Filomat 37:23 (2023), 7981–7992 https://doi.org/10.2298/FIL2323981S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some comments on τ -distance and existence theorems in complete metric spaces

Tomonari Suzuki^a

^a Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

Abstract. Very recently, we have introduced the concept of τ' -distance, which is slightly weaker than that of τ -distance. We discuss the difference between both concepts, proving some existence theorems in complete metric spaces and giving an example of a τ' -distance which is not a τ -distance.

1. Introduction

Throughout this paper, we denote by \mathbb{N} , \mathbb{Q} and \mathbb{R} the sets of all positive integers, all rational numbers and all real numbers, respectively.

In 2001, the concept of τ -distance was introduced in order to generalize results in [1, 4, 5, 19–21] and others.

Definition 1 ([12]). Let (*X*, *d*) be a metric space. Then a function *p* from $X \times X$ into $[0, \infty)$ is called a τ -*distance* on *X* if there exists a function η from $X \times [0, \infty)$ into $[0, \infty)$ and the following are satisfied:

- $(\tau_d 1) p(x, z) \le p(x, y) + p(y, z)$ for any $x, y, z \in X$.
- $(\tau_d 2)$ $\eta(x, 0) = 0$ and $\eta(x, t) \ge t$ for any $x \in X$ and $t \in [0, \infty)$, and η is concave and continuous in its second variable.
- $(\tau_d 3)$ $\lim_n x_n = x$ and $\lim_n \sup \{\eta(z_n, p(z_n, x_m)) : m \ge n\} = 0$ imply $p(w, x) \le \lim \inf_n p(w, x_n)$ for any $w \in X$.
- $(\tau_d 4) \lim_{n \to \infty} \sup\{p(x_n, y_m) : m \ge n\} = 0 \text{ and } \lim_{n \to \infty} \eta(x_n, t_n) = 0 \text{ imply } \lim_{n \to \infty} \eta(y_n, t_n) = 0.$
- $(\tau_d 5) \lim_n \eta(z_n, p(z_n, x_n)) = 0$ and $\lim_n \eta(z_n, p(z_n, y_n)) = 0$ imply $\lim_n d(x_n, y_n) = 0$.

We note that the metric *d* is one of τ -distances on *X* with $\eta = ((x, t) \mapsto t)$. Every *w*-distance is also a τ -distance; see [8, 12]. See [8, 12–17] and references therein for many examples and theorems concerning τ -distance. For instance, using τ -distance, Suzuki [16] gave a simple proof of Zhong's theorem [20].

Very recently, strongly inspired by τ -function in Lin and Du [10], we introduced τ' -distance in [18].

Definition 2 ([18]). Let (*X*, *d*) be a metric space and let *p* be a function from $X \times X$ into $[0, \infty)$. Then *p* is called a τ' -*distance* on *X* if the following hold:

Communicated by Adrian Petrusel

²⁰²⁰ Mathematics Subject Classification. Primary 54E35; Secondary 54H25.

Keywords. τ'-distance, Nadler's fixed point theorem, Kannan's fixed point theorems, strong Ekeland variational principle Received: 15 May 2017; Revised: 08 November 2017; Accepted: 25 February 2019

The author is supported in part by JSPS KAKENHI Grant Number 16K05207 from Japan Society for the Promotion of Science. *Email address:* suzuki-t@mns.kyutech.ac.jp (Tomonari Suzuki)

- $(\tau'1) p(x,z) \le p(x,y) + p(y,z)$ for any $x, y, z \in X$.
- $(\tau'2)$ If $\lim_n \sup\{p(z_n, z_m) : m > n\} = 0$ and $\lim_n p(z_n, x_n) = 0$, then $\lim_n d(z_n, x_n) = 0$. Moreover if $\{x_n\}$ converges to some $x \in X$, then $p(w, x) \le \liminf_n p(w, x_n)$ for any $w \in X$.
- (τ '3) If $\lim_{n} p(z, x_n) = 0$, then $\lim_{n} d(x_n, x_{n+1}) = 0$ holds. Moreover if $\{x_n\}$ converges to some $x \in X$, then $p(w, x) \le \liminf_{n} p(w, x_n)$ for any $w \in X$.

The concept of τ' -distance is 'slightly' weaker than that of τ -distance. The word 'slightly' means that we can prove τ' -distance versions of all the existence theorems in [12–16] with using the same proofs. So, we could tell that we 'redefine' the definition of τ -distance. In [18], we showed that τ' -distance is more natural than τ -distance.

In this paper, we find another merit of τ' -distance. While we cannot separate Conditions (τ_d 1)–(τ_d 5) on τ -distance, we can separate Conditions (τ' 1)–(τ' 3) on τ' -distance. That is, we can discuss something mathematical more finely. Also, we give an example of a τ' -distance which is not a τ -distance.

2. Lemmas

In this section, paying attention to how (τ '2) and (τ '3) work separately, we discuss some lemmas proved in [18].

Definition 3 ([18]). Let *p* be a τ' -distance on a metric space (*X*, *d*). Let { $x_\alpha : \alpha \in D$ } be a net in *X*. Then { x_α } is said to satisfy *Condition* (*CL*) if the following hold:

(CL1) $\{x_{\alpha}\}$ is a Cauchy net in the usual sense.

- (CL2) Either of the following hold:
 - $\{x_{\alpha}\}$ does not converge.
 - If $\{x_{\alpha}\}$ converges to x, then $p(w, x) \leq \liminf_{\alpha} p(w, x_{\alpha})$ holds for any $w \in X$.

We first begin with (τ '3).

Lemma 4. Let (X, d) be a metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $(\tau'3)$. Let $\{x_{\alpha} : \alpha \in D\}$ be a net in X satisfying $\lim_{\alpha} p(z, x_{\alpha}) = 0$ for some $z \in X$. Then the following hold:

- (i) $\{x_{\alpha}\}$ satisfies Condition (CL).
- (ii) If a net $\{y_{\alpha} : \alpha \in D\}$ in X also satisfies $\lim_{\alpha} p(z, y_{\alpha}) = 0$, then $\lim_{\alpha} d(x_{\alpha}, y_{\alpha}) = 0$ holds.

Proof. The proof of Lemma 13 in [18] works. \Box

As corollaries of Lemma 4, we obtain the following.

Lemma 5. Let (X, d) and p be as in Lemma 4. Let $\{x_n\}$ be a sequence in X satisfying $\lim_n p(z, x_n) = 0$ for some $z \in X$. Then the following hold:

- (i) $\{x_n\}$ satisfies Condition (CL).
- (ii) If a sequence $\{y_n\}$ in X also satisfies $\lim_{\alpha} p(z, y_n) = 0$, then $\lim_{\alpha} d(x_n, y_n) = 0$ holds.

Lemma 6. Let (X, d) and p be as in Lemma 4. If p(z, x) = p(z, y) = 0 holds, then x = y holds.

We next pay attention to how (τ '2) works.

Lemma 7. Let (X, d) be a metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $(\tau'2)$. Let D be a directed set such that for any $\alpha \in D$, there exists $\beta \in D$ with $\alpha \not\geq \beta$. Let $\{z_{\alpha} : \alpha \in D\}$ be a net in X satisfying $\lim_{\alpha \to 0} \sup\{p(z_{\alpha}, z_{\beta}) : \beta > \alpha\} = 0$. Then the following hold:

- (i) If a net $\{x_{\alpha} : \alpha \in D\}$ in X satisfies $\lim_{\alpha} p(z_{\alpha}, x_{\alpha}) = 0$, then $\{x_{\alpha}\}$ satisfies Condition (CL) and $\lim_{\alpha} d(z_{\alpha}, x_{\alpha}) = 0$ holds.
- (ii) $\{z_{\alpha}\}$ satisfies Condition (CL).

Proof. We note that the assumption on *D* is the condition of the second case in the proof of Lemma 16 in [18]. We note the following:

• For any $\alpha \in D$ there exists $\beta \in D$ with $\beta > \alpha$.

Therefore the proof of Lemma 16 (the second case) in [18] works. \Box

As a corollary of Lemma 7, we obtain the following sequential version.

Lemma 8. Let (X, d) and p be as in Lemma 7. Let $\{z_n\}$ be a sequence in X satisfying $\lim_n \sup\{p(z_n, z_m) : m > n\} = 0$. Then the following hold:

- (i) If a sequence $\{x_n\}$ in X satisfies $\lim_n p(z_n, x_n) = 0$, then $\{x_n\}$ satisfies Condition (CL) and $\lim_n d(z_n, x_n) = 0$ holds.
- (ii) $\{z_n\}$ satisfies Condition (CL).

By Lemma 8, we obtain the following, which plays a very important role in this paper. Compare Lemma 9 with Lemmas 5 and 6.

Lemma 9. Let (X, d) be a metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $(\tau'2)$. Let $z \in X$ satisfy p(z, z) = 0. Then the following hold:

(i) If a sequence {x_n} in X satisfies lim_n p(z, x_n) = 0, then {x_n} satisfies Condition (CL) and lim_n d(z, x_n) = 0 holds.
(ii) If x ∈ X satisfies p(z, x) = 0, then z = x holds.

Proof. Define a sequence $\{z_n\}$ in X by $z_n = z$. Then $\lim_n \sup\{p(z_n, z_m) : m > n\} = 0$ holds. So, by Lemma 8, we obtain the desired result. \Box

Remark. The proof employs the method in the proof of Lemma 1.1 in [3].

3. Existence Theorems

In this section, we give proofs of four existence theorems. In Theorem 16, we need only ($\tau'2$). In Corollary 11, we need ($\tau'1$) and ($\tau'2$). In Theorem 17, we need ($\tau'2$) and ($\tau'3$). On the other hand, in Theorem 13, we need ($\tau'1$)–($\tau'3$). It is interesting that ($\tau'2$) is needed in all theorems, however, ($\tau'1$) and ($\tau'3$) are not always needed.

Theorem	(τ'1)	(τ'2)	(τ'3)
Theorem 16		0	
Corollary 11	0	0	
Theorem 17		0	0
Theorem 13	0	0	0

The following is a generalization of Nadler's fixed point theorem [11]. See also Theorem 3.7 in [13]

Theorem 10. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $(\tau'1)$ and $(\tau'2)$. Let T be a set-valued mapping on X satisfying the following:

- For any $x \in X$, Tx is a nonempty closed subset of X.
- There exists $r \in [0, 1)$ satisfying

 $Q(Tx,Ty) \le r p(x,y)$

for all $x, y \in X$, where

$$Q(A,B) = \sup_{a \in A} \inf_{b \in B} p(a,b).$$

Then there exists $z \in X$ *satisfying* $z \in Tz$ *and* p(z, z) = 0.

Proof. Replace the value of *r* by $r := (1 + r)/2 \in (0, 1)$. We note the following:

• For any $x, y \in X$, $u \in Tx$ and $\eta > p(x, y)$, there exists $v \in Ty$ satisfying $p(u, v) < r\eta$.

Fix $u_0 \in X$ and $u_1 \in Tu_0$. Put $\alpha = 1/(1 - r)$ and $\beta = p(u_0, u_1) + 1$. Then there exists $u_2 \in Tu_1$ satisfying $p(u_1, u_2) < r\beta$. Then there exists $u_3 \in Tu_2$ satisfying $p(u_2, u_3) < r^2\beta$. Continuing this argument, we can obtain a sequence $\{u_n\}$ in X satisfying

$$u_{n+1} \in Tu_n$$
 and $p(u_n, u_{n+1}) < r^n \beta$

for $n \in \mathbb{N} \cup \{0\}$. For any $m, n \in \mathbb{N} \cup \{0\}$ with m > n, we have by $(\tau'1)$

$$p(u_n, u_m) \leq \sum_{k=n}^{m-1} p(u_k, u_{k+1}) < \sum_{k=n}^{m-1} r^k \beta < r^n \alpha \beta.$$

By Lemma 8, $\{u_n\}$ satisfies Condition (CL). Since X is complete, $\{u_n\}$ converges to some $z \in X$. We have for $n \in \mathbb{N} \cup \{0\}$,

$$p(u_n, z) \le \liminf_{m \to \infty} p(u_n, u_m) \le r^n \, \alpha \, \beta < r^n \, \alpha \, \beta + r^n.$$
⁽¹⁾

So, for $n \in \mathbb{N}$, there exists $v_n \in Tz$ satisfying $p(u_n, v_n) < r^n \alpha \beta + r^n$. By Lemma 8 again, $\{v_n\}$ also satisfies Condition (CL) and converges to z. Since Tz is closed, we obtain $z \in Tz$. Put $w_0 = z$ and $\gamma = p(z, w_0)+1$. There exists $w_1 \in Tw_0$ satisfying $p(z, w_1) < r\gamma$. Then there exists $w_2 \in Tw_1$ satisfying $p(z, w_2) < r^2 \gamma$. Continuing this argument, we can choose a sequence $\{w_n\}$ in X satisfying

$$w_n \in Tw_{n-1}$$
 and $p(z, w_n) < r^n \gamma$

for $n \in \mathbb{N}$. Using this and (1), we have

$$\lim_{n\to\infty} p(u_n, w_n) \le \lim_{n\to\infty} \left(p(u_n, z) + p(z, w_n) \right) = 0.$$

By Lemma 8 again, $\{w_n\}$ also satisfies Condition (CL) and converges to z. We have

$$p(z,z) \leq \liminf_{n \to \infty} p(z,w_n) \leq \lim_{n \to \infty} r^n \gamma = 0.$$

We obtain the desired result. \Box

The following is a generalization of the Banach contraction principle [1, 2]. See also Theorem 2 in [12].

Corollary 11. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $(\tau'1)$ and $(\tau'2)$. Let T be a mapping on X. Assume that there exists $r \in [0, 1)$ satisfying

$$p(Tx, Ty) \le r \, p(x, y)$$

for all $x, y \in X$. Then T has a unique fixed point z. Moreover p(z, z) = 0 holds and $\{T^n x\}$ converges to z for any $x \in X$.

Proof. We note that all the assumptions of Theorem 10 are satisfied. Fix $u \in X$. Then from the proof of Theorem 10, $\{T^n u\}$ converges to a fixed point z of T and p(z, z) = 0 holds. In order to show the uniqueness of z, let w be a fixed point of T. Then we have

$$p(z,w) = p(Tz,Tw) \le r p(z,w).$$

and hence p(z, w) = 0. By Lemma 9, we obtain z = w. Therefore the fixed point *z* is unique. \Box

Since Corollary 11 is important, we give a direct proof of Corollary 11.

Proof. Fix $u \in X$. For $m, n \in \mathbb{N}$ with m > n, we have

$$p(T^{n}u, T^{m}u) \leq \sum_{j=n}^{m-1} p(T^{j}u, T^{j+1}u) \leq \sum_{j=n}^{m-1} r^{j} p(u, Tu)$$
$$\leq \sum_{j=n}^{\infty} r^{j} p(u, Tu) = \frac{r^{n}}{1-r} p(u, Tu)$$

and hence

$$\lim_{n\to\infty}\sup_{m>n}p(T^nu,T^mu)\leq \lim_{n\to\infty}\frac{r^n}{1-r}p(u,Tu)=0.$$

By Lemma 8, $\{T^n u\}$ satisfies Condition (CL). Since X is complete, $\{T^n u\}$ converges to some $z \in X$. We have

$$\lim_{n \to \infty} p(T^n u, Tz) \le \lim_{n \to \infty} r p(T^{n-1}u, z) \le \lim_{n \to \infty} \liminf_{m \to \infty} r p(T^{n-1}u, T^m u)$$
$$\le \lim_{n \to \infty} \frac{r^n}{1 - r} p(u, Tu) = 0.$$

By $(\tau'2)$, $\{T^n u\}$ converges to Tz. Hence Tz = z holds. We also have

$$p(z,z) = \lim_{n \to \infty} p(T^n z, T^n z) \le \lim_{n \to \infty} r^n p(z,z) = 0.$$

We can prove the uniqueness of the fixed point *z* as in the above proof. \Box

The following example tells that we need $(\tau'1)$ in Corollary 11.

Example 12 (Example 2 in [7]). Put $X = \mathbb{N}$ and d(x, y) = |x - y| for $x, y \in X$. Define a function p from $X \times X$ into $[0, \infty)$ by

$$p(x, y) = r^{\min\{x, y\}} |x - y|,$$

where $r \in (0, 1)$. Define a mapping *T* on *X* by Tx = x + 1. Then the following hold:

- (i) *p* satisfies (τ '2) and (τ '3).
- (ii) $p(Tx, Ty) \le r p(x, y)$ for all $x, y \in X$.
- (iii) *T* does not have a fixed point.

Proof. In order to show ($\tau'2$), we assume $\lim_n \sup\{p(z_n, z_m) : m > n\} = 0$ and $\lim_n p(z_n, x_n) = 0$. Then there exists $x \in X$ such that $z_n = x_n = x$ holds for sufficiently large $n \in \mathbb{N}$. Thus ($\tau'2$) holds. In order to show ($\tau'3$), we assume $\lim_n p(z, x_n) = 0$. Then $x_n = z$ holds for sufficiently large $n \in \mathbb{N}$. Thus ($\tau'3$) holds. (ii) and (iii) are obvious. \Box

The following is connected with the strong Ekeland variational principle. See [4–6].

Theorem 13 ([15]). Let X be a complete metric space and let p be a τ' -distance on X. Let f be a function from X into $(-\infty, +\infty]$ which is proper lower semicontinuous and bounded from below. Then for $u \in X$, there exists $v \in X$ satisfying the following:

- (i) $f(v) \leq f(u)$.
- (ii) f(w) > f(v) p(v, w) for all $w \in X \setminus \{v\}$.
- (iii) If a sequence $\{x_n\}$ in X satisfies $\lim_n (f(x_n) + p(v, x_n)) = f(v)$, then $\{x_n\}$ satisfies Condition (CL); and $\lim_n x_n = v$ and $p(v, v) = \lim_n p(v, x_n) = 0$ hold.

Proof. The proof of Theorem 7 in [15] works. \Box

The following examples tell that we need $(\tau'1)$ and $(\tau'3)$ in Theorem 13.

7985

Example 14. Let $X = [1, \infty)$ and d(x, y) = |x - y| for $x, y \in X$. Define a function p from $X \times X$ into $[0, \infty)$ by

$$p(x, y) = \begin{cases} 1/(x (x + 1)) & \text{if } y = x + 1\\ 1 & \text{otherwise.} \end{cases}$$

Define a continuous function *f* from *X* into $[0, \infty)$ by f(x) = 1/x and put u = 1. Then the following hold:

- (j) *p* satisfies $(\tau'2)$ and $(\tau'3)$.
- (jj) There does not exist $v \in X$ satisfying (i)–(iii) of Theorem 13.

Proof. Since the assumptions of $(\tau'2)$ and $(\tau'3)$ always do not hold, (j) holds. For any $x \in X$, we have

$$f(x+1) \le f(x) - p(x, x+1).$$

So (ii) of Theorem 13 always does not hold. Thus (jj) holds. \Box

Example 15. Let *X* and *d* be as in Example 12. Define a function *p* from $X \times X$ into $[0, \infty)$ by

$$p(x, y) = \begin{cases} 1/y & \text{if } x = 1\\ 1 & \text{if } x \neq 1 \end{cases}$$

Define a continuous function *f* from *X* into $[0, \infty)$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 1\\ 1/x & \text{if } x \neq 1 \end{cases}$$

and put u = 1. Then the following hold:

(j) *p* satisfies $(\tau'1)$ and $(\tau'2)$.

(jj) There does not exist $v \in X$ satisfying (i)–(iii) of Theorem 13.

Proof. We have

$$p(x,z) \le 1 \le p(x,y) + p(y,z)$$

for any $x, y, z \in X$, thus (τ '1) holds. The assumption of (τ '2) always does not hold, thus, (τ '2) holds. Let us prove (jj). If $v \neq 1$, then v does not satisfy (i) of Theorem 13. Therefore we assume v = 1. We will show that v does not satisfy (iii) of Theorem 13. Define a sequence { x_n } in X by $x_n = n$. Then

$$\lim_{n \to \infty} (f(x_n) + p(v, x_n)) = \lim_{n \to \infty} (1/n + 1/n) = 0 = f(v)$$

holds but $\{x_n\}$ does not converge to v. Therefore v does not satisfy (iii) of Theorem 13. \Box

The following are generalizations of Kannan's fixed point theorem [9]. See also Theorem 3.3 in [13].

Theorem 16. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $(\tau'2)$. Let T be a mapping on X. Assume that there exists $\alpha \in [0, 1/2)$ satisfying

$$p(Tx, Ty) \le \alpha p(Tx, x) + \alpha p(Ty, y)$$

for all $x, y \in X$. Then T has a unique fixed point z. Moreover p(z, z) = 0 holds and $\{T^n x\}$ converges to z for any $x \in X$.

Proof. Since

$$p(T^2x, Tx) \le \alpha p(T^2x, Tx) + \alpha p(Tx, x),$$

we have

$$p(T^2x, Tx) \le r \, p(Tx, x)$$

for any $x \in X$, where $r := \alpha/(1 - \alpha) \in [0, 1)$. Fix $u \in X$. We have

$$\lim_{n \to \infty} \sup_{m > n} p(T^n u, T^m u) \le \lim_{n \to \infty} \sup_{m > n} \left(\alpha p(T^n u, T^{n-1} u) + \alpha p(T^m u, T^{m-1} u) \right)$$
$$\le \lim_{n \to \infty} \sup_{m > n} \alpha \left(r^{n-1} + r^{m-1} \right) p(Tu, u) = \lim_{n \to \infty} \alpha \left(r^{n-1} + r^n \right) p(Tu, u) = 0.$$

By Lemma 8, $\{T^n u\}$ satisfies Condition (CL). Since X is complete, $\{T^n u\}$ converges to some $z \in X$. We have

$$p(Tz, z) \leq \liminf_{n \to \infty} p(Tz, T^{n+1}u)$$

$$\leq \liminf_{n \to \infty} \left(\alpha p(Tz, z) + \alpha p(T^{n+1}u, T^nu) \right) = \alpha p(Tz, z).$$

Since $\alpha < 1$, we obtain p(Tz, z) = 0. We also have

$$p(Tz, Tz) \le 2 \alpha p(Tz, z) = 0.$$

So by Lemma 9, we obtain Tz = z. In order to show the uniqueness of z, let w be a fixed point of T. Then we have

$$p(w,w) = p(Tw,Tw) \le 2\alpha p(Tw,w) = 2\alpha p(w,w).$$

Since $2\alpha < 1$, we have p(w, w) = 0. So we have

$$p(z,w) = p(Tz,Tw) \le \alpha p(Tz,z) + \alpha p(Tw,w) = 0.$$

By Lemma 9, we obtain z = w. Therefore the fixed point z is unique. \Box

Theorem 17. Let (X, d) be a complete metric space and let p be a function from $X \times X$ into $[0, \infty)$ satisfying $(\tau'2)$ and $(\tau'3)$. Let T be a mapping on X. Assume that there exists $\alpha \in [0, 1/2)$ satisfying

$$p(Tx, Ty) \le \alpha p(Tx, x) + \alpha p(y, Ty)$$

for all $x, y \in X$. Then T has a unique fixed point z. Moreover p(z, z) = 0 holds and $\{T^n x\}$ converges to z for any $x \in X$. *Proof.* Since

$$p(T^2x, Tx) \le \alpha \, p(T^2x, Tx) + \alpha \, p(x, Tx)$$

and

$$p(Tx, T^2x) \le \alpha p(Tx, x) + \alpha p(Tx, T^2x),$$

we have

$$p(T^2x, Tx) \le r p(x, Tx)$$
 and $p(Tx, T^2x) \le r p(Tx, x)$

for any $x \in X$, where $r := \alpha/(1 - \alpha) \in [0, 1)$. Hence

$$\max\{p(T^{2}x, Tx), p(Tx, T^{2}x)\} \le r \max\{p(Tx, x), p(x, Tx)\}$$

for any $x \in X$. Fix $u \in X$. We have

$$\lim_{n \to \infty} \sup_{m > n} p(T^n u, T^m u) \le \lim_{n \to \infty} \sup_{m > n} \left(\alpha \, p(T^n u, T^{n-1} u) + \alpha \, p(T^{m-1} u, T^m u) \right)$$
$$\le \lim_{n \to \infty} \sup_{m > n} \alpha \, (r^{n-1} + r^{m-1}) \, \max\{ p(Tu, u), p(u, Tu) \}$$
$$= \lim_{n \to \infty} \alpha \, (r^{n-1} + r^n) \, \max\{ p(Tu, u), p(u, Tu) \} = 0.$$

By Lemma 8, $\{T^n u\}$ satisfies Condition (CL). Since X is complete, $\{T^n u\}$ converges to some $z \in X$. We have

$$p(Tz, z) \leq \liminf_{n \to \infty} p(Tz, T^{n+1}u)$$

$$\leq \liminf_{n \to \infty} \left(\alpha \, p(Tz, z) + \alpha \, p(T^n u, T^{n+1}u) \right) = \alpha \, p(Tz, z).$$

Since $\alpha < 1$, we obtain p(Tz, z) = 0. We also have

$$p(Tz, T^2z) \le r p(Tz, z) = 0$$

So by Lemma 6, we obtain $T^2z = z$. Then we note that $\{T^nz : n \in \mathbb{N} \cup \{0\}\}$ consists of at most two elements. Since $\{T^nz\}$ is a Cauchy sequence, we obtain Tz = z. Hence p(z, z) = 0 holds. We can prove the uniqueness of a fixed point *z* as in the proof of Theorem 16. \Box

The following example tells that we need (τ '3) in Theorem 17.

Example 18. Let $\alpha \in (0, 1/2)$ and put $X = \mathbb{N} \cup \{0\}$. Define a mapping *S* from *X* into [0, 1) by

$$Sx = \begin{cases} 0 & \text{if } x = 0\\ \alpha^x & \text{if } x \neq 0 \end{cases}$$

and a function *d* from $X \times X$ into $[0, \infty)$ by d(x, y) = |Sx - Sy|. Define a function *p* from $X \times X$ into $[0, \infty)$ by

$$p(x, y) = \begin{cases} 0 & \text{if } x \text{ is odd and } y \text{ is even} \\ a^y & \text{if } x \text{ is odd and } y \text{ is odd} \\ a^x & \text{if } x \text{ is even and } y \text{ is even} \\ a^x + a^y & \text{if } x \text{ is even and } y \text{ is odd} \end{cases}$$

and a mapping *T* on *X* by Tx = x + 1. Then the following hold:

(i) *p* satisfies $(\tau'1)$ and $(\tau'2)$.

(ii) $p(Tx, Ty) \le \alpha p(Tx, x) + \alpha p(y, Ty)$ for all $x, y \in X$.

(iii) *T* does not have a fixed point.

Proof. Let *I*, *J*, $K \in X$ be odd numbers, let ι , *j*, $\kappa \in X$ be even numbers and let $y \in X$. We have

$$p(I, \kappa) = 0 \le p(I, y) + p(y, \kappa),$$

$$p(I, K) = \alpha^{K} \le p(y, K) \le p(I, y) + p(y, K),$$

$$p(\iota, \kappa) = \alpha^{\iota} \le p(\iota, y) \le p(\iota, y) + p(y, \kappa),$$

$$p(\iota, K) = \alpha^{\iota} + \alpha^{K} \le \alpha^{\iota} + \alpha^{J} + \alpha^{K} = p(\iota, J) + p(J, K),$$

$$p(\iota, K) = \alpha^{\iota} + \alpha^{K} \le \alpha^{\iota} + \alpha^{j} + \alpha^{K} = p(\iota, j) + p(j, K).$$

Thus (τ '1) holds. In order to show (τ '2), we assume $\lim_n \sup\{p(z_n, z_m) : m > n\} = 0$ and $\lim_n p(z_n, x_n) = 0$. Then it is obvious that $\lim_n z_n = \lim_n x_n = \infty$ holds. Thus, $\{z_n\}$ and $\{x_n\}$ converge to 0 in (X, d). So $\lim_n d(z_n, x_n) = 0$ holds. We have

 $p(I,0) = 0 \le \liminf_{n \to \infty} p(I, x_n),$ $p(\iota, 0) = \alpha^{\iota} \le \liminf_{n \to \infty} p(\iota, x_n).$

Thus (τ '2) holds. We have

$$\begin{split} p(\iota+1, J+1) &= 0 = \alpha \, p(\iota+1, \iota) + \alpha \, p(J, J+1), \\ p(\iota+1, j+1) &= \alpha^{j+1} \le \alpha \, (\alpha^j + \alpha^{j+1}) \\ &= \alpha \, p(\iota+1, \iota) + \alpha \, p(j, j+1), \\ p(I+1, J+1) &= \alpha^{I+1} \le \alpha \, (\alpha^{I+1} + \alpha^I) \\ &= \alpha \, p(I+1, I) + \alpha \, p(J, J+1), \\ p(I+1, j+1) &= \alpha^{I+1} + \alpha^{j+1} \le \alpha \, (\alpha^{I+1} + \alpha^I + \alpha^j + \alpha^{j+1}) \\ &= \alpha \, p(I+1, I) + \alpha \, p(j, j+1). \end{split}$$

Thus (ii) holds. (iii) is obvious. \Box

7988

4. Example

In this section, we give an example of a τ' -distance which is not a τ -distance.

Lemma 19. Let A, B and C be subsets of [0, 1] defined by

$$A = \Big\{ \sum_{j=1}^{\infty} a_j \, 10^{-j} : a_j \in \{0, 1\} \Big\},$$
$$B = A \cap \mathbb{Q} \quad and \quad C = A \setminus \mathbb{Q}.$$

For $a \in A$, we write a_j for $[a \ 10^j] \mod 10$, where [x] is the maximum integer not exceeding x. That is, $a = \sum_{j=1}^{\infty} a_j \ 10^{-j}$ holds for any $a \in A$. Then the following hold:

(i) For $c \in C$, $\varepsilon > 0$ and $k \in \mathbb{N}$, there exists $b \in B$ satisfying the following:

•
$$|b-c| < \varepsilon$$
.

•
$$b_j = c_j$$
 for $j \in \{1, \dots, k\}$.

(ii) For $b \in B$, $\varepsilon > 0$ and $k, \ell \in \mathbb{N}$, there exist $c \in C$ and $n \in \mathbb{N}$ satisfying the following:

•
$$|b-c| < \varepsilon$$
.

•
$$b_j = c_j$$
 for $j \in \{1, \dots, k\}$.

• For any $i, j \in \{1, \dots, \ell\}$, there exists $h \in \mathbb{N}$ such that $i + jh \le n$ and $c_i \ne c_{i+jh}$.

Proof. We first show (i). Fix $c \in C$, $\varepsilon > 0$ and $k \in \mathbb{N}$. Then we can choose $\ell \in \mathbb{N}$ satisfying $10^{-\ell} < \varepsilon$ and $\ell \ge k$. Then define a sequence $\{b_i\}$ in $\{0, 1\}$ by

•
$$b_j = c_j$$
 for $j \in \mathbb{N}$ with $j \le \ell$ and

•
$$b_j = 0$$
 for $j \in \mathbb{N}$ with $j > \ell$.

Then

$$b := \sum_{j=1}^{\infty} b_j \, 10^{-j} \in B$$
 and $|b - c| < 2 \cdot 10^{-\ell - 1} < 10^{-\ell} < \varepsilon$

hold. We next show (ii). Fix $b \in B$, $\varepsilon > 0$ and $k, \ell \in \mathbb{N}$. Then we can choose $c \in C$ satisfying $|b - c| < \varepsilon$ and $b_j = c_j$ for $j \in \{1, \dots, k\}$. It is obvious that for sufficiently large $n \in \mathbb{N}$, n satisfies the conclusion because c is irrational. \Box

From now on, we write $b(c, \varepsilon, k)$ for b in (i) of Lemma 19. Also we write $c(b, \varepsilon, k, \ell)$ for c and $n(b, \varepsilon, k, \ell)$ for n in (ii) of Lemma 19, respectively. Though $b(c, \varepsilon, k)$, $c(b, \varepsilon, k, \ell)$ and $n(b, \varepsilon, k, \ell)$ above are not functions, we will use these notations in making examples. because there is no room for ambiguity.

Lemma 20. Let A, B and C be as in Lemma 19. Define sequences $\{b^{(n)}\}$ in B, $\{c^{(n)}\}$ in C, $\{s^{(n)}\}$ and $\{t^{(n)}\}$ in $(0, \infty)$ and $\{v^{(n)}\}$ in \mathbb{N} as follows:

(Step 1) $n = 1, b^{(1)} \in B$ and $s^{(1)} > 0$. (Step 2) $c^{(1)} = c(b^{(1)}, s^{(1)}, 1, 1), v^{(1)} = n(b^{(1)}, s^{(1)}, 1, 1)$ and $t^{(1)} > 0$. (Step 3) $n := n + 1, b^{(n)} = b(c^{(n-1)}, t^{(n-1)}, v^{(n-1)})$ and $s^{(n)} > 0$. (Step 4) $c^{(n)} = c(b^{(n)}, s^{(n)}, v^{(n-1)}, n), v^{(n)} = \max\{v^{(n-1)}, n(b^{(n)}, s^{(n)}, v^{(n-1)}, n)\}$ and $t^{(n)} > 0$. (Step 5) goto (Step 3).

Then $\{b^{(n)}\}\$ and $\{c^{(n)}\}\$ converge to a same number γ , which belongs to C.

Remark. We can choose $s^{(n)}$, depending on $b^{(k)}$ ($k \le n$) and others. On the other hand, we cannot choose $s^{(n)}$, depending on $b^{(k)}$ (k > n) and others. Similarly for $t^{(n)}$.

Proof. As in Lemma 19, for $a \in A$, we write a_j for $[a \ 10^j] \mod 10$. Since $v(b, \varepsilon, k, \ell) \ge 2\ell$ holds, we first note $\lim_n v^{(n)} = \infty$. We next note that $\{v^{(n)}\}$ is nondecreasing. Hence

$$c_{j}^{(n)} = b_{j}^{(n+1)} = c_{j}^{(n+1)} = \cdots$$
 provided $j \le v^{(n)}$.

Therefore $\{b^{(n)}\}\$ and $\{c^{(n)}\}\$ converge to a same number γ . Arguing by contradiction, we assume that γ is rational. Then there exist $i, j \in \mathbb{N}$ such that $\gamma_r = \gamma_{r+j}$ for any $r \ge i$. Put $n = \max\{i, j\}$. Then there exists $h \in \mathbb{N}$ such that $i + jh \le v^{(n)}$ and

$$\gamma_i = c_i^{(n)} \neq c_{i+jh}^{(n)} = \gamma_{i+jh} = \gamma_i,$$

which is a contradiction. Therefore γ is irrational.

Example 21. Let *X* be a subset of \mathbb{R}^2 defined by

$$\mathbf{X} = \left(\{-1\} \times ([0,1] \cap \mathbb{Q})\right) \cup \left(\{0\} \times [0,1]\right) \cup \left((0,1] \times ([0,1] \setminus \mathbb{Q})\right).$$

Define functions *d* and *p* from $X \times X$ into $[0, \infty)$ by

$$d((x_1, x_2), (y_1, y_2)) = \begin{cases} 0 & \text{if } (x_1, x_2) = (y_1, y_2) \\ |x_1| + |y_1| + |x_2 - y_2| & \text{otherwise} \end{cases}$$

and

$$p((x_1, x_2), (y_1, y_2)) = \begin{cases} d((0, x_2), (y_1, y_2)) & \text{if } x_1 = -1, y_1 = 0, y_2 \in \mathbb{Q} \\ d((0, x_2), (y_1, y_2)) & \text{if } x_1 = -1, y_1 > 0 \\ 3 & \text{otherwise} \end{cases}$$

for any $(x_1, x_2), (y_1, y_2) \in X$. Then the following hold:

- (i) (*X*, *d*) is a complete metric space.
- (ii) *p* is a τ '-distance on *X*.
- (iii) *p* is not a τ -distance on *X*.

Proof. For any $x \in X$, we write x_1 for the first element of x and we write x_2 for the second element of x. That is, $x = (x_1, x_2)$ holds. (i) is obvious. We note max{ $d(x, y) : x, y \in X$ } = 3. So we have

$$p(x,z) \le 3 \le p(x,y) + p(y,z)$$

for any *x*, *y*, *z*. We have shown ($\tau'1$). From the definition of *p*, there does not exist a sequence { $z^{(n)}$ } satisfying $\lim_n \sup\{p(z^{(n)}, z^{(m)}) : m > n\} = 0$. Thus, ($\tau'2$) holds. In order to show ($\tau'3$), we let $z \in X$ and a sequence { $x^{(n)}$ } satisfy $\lim_n p(z, x^{(n)}) = 0$. From the definition of *p*, $z_1 = -1$ obviously holds. From the definition of *X*, $z_2 \in \mathbb{Q}$ holds. For sufficiently large $n \in \mathbb{N}$, either of the following holds:

• $x_1^{(n)} = 0$ and $x_2^{(n)} \in \mathbb{Q}$.

•
$$x_1^{(n)} > 0.$$

So

$$p(z, x^{(n)}) = d((0, z_2), (x_1^{(n)}, x_2^{(n)})) = |x_1^{(n)}| + |z_2 - x_2^{(n)}|$$

holds. Hence we have

$$\lim_{n \to \infty} x_1^{(n)} = 0$$
 and $\lim_{n \to \infty} x_2^{(n)} = z_2$.

Therefore we obtain

$$\lim_{n \to \infty} d(x^{(n)}, x^{(n+1)}) = \lim_{n \to \infty} (|x_1^{(n)}| + |x_1^{(n+1)}| + |x_2^{(n)} - x_2^{(n+1)}|) = 0.$$

So $\{x^{(n)}\}$ converges to $x := (0, z_2)$. Fix $w \in X$. Then in the case where $w_1 = -1$, we have

$$p(w, x) = d((0, w_2), x) = \lim_{n \to \infty} d((0, w_2), x^{(n)}) = \lim_{n \to \infty} p(w, x^{(n)}).$$

In the other case, where $w_1 \neq -1$, we have p(w, y) = 3 for any $y \in X$. So in both cases, we obtain $p(w, x) \leq \liminf_n p(w, x^{(n)})$. We have shown (τ '3). Let us prove (iii). Arguing by contradiction, we assume that p is a τ -distance with η . Let A, B and C be as in Lemma 19. Define sequences { $z^{(n)}$ } and { $x^{(n)}$ } in X, { $b^{(n)}$ } in B, { $c^{(n)}$ } and { $t^{(n)}$ } in ($0, \infty$) and { $v^{(n)}$ } in \mathbb{N} as follows:

(Step 1) $n = 1, b^{(1)} \in B$ and $z^{(1)} = (-1, b^{(1)})$. (Step 2) Choose $s^{(1)}$ satisfying $\eta(z^{(1)}, s^{(1)}) < 2^{-1}$. (Step 3) $c^{(1)} = c(b^{(1)}, s^{(1)}, 1, 1)$ and $v^{(1)} = n(b^{(1)}, s^{(1)}, 1, 1)$. (Step 4) Choose $t^{(1)}$ satisfying $t^{(1)} + |b^{(1)} - c^{(1)}| < s^{(1)}$ and put $x^{(1)} = (t^{(1)}, c^{(1)})$. (Step 5) $n := n + 1, b^{(n)} = b(c^{(n-1)}, t^{(n-1)}, v^{(n-1)})$ and $z^{(n)} = (-1, b^{(n)})$. (Step 6) Choose $s^{(n)}$ satisfying $\eta(z^{(n)}, s^{(n)}) < 2^{-n}$ and $s^{(n)} + |b^{(n)} - c^{(n-1)}| < t^{(n-1)}$. (Step 7) $c^{(n)} = c(b^{(n)}, s^{(n)}, v^{(n-1)}, n)$ and $v^{(n)} = \max\{v^{(n-1)}, n(b^{(n)}, s^{(n)}, v^{(n-1)}, n)\}$. (Step 8) Choose $t^{(n)}$ satisfying $t^{(n)} + |b^{(n)} - c^{(n)}| < s^{(n)}$ and put $x^{(n)} = (t^{(n)}, c^{(n)})$. (Step 9) goto (Step 5).

Then we have

$$\begin{split} p(z^{(n)}, x^{(m)}) &= d((0, b^{(n)}), (t^{(m)}, c^{(m)})) \\ &\leq d((0, b^{(n)}), (0, b^{(m)})) + d((0, b^{(m)}), (t^{(m)}, c^{(m)})) \\ &= |b^{(n)} - b^{(m)}| + t^{(m)} + |b^{(m)} - c^{(m)}| \\ &< |b^{(n)} - b^{(m)}| + s^{(m)} \\ &\leq \sum_{k=n}^{m-1} \left(|b^{(k)} - c^{(k)}| + |b^{(k+1)} - c^{(k)}| \right) + s^{(m)} \\ &< \sum_{k=n}^{m-1} (s^{(k)} - t^{(k)} + t^{(k)} - s^{(k+1)}) + s^{(m)} \\ &= s^{(n)} \end{split}$$

for $m, n \in \mathbb{N}$ with $m \ge n$ and hence

$$\lim_{n \to \infty} \sup_{m \ge n} \eta \left(z^{(n)}, p(z^{(n)}, x^{(m)}) \right) \le \lim_{n \to \infty} \eta (z^{(n)}, s^{(n)}) \le \lim_{n \to \infty} 2^{-n} = 0.$$

By Lemma 20, $\{c^{(n)}\}$ converges to some irrational number γ . Also since $t^{(n)} < s^{(n)} < 2^{-n}$ holds by $(\tau_d 2)$, $\{t^{(n)}\}$ converges to 0. So $\{x^{(n)}\}$ converges to $(0, \gamma) \in X$. We have

$$p((-1,0),(0,\gamma)) = 3 > \gamma = \lim_{n \to \infty} d((0,0), x^{(n)}) = \lim_{n \to \infty} p((-1,0), x^{(n)}),$$

which contradicts (τ_d 3). Therefore *p* is not a τ -distance.

Competing Interests

The author declares that he has no competing interests.

References

- [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- [2] R. Caccioppoli, Un teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794–799.
- [3] W.-S. Du, On generalized Caristi's fixed point theorem and its equivalence, Nonlinear Anal. Differential Equations, 4 (2016), 635–644.
- [4] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. MR0346619
- [5] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443–474. MR0526967
- [6] P. G. Georgiev, The strong Ekeland variational principle, the strong drop theorem and applications, J. Math. Anal. Appl., 131 (1988), 1–21. MR0934428
- J. Jachymski, J. Matkowski and T. Świątkowski, Nonlinear contractions on semimetric spaces, J. Appl. Anal., 1 (1995), 125–134. MR1 395268
- [8] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44 (1996), 381–391. MR1416281
- [9] R. Kannan, Some results on fixed points II, Amer. Math. Monthly, 76 (1969), 405-408. MR0257838
- [10] L. J. Lin and W.-S. Du, Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces, J. Math. Anal. Appl., 323 (2006), 360–370. MR2262210
- [11] S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. MR0254828
- [12] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440–458. MR1808147
- [13] T. Suzuki, Several fixed point theorems concerning τ -distance, Fixed Point Theory Appl., 2004 (2004), 195–209. MR2096951
- [14] T. Suzuki, Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense, Comment. Math. Prace Mat., 45 (2005), 45–58. MR2199893
- [15] T. Suzuki, The strong Ekeland variational principle, J. Math. Anal. Appl., 320 (2006), 787–794. MR2225994
- [16] T. Suzuki, On the relation between the weak Palais-Smale condition and coercivity given by Zhong, Nonlinear Anal., 68 (2008), 2471–2478. MR2398665
- [17] T. Suzuki, Convergence of the sequence of successive approximations to a fixed point, Fixed Point Theory Appl., 2010 (2010), Article ID 716971, 1–14. MR2595834
- [18] T. Suzuki, Redefinition of τ -distance in metric spaces, J. Funct. Spaces, 2017, Art. ID 4168486, 8 pp. MR3641859
- [19] D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 345–392. MR1145836
- [20] C.-K. Zhong, A generalization of Ekeland's variational principle and application to the study of the relation between the weak P.S. condition and coercivity, Nonlinear Anal., 29 (1997), 1421–1431. MR1484914
- [21] C.-K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl., 205 (1997), 239–250. MR1426991