p\left(z_{n}, z_{m}\right): m>n\right\}=0$ and $\lim _{n} p\left(z_{n}, x_{n}\right)=0$, then $\lim _{n} d\left(z_{n}, x_{n}\right)=0$. Moreover if $\left\{x_{n}\right\}$ converges to some $x \in X$, then $p(w, x) \leq \liminf _{n} p\left(w, x_{n}\right)$ for any $w \in X$.
($\left.\tau^{\prime} 3\right)$ If $\lim _{n} p\left(z, x_{n}\right)=0$, then $\lim _{n} d\left(x_{n}, x_{n+1}\right)=0$ holds. Moreover if $\left\{x_{n}\right\}$ converges to some $x \in X$, then $p(w, x) \leq \liminf _{n} p\left(w, x_{n}\right)$ for any $w \in X$.

The concept of τ '-distance is 'slightly' weaker than that of τ-distance. The word 'slightly' means that we can prove τ^{\prime}-distance versions of all the existence theorems in [12-16] with using the same proofs. So, we could tell that we 'redefine' the definition of τ-distance. In [18], we showed that τ^{\prime}-distance is more natural than τ-distance.

In this paper, we find another merit of τ^{\prime}-distance. While we cannot separate Conditions $\left(\tau_{d} 1\right)-\left(\tau_{d} 5\right)$ on τ-distance, we can separate Conditions $\left(\tau^{\prime} 1\right)-\left(\tau^{\prime} 3\right)$ on τ^{\prime}-distance. That is, we can discuss something mathematical more finely. Also, we give an example of a τ^{\prime}-distance which is not a τ-distance.

2. Lemmas

In this section, paying attention to how $\left(\tau^{\prime} 2\right)$ and $\left(\tau^{\prime} 3\right)$ work separately, we discuss some lemmas proved in [18].

Definition 3 ([18]). Let p be a τ^{\prime}-distance on a metric space (X, d). Let $\left\{x_{\alpha}: \alpha \in D\right\}$ be a net in X. Then $\left\{x_{\alpha}\right\}$ is said to satisfy Condition (CL) if the following hold:
(CL1) $\left\{x_{\alpha}\right\}$ is a Cauchy net in the usual sense.
(CL2) Either of the following hold:

- $\left\{x_{\alpha}\right\}$ does not converge.
- If $\left\{x_{\alpha}\right\}$ converges to x, then $p(w, x) \leq \liminf _{\alpha} p\left(w, x_{\alpha}\right)$ holds for any $w \in X$.

We first begin with $\left(\tau^{\prime} 3\right)$.
Lemma 4. Let (X, d) be a metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $\left(\tau^{\prime} 3\right)$. Let $\left\{x_{\alpha}: \alpha \in D\right\}$ be a net in X satisfying $\lim _{\alpha} p\left(z, x_{\alpha}\right)=0$ for some $z \in X$. Then the following hold:
(i) $\left\{x_{\alpha}\right\}$ satisfies Condition (CL).
(ii) If a net $\left\{y_{\alpha}: \alpha \in D\right\}$ in X also satisfies $\lim _{\alpha} p\left(z, y_{\alpha}\right)=0$, then $\lim _{\alpha} d\left(x_{\alpha}, y_{\alpha}\right)=0$ holds.

Proof. The proof of Lemma 13 in [18] works.
As corollaries of Lemma 4, we obtain the following.
Lemma 5. Let (X, d) and p be as in Lemma 4. Let $\left\{x_{n}\right\}$ be a sequence in X satisfying $\lim _{n} p\left(z, x_{n}\right)=0$ for some $z \in X$. Then the following hold:
(i) $\left\{x_{n}\right\}$ satisfies Condition (CL).
(ii) If a sequence $\left\{y_{n}\right\}$ in X also satisfies $\lim _{\alpha} p\left(z, y_{n}\right)=0$, then $\lim _{n} d\left(x_{n}, y_{n}\right)=0$ holds.

Lemma 6. Let (X, d) and p be as in Lemma 4. If $p(z, x)=p(z, y)=0$ holds, then $x=y$ holds.
We next pay attention to how ($\tau^{\prime} 2$) works.
Lemma 7. Let (X, d) be a metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying ($\left.\tau^{\prime} 2\right)$. Let D be a directed set such that for any $\alpha \in D$, there exists $\beta \in D$ with $\alpha \nsupseteq \beta$. Let $\left\{z_{\alpha}: \alpha \in D\right\}$ be a net in X satisfying $\lim _{\alpha} \sup \left\{p\left(z_{\alpha}, z_{\beta}\right): \beta>\alpha\right\}=0$. Then the following hold:
(i) If a net $\left\{x_{\alpha}: \alpha \in D\right\}$ in X satisfies $\lim _{\alpha} p\left(z_{\alpha}, x_{\alpha}\right)=0$, then $\left\{x_{\alpha}\right\}$ satisfies Condition (CL) and $\lim _{\alpha} d\left(z_{\alpha}, x_{\alpha}\right)=0$ holds.
(ii) $\left\{z_{\alpha}\right\}$ satisfies Condition (CL).

Proof. We note that the assumption on D is the condition of the second case in the proof of Lemma 16 in [18]. We note the following:

- For any $\alpha \in D$ there exists $\beta \in D$ with $\beta>\alpha$.

Therefore the proof of Lemma 16 (the second case) in [18] works.
As a corollary of Lemma 7, we obtain the following sequential version.
Lemma 8. Let (X, d) and p be as in Lemma 7. Let $\left\{z_{n}\right\}$ be a sequence in X satisfying $\lim _{n} \sup \left\{p\left(z_{n}, z_{m}\right): m>n\right\}=0$. Then the following hold:
(i) If a sequence $\left\{x_{n}\right\}$ in X satisfies $\lim _{n} p\left(z_{n}, x_{n}\right)=0$, then $\left\{x_{n}\right\}$ satisfies Condition (CL) and $\lim _{n} d\left(z_{n}, x_{n}\right)=0$ holds.
(ii) $\left\{z_{n}\right\}$ satisfies Condition (CL).

By Lemma 8, we obtain the following, which plays a very important role in this paper. Compare Lemma 9 with Lemmas 5 and 6.

Lemma 9. Let (X, d) be a metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying ($\left.\tau^{\prime} 2\right)$. Let $z \in X$ satisfy $p(z, z)=0$. Then the following hold:
(i) If a sequence $\left\{x_{n}\right\}$ in X satisfies $\lim _{n} p\left(z, x_{n}\right)=0$, then $\left\{x_{n}\right\}$ satisfies Condition (CL) and $\lim _{n} d\left(z, x_{n}\right)=0$ holds.
(ii) If $x \in X$ satisfies $p(z, x)=0$, then $z=x$ holds.

Proof. Define a sequence $\left\{z_{n}\right\}$ in X by $z_{n}=z$. Then $\lim _{n} \sup \left\{p\left(z_{n}, z_{m}\right): m>n\right\}=0$ holds. So, by Lemma 8, we obtain the desired result.

Remark. The proof employs the method in the proof of Lemma 1.1 in [3].

3. Existence Theorems

In this section, we give proofs of four existence theorems. In Theorem 16, we need only ($\tau^{\prime} 2$). In Corollary 11, we need ($\tau^{\prime} 1$) and ($\tau^{\prime} 2$). In Theorem 17, we need $\left(\tau^{\prime} 2\right)$ and $\left(\tau^{\prime} 3\right)$. On the other hand, in Theorem 13, we need $\left(\tau^{\prime} 1\right)-\left(\tau^{\prime} 3\right)$. It is interesting that $\left(\tau^{\prime} 2\right)$ is needed in all theorems, however, $\left(\tau^{\prime} 1\right)$ and $\left(\tau^{\prime} 3\right)$ are not always needed.

Theorem	$\left(\tau^{\prime} 1\right)$	$\left(\tau^{\prime} 2\right)$	$\left(\tau^{\prime} 3\right)$
Theorem 16	-	\bigcirc	-
Corollary 11	\bigcirc	\bigcirc	-
Theorem 17	-	\bigcirc	\bigcirc
Theorem 13	\bigcirc	\bigcirc	\bigcirc

The following is a generalization of Nadler's fixed point theorem [11]. See also Theorem 3.7 in [13]
Theorem 10. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying ($\tau^{\prime} 1$) and $\left(\tau^{\prime} 2\right)$. Let T be a set-valued mapping on X satisfying the following:

- For any $x \in X, T x$ is a nonempty closed subset of X.
- There exists $r \in[0,1)$ satisfying

$$
Q(T x, T y) \leq r p(x, y)
$$

for all $x, y \in X$, where

$$
Q(A, B)=\sup _{a \in A} \inf _{b \in B} p(a, b) .
$$

Then there exists $z \in X$ satisfying $z \in T z$ and $p(z, z)=0$.

Proof. Replace the value of r by $r:=(1+r) / 2 \in(0,1)$. We note the following:

- For any $x, y \in X, u \in T x$ and $\eta>p(x, y)$, there exists $v \in T y$ satisfying $p(u, v)<r \eta$.

Fix $u_{0} \in X$ and $u_{1} \in T u_{0}$. Put $\alpha=1 /(1-r)$ and $\beta=p\left(u_{0}, u_{1}\right)+1$. Then there exists $u_{2} \in T u_{1}$ satisfying $p\left(u_{1}, u_{2}\right)<r \beta$. Then there exists $u_{3} \in T u_{2}$ satisfying $p\left(u_{2}, u_{3}\right)<r^{2} \beta$. Continuing this argument, we can obtain a sequence $\left\{u_{n}\right\}$ in X satisfying

$$
u_{n+1} \in T u_{n} \quad \text { and } \quad p\left(u_{n}, u_{n+1}\right)<r^{n} \beta
$$

for $n \in \mathbb{N} \cup\{0\}$. For any $m, n \in \mathbb{N} \cup\{0\}$ with $m>n$, we have by $\left(\tau^{\prime} 1\right)$

$$
p\left(u_{n}, u_{m}\right) \leq \sum_{k=n}^{m-1} p\left(u_{k}, u_{k+1}\right)<\sum_{k=n}^{m-1} r^{k} \beta<r^{n} \alpha \beta
$$

By Lemma 8, $\left\{u_{n}\right\}$ satisfies Condition (CL). Since X is complete, $\left\{u_{n}\right\}$ converges to some $z \in X$. We have for $n \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
p\left(u_{n}, z\right) \leq \liminf _{m \rightarrow \infty} p\left(u_{n}, u_{m}\right) \leq r^{n} \alpha \beta<r^{n} \alpha \beta+r^{n} \tag{1}
\end{equation*}
$$

So, for $n \in \mathbb{N}$, there exists $v_{n} \in T z$ satisfying $p\left(u_{n}, v_{n}\right)<r^{n} \alpha \beta+r^{n}$. By Lemma 8 again, $\left\{v_{n}\right\}$ also satisfies Condition (CL) and converges to z. Since $T z$ is closed, we obtain $z \in T z$. Put $w_{0}=z$ and $\gamma=p\left(z, w_{0}\right)+1$. There exists $w_{1} \in T w_{0}$ satisfying $p\left(z, w_{1}\right)<r \gamma$. Then there exists $w_{2} \in T w_{1}$ satisfying $p\left(z, w_{2}\right)<r^{2} \gamma$. Continuing this argument, we can choose a sequence $\left\{w_{n}\right\}$ in X satisfying

$$
w_{n} \in T w_{n-1} \quad \text { and } \quad p\left(z, w_{n}\right)<r^{n} \gamma
$$

for $n \in \mathbb{N}$. Using this and (1), we have

$$
\lim _{n \rightarrow \infty} p\left(u_{n}, w_{n}\right) \leq \lim _{n \rightarrow \infty}\left(p\left(u_{n}, z\right)+p\left(z, w_{n}\right)\right)=0
$$

By Lemma 8 again, $\left\{w_{n}\right\}$ also satisfies Condition (CL) and converges to z. We have

$$
p(z, z) \leq \liminf _{n \rightarrow \infty} p\left(z, w_{n}\right) \leq \lim _{n \rightarrow \infty} r^{n} \gamma=0
$$

We obtain the desired result.
The following is a generalization of the Banach contraction principle [1, 2]. See also Theorem 2 in [12].
Corollary 11. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $\left(\tau^{\prime} 1\right)$ and $\left(\tau^{\prime} 2\right)$. Let T be a mapping on X. Assume that there exists $r \in[0,1)$ satisfying

$$
p(T x, T y) \leq r p(x, y)
$$

for all $x, y \in X$. Then T has a unique fixed point z. Moreover $p(z, z)=0$ holds and $\left\{T^{n} x\right\}$ converges to z for any $x \in X$.
Proof. We note that all the assumptions of Theorem 10 are satisfied. Fix $u \in X$. Then from the proof of Theorem 10, $\left\{T^{n} u\right\}$ converges to a fixed point z of T and $p(z, z)=0$ holds. In order to show the uniqueness of z, let w be a fixed point of T. Then we have

$$
p(z, w)=p(T z, T w) \leq r p(z, w)
$$

and hence $p(z, w)=0$. By Lemma 9 , we obtain $z=w$. Therefore the fixed point z is unique.
Since Corollary 11 is important, we give a direct proof of Corollary 11.

Proof. Fix $u \in X$. For $m, n \in \mathbb{N}$ with $m>n$, we have

$$
\begin{aligned}
p\left(T^{n} u, T^{m} u\right) & \leq \sum_{j=n}^{m-1} p\left(T^{j} u, T^{j+1} u\right) \leq \sum_{j=n}^{m-1} r^{j} p(u, T u) \\
& \leq \sum_{j=n}^{\infty} r^{j} p(u, T u)=\frac{r^{n}}{1-r} p(u, T u)
\end{aligned}
$$

and hence

$$
\lim _{n \rightarrow \infty} \sup _{m>n} p\left(T^{n} u, T^{m} u\right) \leq \lim _{n \rightarrow \infty} \frac{r^{n}}{1-r} p(u, T u)=0 .
$$

By Lemma $8,\left\{T^{n} u\right\}$ satisfies Condition (CL). Since X is complete, $\left\{T^{n} u\right\}$ converges to some $z \in X$. We have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p\left(T^{n} u, T z\right) \leq \lim _{n \rightarrow \infty} r p\left(T^{n-1} u, z\right) \leq \lim _{n \rightarrow \infty} \liminf _{m \rightarrow \infty} r p\left(T^{n-1} u, T^{m} u\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{r^{n}}{1-r} p(u, T u)=0
\end{aligned}
$$

By $\left(\tau^{\prime} 2\right),\left\{T^{n} u\right\}$ converges to $T z$. Hence $T z=z$ holds. We also have

$$
p(z, z)=\lim _{n \rightarrow \infty} p\left(T^{n} z, T^{n} z\right) \leq \lim _{n \rightarrow \infty} r^{n} p(z, z)=0
$$

We can prove the uniqueness of the fixed point z as in the above proof.
The following example tells that we need ($\tau^{\prime} 1$) in Corollary 11.
Example 12 (Example 2 in [7]). Put $X=\mathbb{N}$ and $d(x, y)=|x-y|$ for $x, y \in X$. Define a function p from $X \times X$ into $[0, \infty)$ by

$$
p(x, y)=r^{\min \{x, y\}}|x-y|
$$

where $r \in(0,1)$. Define a mapping T on X by $T x=x+1$. Then the following hold:
(i) p satisfies $\left(\tau^{\prime} 2\right)$ and $\left(\tau^{\prime} 3\right)$.
(ii) $p(T x, T y) \leq r p(x, y)$ for all $x, y \in X$.
(iii) T does not have a fixed point.

Proof. In order to show $\left(\tau^{\prime} 2\right)$, we assume $\lim _{n} \sup \left\{p\left(z_{n}, z_{m}\right): m>n\right\}=0$ and $\lim _{n} p\left(z_{n}, x_{n}\right)=0$. Then there exists $x \in X$ such that $z_{n}=x_{n}=x$ holds for sufficiently large $n \in \mathbb{N}$. Thus ($\tau^{\prime} 2$) holds. In order to show ($\tau^{\prime} 3$), we assume $\lim _{n} p\left(z, x_{n}\right)=0$. Then $x_{n}=z$ holds for sufficiently large $n \in \mathbb{N}$. Thus ($\tau^{\prime} 3$) holds. (ii) and (iii) are obvious.

The following is connected with the strong Ekeland variational principle. See [4-6].
Theorem 13 ([15]). Let X be a complete metric space and let p be a τ^{\prime}-distance on X. Let f be a function from X into $(-\infty,+\infty$] which is proper lower semicontinuous and bounded from below. Then for $u \in X$, there exists $v \in X$ satisfying the following:
(i) $f(v) \leq f(u)$.
(ii) $f(w)>f(v)-p(v, w)$ for all $w \in X \backslash\{v\}$.
(iii) If a sequence $\left\{x_{n}\right\}$ in X satisfies $\lim _{n}\left(f\left(x_{n}\right)+p\left(v, x_{n}\right)\right)=f(v)$, then $\left\{x_{n}\right\}$ satisfies Condition (CL); and $\lim _{n} x_{n}=v$ and $p(v, v)=\lim _{n} p\left(v, x_{n}\right)=0$ hold.
Proof. The proof of Theorem 7 in [15] works.
The following examples tell that we need $\left(\tau^{\prime} 1\right)$ and $\left(\tau^{\prime} 3\right)$ in Theorem 13.

Example 14. Let $X=[1, \infty)$ and $d(x, y)=|x-y|$ for $x, y \in X$. Define a function p from $X \times X$ into $[0, \infty)$ by

$$
p(x, y)= \begin{cases}1 /(x(x+1)) & \text { if } y=x+1 \\ 1 & \text { otherwise }\end{cases}
$$

Define a continuous function f from X into $[0, \infty)$ by $f(x)=1 / x$ and put $u=1$. Then the following hold:
(j) p satisfies $\left(\tau^{\prime} 2\right)$ and ($\tau^{\prime} 3$).
(jj) There does not exist $v \in X$ satisfying (i)-(iii) of Theorem 13 .
Proof. Since the assumptions of $\left(\tau^{\prime} 2\right)$ and $\left(\tau^{\prime} 3\right)$ always do not hold, (j) holds. For any $x \in X$, we have

$$
f(x+1) \leq f(x)-p(x, x+1) .
$$

So (ii) of Theorem 13 always does not hold. Thus (jj) holds.
Example 15. Let X and d be as in Example 12. Define a function p from $X \times X$ into $[0, \infty)$ by

$$
p(x, y)= \begin{cases}1 / y & \text { if } x=1 \\ 1 & \text { if } x \neq 1\end{cases}
$$

Define a continuous function f from X into $[0, \infty)$ by

$$
f(x)= \begin{cases}0 & \text { if } x=1 \\ 1 / x & \text { if } x \neq 1\end{cases}
$$

and put $u=1$. Then the following hold:
(j) p satisfies $\left(\tau^{\prime} 1\right)$ and $\left(\tau^{\prime} 2\right)$.
(jj) There does not exist $v \in X$ satisfying (i)-(iii) of Theorem 13 .
Proof. We have

$$
p(x, z) \leq 1 \leq p(x, y)+p(y, z)
$$

for any $x, y, z \in X$, thus ($\tau^{\prime} 1$) holds. The assumption of $\left(\tau^{\prime} 2\right)$ always does not hold, thus, $\left(\tau^{\prime} 2\right)$ holds. Let us prove (jj). If $v \neq 1$, then v does not satisfy (i) of Theorem 13. Therefore we assume $v=1$. We will show that v does not satisfy (iii) of Theorem 13. Define a sequence $\left\{x_{n}\right\}$ in X by $x_{n}=n$. Then

$$
\lim _{n \rightarrow \infty}\left(f\left(x_{n}\right)+p\left(v, x_{n}\right)\right)=\lim _{n \rightarrow \infty}(1 / n+1 / n)=0=f(v)
$$

holds but $\left\{x_{n}\right\}$ does not converge to v. Therefore v does not satisfy (iii) of Theorem 13.
The following are generalizations of Kannan's fixed point theorem [9]. See also Theorem 3.3 in [13].
Theorem 16. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $\left(\tau^{\prime} 2\right)$. Let T be a mapping on X. Assume that there exists $\alpha \in[0,1 / 2)$ satisfying

$$
p(T x, T y) \leq \alpha p(T x, x)+\alpha p(T y, y)
$$

for all $x, y \in X$. Then T has a unique fixed point z. Moreover $p(z, z)=0$ holds and $\left\{T^{n} x\right\}$ converges to z for any $x \in X$.
Proof. Since

$$
p\left(T^{2} x, T x\right) \leq \alpha p\left(T^{2} x, T x\right)+\alpha p(T x, x)
$$

we have

$$
p\left(T^{2} x, T x\right) \leq r p(T x, x)
$$

for any $x \in X$, where $r:=\alpha /(1-\alpha) \in[0,1)$. Fix $u \in X$. We have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup _{m>n} p\left(T^{n} u, T^{m} u\right) \leq \lim _{n \rightarrow \infty} \sup _{m>n}\left(\alpha p\left(T^{n} u, T^{n-1} u\right)+\alpha p\left(T^{m} u, T^{m-1} u\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \sup _{m>n} \alpha\left(r^{n-1}+r^{m-1}\right) p(T u, u)=\lim _{n \rightarrow \infty} \alpha\left(r^{n-1}+r^{n}\right) p(T u, u)=0 .
\end{aligned}
$$

By Lemma $8,\left\{T^{n} u\right\}$ satisfies Condition (CL). Since X is complete, $\left\{T^{n} u\right\}$ converges to some $z \in X$. We have

$$
\begin{aligned}
& p(T z, z) \leq \liminf _{n \rightarrow \infty} p\left(T z, T^{n+1} u\right) \\
& \leq \liminf _{n \rightarrow \infty}\left(\alpha p(T z, z)+\alpha p\left(T^{n+1} u, T^{n} u\right)\right)=\alpha p(T z, z)
\end{aligned}
$$

Since $\alpha<1$, we obtain $p(T z, z)=0$. We also have

$$
p(T z, T z) \leq 2 \alpha p(T z, z)=0
$$

So by Lemma 9, we obtain $T z=z$. In order to show the uniqueness of z, let w be a fixed point of T. Then we have

$$
p(w, w)=p(T w, T w) \leq 2 \alpha p(T w, w)=2 \alpha p(w, w) .
$$

Since $2 \alpha<1$, we have $p(w, w)=0$. So we have

$$
p(z, w)=p(T z, T w) \leq \alpha p(T z, z)+\alpha p(T w, w)=0 .
$$

By Lemma 9, we obtain $z=w$. Therefore the fixed point z is unique.
Theorem 17. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying ($\tau^{\prime} 2$) and ($\tau^{\prime} 3$). Let T be a mapping on X. Assume that there exists $\alpha \in[0,1 / 2)$ satisfying

$$
p(T x, T y) \leq \alpha p(T x, x)+\alpha p(y, T y)
$$

for all $x, y \in X$. Then T has a unique fixed point z. Moreover $p(z, z)=0$ holds and $\left\{T^{n} x\right\}$ converges to z for any $x \in X$. Proof. Since

$$
p\left(T^{2} x, T x\right) \leq \alpha p\left(T^{2} x, T x\right)+\alpha p(x, T x)
$$

and

$$
p\left(T x, T^{2} x\right) \leq \alpha p(T x, x)+\alpha p\left(T x, T^{2} x\right)
$$

we have

$$
p\left(T^{2} x, T x\right) \leq r p(x, T x) \quad \text { and } \quad p\left(T x, T^{2} x\right) \leq r p(T x, x)
$$

for any $x \in X$, where $r:=\alpha /(1-\alpha) \in[0,1)$. Hence

$$
\max \left\{p\left(T^{2} x, T x\right), p\left(T x, T^{2} x\right)\right\} \leq r \max \{p(T x, x), p(x, T x)\}
$$

for any $x \in X$. Fix $u \in X$. We have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup _{m>n} p\left(T^{n} u, T^{m} u\right) \leq \lim _{n \rightarrow \infty} \sup _{m>n}\left(\alpha p\left(T^{n} u, T^{n-1} u\right)+\alpha p\left(T^{m-1} u, T^{m} u\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \sup _{m>n} \alpha\left(r^{n-1}+r^{m-1}\right) \max \{p(T u, u), p(u, T u)\} \\
& =\lim _{n \rightarrow \infty} \alpha\left(r^{n-1}+r^{n}\right) \max \{p(T u, u), p(u, T u)\}=0 .
\end{aligned}
$$

By Lemma 8, $\left\{T^{n} u\right\}$ satisfies Condition (CL). Since X is complete, $\left\{T^{n} u\right\}$ converges to some $z \in X$. We have

$$
\begin{aligned}
& p(T z, z) \leq \liminf _{n \rightarrow \infty} p\left(T z, T^{n+1} u\right) \\
& \leq \liminf _{n \rightarrow \infty}\left(\alpha p(T z, z)+\alpha p\left(T^{n} u, T^{n+1} u\right)\right)=\alpha p(T z, z)
\end{aligned}
$$

Since $\alpha<1$, we obtain $p(T z, z)=0$. We also have

$$
p\left(T z, T^{2} z\right) \leq r p(T z, z)=0
$$

So by Lemma 6, we obtain $T^{2} z=z$. Then we note that $\left\{T^{n} z: n \in \mathbb{N} \cup\{0\}\right\}$ consists of at most two elements. Since $\left\{T^{n} z\right\}$ is a Cauchy sequence, we obtain $T z=z$. Hence $p(z, z)=0$ holds. We can prove the uniqueness of a fixed point z as in the proof of Theorem 16.

The following example tells that we need ($\tau^{\prime} 3$) in Theorem 17.
Example 18. Let $\alpha \in(0,1 / 2)$ and put $X=\mathbb{N} \cup\{0\}$. Define a mapping S from X into $[0,1)$ by

$$
S x= \begin{cases}0 & \text { if } x=0 \\ \alpha^{x} & \text { if } x \neq 0\end{cases}
$$

and a function d from $X \times X$ into $[0, \infty)$ by $d(x, y)=|S x-S y|$. Define a function p from $X \times X$ into $[0, \infty)$ by

$$
p(x, y)= \begin{cases}0 & \text { if } x \text { is odd and } y \text { is even } \\ \alpha^{y} & \text { if } x \text { is odd and } y \text { is odd } \\ \alpha^{x} & \text { if } x \text { is even and } y \text { is even } \\ \alpha^{x}+\alpha^{y} & \text { if } x \text { is even and } y \text { is odd }\end{cases}
$$

and a mapping T on X by $T x=x+1$. Then the following hold:
(i) p satisfies $\left(\tau^{\prime} 1\right)$ and $\left(\tau^{\prime} 2\right)$.
(ii) $p(T x, T y) \leq \alpha p(T x, x)+\alpha p(y, T y)$ for all $x, y \in X$.
(iii) T does not have a fixed point.

Proof. Let $I, J, K \in X$ be odd numbers, let $\iota, j, \kappa \in X$ be even numbers and let $y \in X$. We have

$$
\begin{aligned}
& p(I, \kappa)=0 \leq p(I, y)+p(y, \kappa) \\
& p(I, K)=\alpha^{K} \leq p(y, K) \leq p(I, y)+p(y, K), \\
& p(\iota, \kappa)=\alpha^{\iota} \leq p(\iota, y) \leq p(\iota, y)+p(y, \kappa) \\
& p(\iota, K)=\alpha^{\iota}+\alpha^{K} \leq \alpha^{\iota}+\alpha^{J}+\alpha^{K}=p(\iota, J)+p(J, K), \\
& p(\iota, K)=\alpha^{\iota}+\alpha^{K} \leq \alpha^{\iota}+\alpha^{j}+\alpha^{K}=p(\iota, j)+p(j, K) .
\end{aligned}
$$

Thus ($\tau^{\prime} 1$) holds. In order to show $\left(\tau^{\prime} 2\right)$, we assume $\lim _{n} \sup \left\{p\left(z_{n}, z_{m}\right): m>n\right\}=0$ and $\lim _{n} p\left(z_{n}, x_{n}\right)=0$. Then it is obvious that $\lim _{n} z_{n}=\lim _{n} x_{n}=\infty$ holds. Thus, $\left\{z_{n}\right\}$ and $\left\{x_{n}\right\}$ converge to 0 in (X, d). So $\lim _{n} d\left(z_{n}, x_{n}\right)=0$ holds. We have

$$
\begin{aligned}
& p(I, 0)=0 \leq \liminf _{n \rightarrow \infty} p\left(I, x_{n}\right), \\
& p(l, 0)=\alpha^{l} \leq \liminf _{n \rightarrow \infty} p\left(\iota, x_{n}\right) .
\end{aligned}
$$

Thus ($\tau^{\prime} 2$) holds. We have

$$
\begin{aligned}
& p(\iota+1, J+1)=0=\alpha p(\iota+1, \iota)+\alpha p(J, J+1) \\
& \begin{array}{l}
p(\iota+1, j+1)=\alpha^{j+1} \leq \alpha\left(\alpha^{j}+\alpha^{j+1}\right) \\
\quad=\alpha p(\iota+1, \iota)+\alpha p(j, j+1) \\
p(I+1, J+1)=\alpha^{I+1} \leq \alpha\left(\alpha^{I+1}+\alpha^{I}\right) \\
\quad=\alpha p(I+1, I)+\alpha p(J, J+1) \\
p(I+1, j+1)=\alpha^{I+1}+\alpha^{j+1} \leq \alpha\left(\alpha^{I+1}+\alpha^{I}+\alpha^{j}+\alpha^{j+1}\right) \\
\quad=\alpha p(I+1, I)+\alpha p(j, j+1) .
\end{array}
\end{aligned}
$$

Thus (ii) holds. (iii) is obvious.

4. Example

In this section, we give an example of a τ^{\prime}-distance which is not a τ-distance.
Lemma 19. Let A, B and C be subsets of $[0,1]$ defined by

$$
\begin{aligned}
& A=\left\{\sum_{j=1}^{\infty} a_{j} 10^{-j}: a_{j} \in\{0,1\}\right\} \\
& B=A \cap \mathbb{Q} \text { and } C=A \backslash \mathbb{Q} .
\end{aligned}
$$

For $a \in A$, we write a_{j} for $\left[a 10^{j}\right] \bmod 10$, where $[x]$ is the maximum integer not exceeding x. That is, $a=\sum_{j=1}^{\infty} a_{j} 10^{-j}$ holds for any $a \in A$. Then the following hold:
(i) For $c \in C, \varepsilon>0$ and $k \in \mathbb{N}$, there exists $b \in B$ satisfying the following:

- $|b-c|<\varepsilon$.
- $b_{j}=c_{j}$ for $j \in\{1, \cdots, k\}$.
(ii) For $b \in B, \varepsilon>0$ and $k, \ell \in \mathbb{N}$, there exist $c \in C$ and $n \in \mathbb{N}$ satisfying the following:
- $|b-c|<\varepsilon$.
- $b_{j}=c_{j}$ for $j \in\{1, \cdots, k\}$.
- For any $i, j \in\{1, \cdots, \ell\}$, there exists $h \in \mathbb{N}$ such that $i+j h \leq n$ and $c_{i} \neq c_{i+j h}$.

Proof. We first show (i). Fix $c \in C, \varepsilon>0$ and $k \in \mathbb{N}$. Then we can choose $\ell \in \mathbb{N}$ satisfying $10^{-\ell}<\varepsilon$ and $\ell \geq k$. Then define a sequence $\left\{b_{j}\right\}$ in $\{0,1\}$ by

- $b_{j}=c_{j}$ for $j \in \mathbb{N}$ with $j \leq \ell$ and
- $b_{j}=0$ for $j \in \mathbb{N}$ with $j>\ell$.

Then

$$
b:=\sum_{j=1}^{\infty} b_{j} 10^{-j} \in B \quad \text { and } \quad|b-c|<2 \cdot 10^{-\ell-1}<10^{-\ell}<\varepsilon
$$

hold. We next show (ii). Fix $b \in B, \varepsilon>0$ and $k, \ell \in \mathbb{N}$. Then we can choose $c \in C$ satisfying $|b-c|<\varepsilon$ and $b_{j}=c_{j}$ for $j \in\{1, \cdots, k\}$. It is obvious that for sufficiently large $n \in \mathbb{N}, n$ satisfies the conclusion because c is irrational.

From now on, we write $b(c, \varepsilon, k)$ for b in (i) of Lemma 19. Also we write $c(b, \varepsilon, k, \ell)$ for c and $n(b, \varepsilon, k, \ell)$ for n in (ii) of Lemma 19, respectively. Though $b(c, \varepsilon, k), c(b, \varepsilon, k, \ell)$ and $n(b, \varepsilon, k, \ell)$ above are not functions, we will use these notations in making examples. because there is no room for ambiguity.
Lemma 20. Let A, B and C be as in Lemma 19. Define sequences $\left\{b^{(n)}\right\}$ in $B,\left\{c^{(n)}\right\}$ in $C,\left\{s^{(n)}\right\}$ and $\left\{t^{(n)}\right\}$ in $(0, \infty)$ and $\left\{v^{(n)}\right\}$ in \mathbb{N} as follows:
(Step 1) $n=1, b^{(1)} \in B$ and $s^{(1)}>0$.
(Step 2) $c^{(1)}=c\left(b^{(1)}, s^{(1)}, 1,1\right), v^{(1)}=n\left(b^{(1)}, s^{(1)}, 1,1\right)$ and $t^{(1)}>0$.
(Step 3) $n:=n+1, b^{(n)}=b\left(c^{(n-1)}, t^{(n-1)}, v^{(n-1)}\right)$ and $s^{(n)}>0$.
(Step 4) $c^{(n)}=c\left(b^{(n)}, s^{(n)}, v^{(n-1)}, n\right), v^{(n)}=\max \left\{v^{(n-1)}, n\left(b^{(n)}, s^{(n)}, v^{(n-1)}, n\right)\right\}$ and $t^{(n)}>0$.
(Step 5) goto (Step 3).
Then $\left\{b^{(n)}\right\}$ and $\left\{c^{(n)}\right\}$ converge to a same number γ, which belongs to C.
Remark. We can choose $s^{(n)}$, depending on $b^{(k)}(k \leq n)$ and others. On the other hand, we cannot choose $s^{(n)}$, depending on $b^{(k)}(k>n)$ and others. Similarly for $t^{(n)}$.

Proof. As in Lemma 19, for $a \in A$, we write a_{j} for [a10j] mod 10. Since $v(b, \varepsilon, k, \ell) \geq 2 \ell$ holds, we first note $\lim _{n} v^{(n)}=\infty$. We next note that $\left\{v^{(n)}\right\}$ is nondecreasing. Hence

$$
c_{j}^{(n)}=b_{j}^{(n+1)}=c_{j}^{(n+1)}=\cdots \quad \text { provided } \quad j \leq v^{(n)} .
$$

Therefore $\left\{b^{(n)}\right\}$ and $\left\{c^{(n)}\right\}$ converge to a same number γ. Arguing by contradiction, we assume that γ is rational. Then there exist $i, j \in \mathbb{N}$ such that $\gamma_{r}=\gamma_{r+j}$ for any $r \geq i$. Put $n=\max \{i, j\}$. Then there exists $h \in \mathbb{N}$ such that $i+j h \leq v^{(n)}$ and

$$
\gamma_{i}=c_{i}^{(n)} \neq c_{i+j h}^{(n)}=\gamma_{i+j h}=\gamma_{i},
$$

which is a contradiction. Therefore γ is irrational.
Example 21. Let X be a subset of \mathbb{R}^{2} defined by

$$
X=(\{-1\} \times([0,1] \cap \mathbb{Q})) \cup(\{0\} \times[0,1]) \cup((0,1] \times([0,1] \backslash \mathbb{Q}))
$$

Define functions d and p from $X \times X$ into $[0, \infty)$ by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)= \begin{cases}0 & \text { if }\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right) \\ \left|x_{1}\right|+\left|y_{1}\right|+\left|x_{2}-y_{2}\right| & \text { otherwise }\end{cases}
$$

and

$$
p\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)= \begin{cases}d\left(\left(0, x_{2}\right),\left(y_{1}, y_{2}\right)\right) & \text { if } x_{1}=-1, y_{1}=0, y_{2} \in \mathbb{Q} \\ d\left(\left(0, x_{2}\right),\left(y_{1}, y_{2}\right)\right) & \text { if } x_{1}=-1, y_{1}>0 \\ 3 & \text { otherwise }\end{cases}
$$

for any $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X$. Then the following hold:
(i) (X, d) is a complete metric space.
(ii) p is a τ^{\prime}-distance on X.
(iii) p is not a τ-distance on X.

Proof. For any $x \in X$, we write x_{1} for the first element of x and we write x_{2} for the second element of x. That is, $x=\left(x_{1}, x_{2}\right)$ holds. (i) is obvious. We note $\max \{d(x, y): x, y \in X\}=3$. So we have

$$
p(x, z) \leq 3 \leq p(x, y)+p(y, z)
$$

for any x, y, z. We have shown ($\left.\tau^{\prime} 1\right)$. From the definition of p, there does not exist a sequence $\left\{z^{(n)}\right\}$ satisfying $\lim _{n} \sup \left\{p\left(z^{(n)}, z^{(m)}\right): m>n\right\}=0$. Thus, ($\left.\tau^{\prime} 2\right)$ holds. In order to show ($\left.\tau^{\prime} 3\right)$, we let $z \in X$ and a sequence $\left\{x^{(n)}\right\}$ satisfy $\lim _{n} p\left(z, x^{(n)}\right)=0$. From the definition of $p, z_{1}=-1$ obviously holds. From the definition of $X, z_{2} \in \mathbb{Q}$ holds. For sufficiently large $n \in \mathbb{N}$, either of the following holds:

- $x_{1}^{(n)}=0$ and $x_{2}^{(n)} \in \mathbb{Q}$.
- $x_{1}^{(n)}>0$.

So

$$
p\left(z, x^{(n)}\right)=d\left(\left(0, z_{2}\right),\left(x_{1}^{(n)}, x_{2}^{(n)}\right)\right)=\left|x_{1}^{(n)}\right|+\left|z_{2}-x_{2}^{(n)}\right|
$$

holds. Hence we have

$$
\lim _{n \rightarrow \infty} x_{1}^{(n)}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} x_{2}^{(n)}=z_{2}
$$

Therefore we obtain

$$
\lim _{n \rightarrow \infty} d\left(x^{(n)}, x^{(n+1)}\right)=\lim _{n \rightarrow \infty}\left(\left|x_{1}^{(n)}\right|+\left|x_{1}^{(n+1)}\right|+\left|x_{2}^{(n)}-x_{2}^{(n+1)}\right|\right)=0
$$

So $\left\{x^{(n)}\right\}$ converges to $x:=\left(0, z_{2}\right)$. Fix $w \in X$. Then in the case where $w_{1}=-1$, we have

$$
p(w, x)=d\left(\left(0, w_{2}\right), x\right)=\lim _{n \rightarrow \infty} d\left(\left(0, w_{2}\right), x^{(n)}\right)=\lim _{n \rightarrow \infty} p\left(w, x^{(n)}\right) .
$$

In the other case, where $w_{1} \neq-1$, we have $p(w, y)=3$ for any $y \in X$. So in both cases, we obtain $p(w, x) \leq \liminf _{n} p\left(w, x^{(n)}\right)$. We have shown ($\tau^{\prime} 3$). Let us prove (iii). Arguing by contradiction, we assume that p is a τ-distance with η. Let A, B and C be as in Lemma 19. Define sequences $\left\{z^{(n)}\right\}$ and $\left\{x^{(n)}\right\}$ in $X,\left\{b^{(n)}\right\}$ in $B,\left\{c^{(n)}\right\}$ in $C,\left\{s^{(n)}\right\}$ and $\left\{t^{(n)}\right\}$ in $(0, \infty)$ and $\left\{v^{(n)}\right\}$ in \mathbb{N} as follows:
(Step 1) $n=1, b^{(1)} \in B$ and $z^{(1)}=\left(-1, b^{(1)}\right)$.
(Step 2) Choose $s^{(1)}$ satisfying $\eta\left(z^{(1)}, s^{(1)}\right)<2^{-1}$.
(Step 3) $c^{(1)}=c\left(b^{(1)}, s^{(1)}, 1,1\right)$ and $v^{(1)}=n\left(b^{(1)}, s^{(1)}, 1,1\right)$.
(Step 4) Choose $t^{(1)}$ satisfying $t^{(1)}+\left|b^{(1)}-c^{(1)}\right|<s^{(1)}$ and put $x^{(1)}=\left(t^{(1)}, c^{(1)}\right)$.
(Step 5) $n:=n+1, b^{(n)}=b\left(c^{(n-1)}, t^{(n-1)}, v^{(n-1)}\right)$ and $z^{(n)}=\left(-1, b^{(n)}\right)$.
(Step 6) Choose $s^{(n)}$ satisfying $\eta\left(z^{(n)}, s^{(n)}\right)<2^{-n}$ and $s^{(n)}+\left|b^{(n)}-c^{(n-1)}\right|<t^{(n-1)}$.
(Step 7) $c^{(n)}=c\left(b^{(n)}, s^{(n)}, v^{(n-1)}, n\right)$ and $v^{(n)}=\max \left\{v^{(n-1)}, n\left(b^{(n)}, s^{(n)}, v^{(n-1)}, n\right)\right\}$.
(Step 8) Choose $t^{(n)}$ satisfying $t^{(n)}+\left|b^{(n)}-c^{(n)}\right|<s^{(n)}$ and put $x^{(n)}=\left(t^{(n)}, c^{(n)}\right)$.
(Step 9) goto (Step 5).
Then we have

$$
\begin{aligned}
& p\left(z^{(n)}, x^{(m)}\right)=d\left(\left(0, b^{(n)}\right),\left(t^{(m)}, c^{(m)}\right)\right) \\
& \leq d\left(\left(0, b^{(n)}\right),\left(0, b^{(m)}\right)\right)+d\left(\left(0, b^{(m)}\right),\left(t^{(m)}, c^{(m)}\right)\right) \\
& =\left|b^{(n)}-b^{(m)}\right|+t^{(m)}+\left|b^{(m)}-c^{(m)}\right| \\
& <\left|b^{(n)}-b^{(m)}\right|+s^{(m)} \\
& \leq \sum_{k=n}^{m-1}\left(\left|b^{(k)}-c^{(k)}\right|+\left|b^{(k+1)}-c^{(k)}\right|\right)+s^{(m)} \\
& <\sum_{k=n}^{m-1}\left(s^{(k)}-t^{(k)}+t^{(k)}-s^{(k+1)}\right)+s^{(m)} \\
& =s^{(n)}
\end{aligned}
$$

for $m, n \in \mathbb{N}$ with $m \geq n$ and hence

$$
\lim _{n \rightarrow \infty} \sup _{m \geq n} \eta\left(z^{(n)}, p\left(z^{(n)}, x^{(m)}\right)\right) \leq \lim _{n \rightarrow \infty} \eta\left(z^{(n)}, s^{(n)}\right) \leq \lim _{n \rightarrow \infty} 2^{-n}=0 .
$$

By Lemma 20, $\left\{c^{(n)}\right\}$ converges to some irrational number γ. Also since $t^{(n)}<s^{(n)}<2^{-n}$ holds by $\left(\tau_{d} 2\right)$, $\left\{t^{(n)}\right\}$ converges to 0 . So $\left\{x^{(n)}\right\}$ converges to $(0, \gamma) \in X$. We have

$$
p((-1,0),(0, \gamma))=3>\gamma=\lim _{n \rightarrow \infty} d\left((0,0), x^{(n)}\right)=\lim _{n \rightarrow \infty} p\left((-1,0), x^{(n)}\right),
$$

which contradicts $\left(\tau_{d} 3\right)$. Therefore p is not a τ-distance.

Competing Interests

The author declares that he has no competing interests.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), $133-181$.
[2] R. Caccioppoli, Un teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794-799.
[3] W.-S. Du, On generalized Caristi's fixed point theorem and its equivalence, Nonlinear Anal. Differential Equations, 4 (2016), 635-644.
[4] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. MR0346619
[5] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474. MR0526967
[6] P. G. Georgiev, The strong Ekeland variational principle, the strong drop theorem and applications, J. Math. Anal. Appl., 131 (1988), 1-21. MR0934428
[7] J. Jachymski, J. Matkowski and T. Świa̧tkowski, Nonlinear contractions on semimetric spaces, J. Appl. Anal., 1 (1995), 125-134. MR1 395268
[8] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (1996), 381-391. MR1416281
[9] R. Kannan, Some results on fixed points - II, Amer. Math. Monthly, 76 (1969), 405-408. MR0257838
[10] L. J. Lin and W.-S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl., 323 (2006), 360-370. MR2262210
[11] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488. MR0254828
[12] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458. MR1808147
[13] T. Suzuki, Several fixed point theorems concerning τ-distance, Fixed Point Theory Appl., 2004 (2004), 195-209. MR2096951
[14] T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Prace Mat., 45 (2005), 45-58. MR2199893
[15] T. Suzuki, The strong Ekeland variational principle, J. Math. Anal. Appl., 320 (2006), 787-794. MR2225994
[16] T. Suzuki, On the relation between the weak Palais-Smale condition and coercivity given by Zhong, Nonlinear Anal., 68 (2008), $2471-2478$. MR2398665
[17] T. Suzuki, Convergence of the sequence of successive approximations to a fixed point, Fixed Point Theory Appl., 2010 (2010), Article ID 716971, 1-14. MR2595834
[18] T. Suzuki, Redefinition of τ-distance in metric spaces, J. Funct. Spaces, 2017, Art. ID 4168486, 8 pp. MR3641859
[19] D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), $345-392$. MR1145836
[20] C.-K. Zhong, A generalization of Ekeland's variational principle and application to the study of the relation between the weak P.S. condition and coercivity, Nonlinear Anal., 29 (1997), 1421-1431. MR1484914
[21] C.-K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl., 205 (1997), 239-250. MR1426991

[^0]: 2020 Mathematics Subject Classification. Primary 54E35; Secondary 54H25.
 Keywords. τ^{\prime}-distance, Nadler's fixed point theorem, Kannan's fixed point theorems, strong Ekeland variational principle Received: 15 May 2017; Revised: 08 November 2017; Accepted: 25 February 2019
 Communicated by Adrian Petrusel
 The author is supported in part by JSPS KAKENHI Grant Number 16K05207 from Japan Society for the Promotion of Science. Email address: suzuki-t@mns.kyutech.ac.jp (Tomonari Suzuki)

