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Abstract. In this paper, a new distance for matrix observations called generalized Mahalanobis distance
is introduced, some of its properties are studied, and its distribution is obtained for the observations of
the matrix variate elliptically contoured distributions. Also, as a significant application, the introduced
distance is used in detecting matrix outliers, and its method is described. Finally, some examples are
provided for illustrative purposes, and the performance of the presented approach of detecting outliers is
investigated by a simulation study.

1. Introduction

Many methods in multivariate analysis such as hypothesis testing, clustering and classification methods,
outlier detection, and goodness-of-fit tests are usually based on different distances defined for observations.
These distances measure and calculate in different ways the similarity or the amount of difference between
observations that are usually vectors. One of the most important distances in multivariate analysis methods
is the Mahalanobis distance, which was first introduced by [12]. According to his definition, if x is an
observation of a multivariate distribution with mean vector µ and covariance matrix Σ, then its Mahalanobis
distance is calculated as

MD(x) =
√
(x − µ)TΣ−1(x − µ).

Mahalanobis distance appears naturally in multivariate analysis methods and is used for different
purposes. For example, the Mahalanobis distance is the basis for multivariate outlier detection such that
observations having a large Mahalanobis distance are considered as multivariate outliers. Among the new
research related to outlier detection using the Mahalanobis distance, the reader is referred to [4], [1], and
[11].

Matrix observations and their distributions play an important role in multivariate analysis and are
useful for describing and modeling repeated measurements in multivariate variables. For example, suppose
n blood tests are taken from N patients where in each test, p variables are measured. In this case, for
each patient, a matrix observation of size p × n is observed. Most of the distances in multivariate analysis
methods are similar to the Mahalanobis distance related to vector observations, and among them, a
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few, including the Frobenius distance, are related to matrix observations; see [6] for more information
about the Frobenius distance. Accordingly, we introduce, in the next section, a new distance for matrix
observations called the generalized Mahalanobis distance and examine some of its properties. In Section 3,
as a significant application, we describe the detection of matrix outliers by using the introduced distance.
As an illustration of the suitability and applicability of the introduced distance in detecting matrix outliers,
we find outliers in simulated and real examples in Section 4. In Section 5, we present a simulation study
to examine how the presented approach of detecting outliers performs. Finally, we provide a summary
discussion in Section 6.

2. Definition and some properties

In this section, we introduce a new distance for matrix observations and investigate some of its
properties. For this purpose, suppose that X and Y are observations of size p × n from a matrix variate
distribution with the mean matrix M of size p × n and positive definite matrices Ψ and Σ of sizes n × n
and p × p, respectively, such that Σ ⊗ Ψ is the covariance matrix of vec(XT) and vec(YT), where vec(·)
denotes the vectorization operator. We define the distance between two matrices X and Y as

D(X, Y) =
√

tr
(
Ψ−1(X − Y)TΣ−1(X − Y)

)
, (1)

where tr(A) is the trace of a square matrix A and BT denotes the transpose of B. The following corollary
provides another form of the distance D.

Corollary 2.1. The distance D can be written as follows

D(X, Y) =
√(

vec(XT − YT)
)T

(Σ ⊗ Ψ)−1 vec(XT − YT).

Proof. By using Theorem 1.17 (ii) of [7], we have

tr
(
Ψ−1(X − Y)TΣ−1(X − Y)

)
=

(
vec

(
(X − Y)T))T

(Σ−1 ⊗ Ψ−1)vec(XT − YT).

The result follows from vec
(
(X − Y)T) = vec(XT − YT) and (Σ−1 ⊗ Ψ−1) = (Σ ⊗ Ψ)−1.

Some properties of the distance D can be found in the following proposition.

Proposition 2.2. Consider the matrices X, Y and Z. Then

(i) D(X, Y) ≥ 0,

(ii) X = Y if and only if D(X, Y) = 0,

(iii) D(X, Y) = D(Y , X),

(iv) D(X, Z) ≤ D(X, Y) +D(Y , Z).

Proof. The properties (ii) and (iii) are clear and we only prove the properties (i) and (iv).
(i) Consider the form of D in Corollary 2.1. Because Σ ⊗ Ψ is a positive definite matrix, we know

(
vec(XT − YT)

)T
(Σ ⊗ Ψ)−1vec(XT − YT) > 0,
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when X , Y and the equality happens if X = Y . Hence, D(X, Y) ≥ 0.
(iv) Let ∥a∥ =

√
aTa is the Euclidean norm of the vector a. By the triangle inequality, we can write

D(X, Z) =
√(

vec(XT − ZT)
)T

(Σ ⊗ Ψ)−1 vec(XT − ZT)

= ∥(Σ ⊗ Ψ)−
1
2 vec(XT − ZT)∥

= ∥(Σ ⊗ Ψ)−
1
2 vec(XT − YT + YT − ZT)∥

= ∥(Σ ⊗ Ψ)−
1
2 vec(XT − YT) + (Σ ⊗ Ψ)−

1
2 vec(YT − ZT)∥

≤ ∥(Σ ⊗ Ψ)−
1
2 vec(XT − YT)∥+ ∥(Σ ⊗ Ψ)−

1
2 vec(YT − ZT)∥

=

√(
vec(XT − YT)

)T
(Σ ⊗ Ψ)−1 vec(XT − YT)

+

√(
vec(YT − ZT)

)T
(Σ ⊗ Ψ)−1 vec(YT − ZT)

= D(X, Y) +D(Y , Z).

The following proposition shows that in a particular case, the distance D becomes the Euclidean
distance.

Proposition 2.3. If Σ and Ψ are identity matrices, then

D(X, Y) = ED(vec(XT), vec(YT)),

where ED(a, b) is the Euclidean distance between two vectors a and b.

Proof. It follows from Corollary 2.1 that

D(X, Y) =
√(

vec(XT − YT)
)T vec(XT − YT)

=

√(
vec(XT)− vec(YT)

)T(vec(XT)− vec(YT)
)

= ∥vec(XT)− vec(YT)∥
= ED(vec(XT), vec(YT)).

Based on distance D, we define the generalized Mahalanobis distance as follows.

Definition 2.4. Let X ∈ Rp×n be a sample from a known matrix variate distribution with the mean matrix M and
positive definite matrices Ψ and Σ. The generalized Mahalanobis distance (GMD) of X is a continuous function from
Rp×n to [0, ∞) that compute as

GMD(X) =
√

tr
(
Ψ−1(X − M)TΣ−1(X − M)

)
. (2)

In the following, we present some properties of the GMD related to a widely used class of matrix
variate distributions.

One of the most important classes of matrix variate distributions is the class of matrix variate elliptically
contoured distributions. The comprehensive collections of the most important results on the matrix variate
elliptically contoured distributions can be found in [7] and [2]. A random matrix X of dimension p × n is
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said to have a matrix variate elliptically contoured distribution and is denoted by X ∼ Ep×n(M, Σ ⊗ Ψ; g),
if its probability density function (pdf) is given by

fg(X; M, Σ ⊗ Ψ) = |Σ|− n
2 |Ψ|−

p
2 g

(
tr
(
Ψ−1(X − M)TΣ−1(X − M)

))
,

where M is a p × n matrix corresponding to the mean of X, while Σ and Ψ are positive definite matrices of
dimension p × p and n × n, respectively, such that Ψ ⊗ Σ is the covariance matrix of vec(XT) and g is a
density generator function such that

∫ ∞
0 u

pn
2 −1g(u)du = Γ( pn

2 )/π
pn
2 with the gamma function Γ.

The class of matrix variate elliptically contoured distributions includes a wild range of symmetric
matrix variate distributions, such that by considering different density generator functions, different
symmetric matrix distributions are obtained. Some special cases of the matrix variate elliptically contoured
distributions are the following;

(a) Matrix variate normal distribution: This distribution is obtained by considering g(x) = (2π)−
pn
2 e−

x
2 ,

x ∈ R and is denoted by Np×n(M, Σ ⊗ Ψ).

(b) Matrix variate generalized Pearson type II (GPII) distribution: This case, which is denoted here by
GPIIp×n(M, Σ ⊗ Ψ; ω, s), follows by considering

g(x) =
Γ
(
ω + 1 + pn

2
)

Γ (ω + 1)π
pn
2

s−(ω+
pn
2 )(s − x)ω, 0 < x < s, ω > −1, s > 0.

(c) Matrix variate generalized t (GT) distribution: It is obtained by considering

g(x) =
Γ
(

ν+pn
2

)
Γ
(

ν
2
)

π
pn
2

τ
ν
2 (τ + x)−

(ν+pn)
2 , x > 0, ν, τ > 0.

We denote this distribution by GTp×n(M, Σ ⊗ Ψ; ν, τ).

The following proposition shows that the GMD related to a matrix variate elliptically contoured
distribution is invariant under linear transformations.

Proposition 2.5. Suppose that H is the set of all transformations h(X) = AXB + C for some invertible matrices
Ap×p and Bn×n, and some matrix Cp×n. If X ∼ Ep×n(M, Σ ⊗ Ψ; g), then

GMD
(
h(X)

)
= GMD(X).

In other words, the GMD is invariant under the transformations

H =
{

h : h(X) = AXB + C, for some invertible matrices A and B and some matrix C
}

.

Proof. From properties of the matrix variate elliptically contoured distributions, we have

h(X) = AXB + C ∼ Ep×n
(

AMB + C, (AΣAT)⊗ (BTΨB); g
)
.

Therefore

GMD
(
h(X)

)
=

√
tr
(
(BTΨB)−1(h(X)− AMB − C)T(AΣAT)−1(h(X)− AMB − C)

)
=

√
tr
(

B−1Ψ−1(BT)−1
(

A(X − M)B
)T

(AT)−1Σ−1 A−1(A(X − M)B
))

=
√

tr
(

B−1Ψ−1(X − M)TΣ−1(X − M)B
)

=
√

tr
(

BB−1Ψ−1(X − M)TΣ−1(X − M)
)

=
√

tr
(
Ψ−1(X − M)TΣ−1(X − M)

)
= GMD(X).
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The distribution of the GMD related to matrix variate elliptically contoured distributions is provided in

the following theorem. Let the notation X d
= Y means that X and Y have the same distribution.

Theorem 2.6. If X ∼ Ep×n(M, Σ ⊗ Ψ; g), then

GMD2(X)
d
= R2,

where R is a positive random variable with the pdf

fR(r) =
2π

pn
2

Γ
( pn

2
) rpn−1g(r2), r > 0. (3)

Proof. By Corollary 2.1,

GMD2(X) = tr
(
Ψ−1(X − M)TΣ−1(X − M)

)
=

(
vec(XT)− vec(MT)

)T
(Σ ⊗ Ψ)−1(vec(XT)− vec(MT)

)
.

From [7], we know that X ∼ Ep×n(M, Σ ⊗ Ψ; g) if and only if vec(XT) ∼ Epn
(
vec(MT), Σ ⊗ Ψ; g

)
. Hence,

by [2], (
vec(XT)− vec(MT)

)T
(Σ ⊗ Ψ)−1(vec(XT)− vec(MT)

) d
= R2,

such that R has the pdf (3).

Corollary 2.7. If X ∼ Np×n(M, Σ ⊗ Ψ), then GMD2(X) has the chi-squared distribution with pn degrees of
freedom, i.e. GMD2(X) ∼ χ2

pn.

Proof. By using the density generator function of the matrix variate normal distribution, the pdf (3) becomes

fR(r) =
rpn−1

Γ
( pn

2
) (1

2

) pn
2 −1

e−
r2
2 , r > 0.

By substituting U = R2 we have

fU(u) =
u

pn
2 −1

Γ
( pn

2
) (1

2

) pn
2

e−
u
2 , u > 0,

that is the pdf of the distribution χ2
pn.

Corollary 2.8. If X ∼ GPIIp×n(M, Σ ⊗ Ψ; ω, s), then 1
sGMD2(X) has the beta distribution with parameters pn

2
and ω + 1, i.e. 1

sGMD2(X) ∼ Beta
( pn

2 , ω + 1
)
.

Proof. From the density generator function of the matrix variate GPII distribution, we have

fR(r) =
Γ
(
ω + 1 + pn

2
)

Γ (ω + 1) Γ
( pn

2
) 2rpn−1s−(ω+

pn
2 )(s − r2)ω, r2 < s.

Hence, the pdf of U = R2

s can be obtained as follows;

Γ
(
ω + 1 + pn

2
)

Γ (ω + 1) Γ
( pn

2
) u

pn
2 −1(1 − u)ω, 0 < u < 1,

which is the pdf of the distribution Beta
( pn

2 , ω + 1
)
.
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Corollary 2.9. If X ∼ GTp×n(M, Σ ⊗ Ψ; ν, τ), then GMD2(X)

τ+GMD2(X)
∼ Beta

( pn
2 , ν

2
)
.

Proof. By Theorem 2.6, it must be proved that R2

τ+R2 ∼ Beta
( pn

2 , ν
2
)
. By using the density generator function

of the matrix variate GT distribution, we have

fR(r) =
Γ
(

ν+pn
2

)
Γ
(

ν
2
)

Γ
( pn

2
) 2rpn−1τ

ν
2

(
τ + r2

)− (ν+pn)
2 , r > 0.

Therefore the pdf of U = R2

τ+R2 is

fU(u) =
Γ
(

ν+pn
2

)
Γ
(

ν
2
)

Γ
( pn

2
) u

pn
2 −1(1 − u)

ν
2 −1, 0 < u < 1,

which is the pdf of the distribution Beta
( pn

2 , ν
2
)
.

3. Application in detecting outliers

In this section, we describe detecting matrix outliers by using the GMD as its significant application in
the case of the matrix variate normal distribution.

Suppose that X1, X2, . . . , XN is an independent random sample from the distribution Np×n(M, Σ ⊗ Ψ).
By using the sample mean matrix

X̄ =
1
N

N

∑
i=1

X i,

and the sample covariance matrix

̂(Σ ⊗ Ψ) =
1

N − 1

N

∑
i=1

vec
(

XT
i − X̄T

) (
vec

(
XT

i − X̄T
))T

, (4)

an estimator for GMD(X i), i = 1, 2, . . . , N can be obtained as

ĜMD(X i) =

√(
vec(XT

i − X̄T)
)T ̂(Σ ⊗ Ψ)

−1
vec(XT

i − X̄T).

The distribution of ĜMD(X i) is obtained in the following theorem which its proof is clear by [5] and
using Corollary 2.1 and properties of the matrix variate normal distributions. Let iid is the abbreviated
form of independent and identically distributed.

Theorem 3.1. If X i
iid∼ Np×n(M, Σ ⊗ Ψ), for i = 1, 2, . . . , N, then

N
(N − 1)2 ĜMD2

(X i) ∼ Beta
(

pn
2

,
N − pn − 1

2

)
.

Outliers are observations that have deviation from the pattern of the majority of the data. Since the
GMD measures how far is an observation from the center M taking into account Σ and Ψ, the matrix
outliers can simply be defined as observations having a large GMD. In practice the values of M and Σ ⊗ Ψ
are unknown, hence their estimators should be considered and the estimator of the GMD should be used
for detecting.

For a sample X1, X2, . . . , XN from the distribution Np×n(M, Σ ⊗ Ψ), based on the distribution in
Theorem 3.1, a criterion can be provided for detecting the matrix outliers as follows:

X i is an outlier if ĜMD(X i) > (N − 1)

√
B pn

2 , N−pn−1
2 :α

N
,

where Ba,b:α is the α-quantile (for example, the 97.5th percentile) of the distribution Beta (a, b).
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3.1. Robust estimators

Unfortunately, the sample mean matrix X̄ and the sample covariance matrix ̂(Σ ⊗ Ψ) are very sensitive
to outliers, which make the presented approach suffers from the masking effect. To fix this problem, using
their robust estimators is necessary for obtaining robust generalized Mahalanobis distance (RGMD). One of
the highly robust estimators for multivariate data is the minimum covariance determinant (MCD) estimator
introduced by [15]. Hubert et al.[9] gives a more detailed overview of the MCD estimator and its properties.
The MCD version of X̄ and ̂(Σ ⊗ Ψ) can be obtained based on a subsample of size k, which has the lowest
sample covariance determinant, by

X̄mcd =
1
k ∑

j∈K
X j,

and
̂(Σ ⊗ Ψ)mcd =

1
k − 1 ∑

j∈K
vec

(
XT

j − X̄T
mcd

) (
vec

(
XT

j − X̄T
mcd

))T
,

where K is a set containing the indices of the subsample whose its covariance matrix has the lowest possible
determinant. Therefore, the MCD version of ĜMD(X i) for i = 1, 2, . . . , N, is

ĜMDmcd(X i) =

√(
vec(XT

i − X̄T
mcd)

)T ̂(Σ ⊗ Ψ)
−1
mcdvec(XT

i − X̄T
mcd).

Using the robust estimators X̄mcd and ̂(Σ ⊗ Ψ)mcd makes the distribution of ĜMDmcd(X i) unknown (as
it happens in the case of the multivariate robust Mahalanobis distance). Hence, considering the α-quantile
of beta distribution in the critical value of detecting outliers might not be the best. In the case of the
multivariate robust Mahalanobis distance, some related works provide different critical values for detecting
outliers. For example, Filzmoser [3] has developed an adjusted quantile as a critical value in detecting
outliers.

In [8], an approximate distribution for the multivariate robust Mahalanobis distance based on the MCD
estimators is given. Since

X ∼ Np×n(M, Σ ⊗ Ψ) ⇐⇒ vec(XT) ∼ Npn

(
vec(MT), Σ ⊗ Ψ

)
, (5)

we can generalize the obtained results in [8] for observations of a matrix variate normal distribution and
present an approximate distribution for ĜMDmcd(X i) as

c(m − pn + 1)
mpn

ĜMD2
mcd(X i) ≈ Fpn,m−pn+1, (6)

where X ≈ Fν1,ν2 means that the random variable X approximately follows the F distribution with ν1 and
ν1 degrees of freedom, and m and c are the unknown parameters that need to be estimated. The parameters
m and c can be estimated in three ways: using simulations, using an asymptotic expression, or using an
adjustment to the asymptotic expression. In this paper, we use simulations and the asymptotic expression
to estimate m and c; see [8] for more details.

By the approximate distribution (6), based on the MCD estimators, we can provide a criterion for
detecting the matrix outliers as follows:

X i is an outlier if ĜMDmcd(X i) >

√
m̂pn

ĉ(m̂ − pn + 1)
Fpn,m̂−pn+1:α,

where m̂ and ĉ are the estimations of m and c, respectively, and Fν1,ν2 :α is the α-quantile of the distribution
Fν1,ν2 .
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3.2. Breakdown value
A breakdown value is the maximum proportion of outliers that can safely be tolerated by an estimator.

Similarly, the breakdown value for an outlier detection method can be defined as the maximum proportion
of outliers that the procedure can detect successfully. According to the property (5) of the matrix variate
normal distributions, the MCD estimators in the previous section have a breakdown value N−k+1

N , hence

the number k determines the robustness of the estimators. In the case of k =
⌊ (N+pn+1)

2
⌋

where ⌊.⌋ denotes
the integer part, the MCD estimators can achieve the highest possible breakdown value. A value close
to 0.5N for k is recommended when a large proportion of contamination is expected. Otherwise, an
intermediate value for k, such as 0.75N, should be chosen to obtain a higher finite-sample efficiency. See
[10] for more information about the breakdown value of different types of estimators.

3.3. Affine equivariant estimators
In addition to the robustness property, we are particularly interested in affine equivariant estimators

of M and Σ ⊗ Ψ, see [16]. Any estimators M̂ and ̂(Σ ⊗ Ψ) are called affine equivariant if they behave
satisfactorily under affine transformations of the observations. This means that for all invertible matrices
A ∈ Rp×p and B ∈ Rn×n, and any matrix C ∈ Rp×n,

M̂(AX1B + C, . . . , AXN B + C) = AM̂(X1, . . . , XN)B + C,

and
̂(Σ ⊗ Ψ)(AX1B + C, . . . , AXN B + C) =

((
AΣ̂AT)⊗ (

BTΨ̂B
))

(X1, . . . , XN).

The affine equivariance property of the estimators of M and Σ ⊗ Ψ makes the estimator of the GMD
affine invariant (this can be easily shown similar to the proof of Proposition 2.5), and also the detection of
outliers to be independent of the measurement scales of the variables, and the translation or rotation of the
observations. Since the estimator of the GMD is affine equivariant, the properties and the procedures that
are based on it can be calculated for standardized distributions without losing generality. According to
this, for the procedures under normality, we can use the matrix variate standard normal distribution, i.e.
Np×n(0p×n, Ip ⊗ In) where 0p×n is the p × n matrix of zeros and Im is the m-dimensional identity matrix.

In the following proposition, we examine the affine equivariance property of the estimators presented
for M and Σ ⊗ Ψ.

Proposition 3.2. The sample mean matrix X̄ and the sample covariance matrix ̂(Σ ⊗ Ψ), and also their MCD
version, i.e. X̄mcd and ̂(Σ ⊗ Ψ)mcd, are affine equivariant.

Proof. We only prove the affine equivariance property of X̄ and ̂(Σ ⊗ Ψ), the proof for X̄mcd and ̂(Σ ⊗ Ψ)mcd
is similar. Considering Y i = AX iB + C, i = 1, 2, . . . , N, we have

Ȳ =
1
N

N

∑
i=1

Y i =
1
N

N

∑
i=1

(AX iB + C) = A
( 1

N

N

∑
i=1

X i

)
B + C = AX̄B + C,

which shows the affine equivariance property of X̄. For the sample covariance matrix, from (4) we can
write

̂(Σ ⊗ Ψ)Y =
1

N − 1

N

∑
i=1

vec
(

YT
i − ȲT

) (
vec

(
YT

i − ȲT
))T

=
1

N − 1

N

∑
i=1

vec
(

BT(X i − X̄)T AT
) (

vec
(

BT(X i − X̄)T AT
))T

=
1

N − 1

N

∑
i=1

vec
(
(A(X i − X̄)B)T

) (
vec

(
(A(X i − X̄)B)T

))T
.
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By Theorem 1.17 (i) of [7], we know

vec
(
(A(X i − X̄)B)T

)
=

(
A ⊗ BT)vec

(
(X i − X̄)T

)
.

Hence,

̂(Σ ⊗ Ψ)Y =
1

N − 1

N

∑
i=1

(
A ⊗ BT)vec

(
(X i − X̄)T

) (
vec

(
(X i − X̄)T

))T (
A ⊗ BT)T

=
(

A ⊗ BT) [ 1
N − 1

N

∑
i=1

vec
(
(X i − X̄)T

) (
vec

(
(X i − X̄)T

))T
] (

A ⊗ BT)T

=
(

A ⊗ BT) ̂(Σ ⊗ Ψ)
(

A ⊗ BT)T .

Consider the positive definite matrices Σ̂X and Ψ̂X of dimension p × p and n × n, respectively, such that
̂(Σ ⊗ Ψ) = Σ̂X ⊗ Ψ̂X . By properties of the Kronecker product, we have

̂(Σ ⊗ Ψ)Y =
(

A ⊗ BT)(Σ̂X ⊗ Ψ̂X
)(

A ⊗ BT)T

=
(

A ⊗ BT)(Σ̂X ⊗ Ψ̂X
)(

AT ⊗ B
)

=
(

AΣ̂X ⊗ BTΨ̂X
)(

AT ⊗ B
)

=
(

AΣ̂X AT ⊗ BTΨ̂X B
)
.

Thus ̂(Σ ⊗ Ψ) is affine equivariant.

4. Illustrative examples

In this section, we find outliers in simulated examples and real ones, to illustrate the applicability of the
introduced distance in detecting outliers. For this purpose, in all examples, we consider k =

⌊ (N+pn+1)
2

⌋
in

obtaining the MCD estimators and use simulations for estimating m and c.

4.1. Simulated examples

Here, we present three simulated examples which show the GMD is well suited for detecting matrix
outliers. For this purpose, we first generate a sample from a matrix variate normal distribution, and then
we contaminate the generated sample to have outliers by replacing a number of observations having the
largest GMD with a sample from a specified distribution.

4.1.1. Example 1
In this example, we contaminate a generated sample of size N = 137 from the distribution

N3×2

 −4 5
3 −3

−5 4

 ,

 5 1 −3
1 5 1

−3 1 5

⊗
(

1.5 −1.5
−1.5 4

) ,

to have outliers by replacing a sample of 17 from the distribution N3×2(03×2, 2.5I3 ⊗ I2). The plot of the
GMD versus the RGMD (distance-distance plot) for the contaminated sample is shown in Figure 1. Since
in this example, the critical values for detecting outliers are

136

√
B3,65:0.975

137
= 3.741827,
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and √
86.01934 × 6

0.8887568(81.01934)
F6,81.01934:0.975 = 4.290827,

the horizontal and vertical lines are drawn respectively at values 4.290827 and 3.741827 in Figure 1. It can
be seen that by considering the GMD only one of the real outliers is detected while all real outliers are
detected by the RGMD.
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Figure 1: Distance-distance plot of example 1.

4.1.2. Example 2
In this example, we generate a sample of size N = 689 from the distribution N4×6(04×6, I4 ⊗ I6), and

contaminate it by replacing a sample of size 101 from the distribution

GT4×6

−1.72514×6,


1 −1 2 0

−1 3.5 −1 1
2 −1 6 0
0 1 0 4

⊗ 1.75I6; 4.01, 4.01

 ,

where 14×6 is the 4 × 6 matrix of ones. Here, the critical values are

688

√
B12,332:0.975

689
= 6.238839,

and √
583.3614(24)

0.9620942(560.3614)
F24,560.3614:0.975 = 6.576866.

Figure 2 presents the distance-distance plot for the contaminated sample. In this figure, the horizontal and
vertical lines are drawn at values 6.576866 and 6.238839, respectively. It is observed that all real outliers are
detected by the RGMD, while some of them are not detected by the GMD.
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Figure 2: Distance-distance plot of example 2.

4.1.3. Example 3
To have a contaminated sample, in this example, we consider a sample of size N = 1000 from the

distribution N14×14(014×14, I14 ⊗ I14) and contaminate it by replacing a sample of size 100 from the
distribution N14×14(2.5114×14, I14 ⊗ I14). The critical values are

999

√
B98,401.5:0.975

1000
= 15.21992,

and √
537.6831(196)

0.9363094(342.6831)
F196,342.6831:0.975 = 20.48051.

Figure 3 is the distance-distance plot for the contaminated sample which the horizontal and vertical lines
are drawn respectively at values 20.48051 and 15.21992. As can be seen from Figure 3, all real outliers
are detected by the RGMD, while seven real outliers and four non-outliers are detected as outliers by the
GMD.
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Figure 3: Distance-distance plot of example 3.

4.2. Real examples
To show the applicability of the obtained results in detecting outliers, we find outliers of two real

datasets Dow-Jones Dividends data and Ford Motor Company data.

4.2.1. Dow-Jones Dividends data
We find outliers of Dow-Jones Dividends data which is a real dataset. Dow-Jones Dividends data

consists of two components dividend and divisor of Dow-Jones Industrial Common Stocks for quarters
from 1920 to 1934 and the dimension of matrices is 2 × 4; for more details see [13].

Recently, Rezaei et al.[14] have fitted some matrix variate distributions such as normal to this dataset.
By considering the matrix variate normal distribution, we calculated the GMD and the RGMD for this
dataset. The calculated distances are given in Table 1. According to the dimension of matrices, the critical
values for detecting outliers are

14

√
B4,3:0.975

15
= 3.394594,

and √
9.644833(8)

0.8531358(2.644833)
F8,2.644833:0.975 = 25.43599.

Based on the critical values, the matrix data related to the years 1928 and 1932 are detected as outliers
by both types of distances. The detected outliers of Dow-Jones Dividends data can be seen in Figure 4
where the horizontal and vertical lines are drawn respectively at values 25.43599 and 3.394594.
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Table 1: GMD and RGMD of Dow-Jones Dividends data. The distances related to the outlier data detected by GMD and RGMD were
colored dark cyan and maroon, respectively. Also, the years related to the outlier data detected by both were marked with a light
orange box.

Year GMD RGMD Year GMD RGMD Year GMD RGMD
1920 1.781426 1.613546 1925 2.680427 2.624501 1930 2.934475 2.815863
1921 2.430803 3.188700 1926 3.119204 3.098863 1931 3.126866 9.916637
1922 2.489488 2.936198 1927 2.395432 3.026937 1932 3.696810 38.912858
1923 2.870990 2.920636 1928 3.682438 25.459493 1933 2.902705 2.780853
1924 2.257682 3.316625 1929 3.076219 3.015911 1934 2.285657 2.160099
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Figure 4: Distance-distance plot of Dow-Jones Dividends data.

4.2.2. Ford Motor Company data
Ford Motor Company data contains the average values of open, high, low, and close prices for

quarters from 1992 to 2021. These data are derived from stock prices of Ford Motor Company in
https://finance.yahoo.com/quote/F?p=F and are presented in Tables 2–4.

We calculated the GMD and the RGMD for this dataset, given in Tables 2–4, by considering the matrix
variate normal distribution for the data. To detect outliers in this dataset, the critical values are

29

√
B8,6.5:0.975

30
= 4.701158,

and √
19.92367(16)

0.9047772(4.923671)
F16,4.923671:0.975 = 21.60489.

By comparing the calculated distances in Tables 2–4 with the critical values, the matrix data of the years
1998, 1999, 2000, and 2015 are detected as outliers by both types of distances, while the matrix data of the
years 1997, 2003, and 2021 are detected as outliers by the RGMD and the matrix data of the year 2001 is
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detected by the GMD. Figure 5 shows the related distance-distance plot where the horizontal and vertical
lines are drawn respectively at values 21.60489 and 4.701158.

Table 2: Ford Motor Company’s quarterly average stock prices and their distances (1992-2001). The distances related to the outlier
data detected by GMD and RGMD were colored dark cyan and maroon, respectively. Also, the years related to the outlier data
detected by GMD, RGMD, and both were marked with dark cyan, maroon, and light orange boxes, respectively.

Year Quarter Open High Low Close GMD RGMD

1992

Q1 5.78 6.92 5.66 6.42

3.107039 4.006377Q2 7.76 8.60 7.54 8.25
Q3 8.04 8.20 7.13 7.66
Q4 7.22 7.69 6.71 7.38

1993

Q1 8.25 9.31 8.13 8.76

2.274481 3.022121Q2 9.69 10.24 9.17 9.67
Q3 9.51 10.13 8.99 9.67
Q4 10.89 11.81 10.63 11.38

1994

Q1 11.76 12.50 10.98 11.43

2.482584 2.857500Q2 10.64 11.25 10.06 10.65
Q3 11.11 11.56 10.19 10.81
Q4 10.25 10.71 9.56 10.28

1995

Q1 9.63 10.22 9.02 9.52

2.333578 3.106487Q2 10.13 10.84 9.75 10.48
Q3 10.89 11.74 10.51 11.06
Q4 10.78 11.21 10.26 10.45

1996

Q1 10.93 11.86 10.61 11.57

3.000183 3.259710Q2 13.02 13.52 12.12 12.74
Q3 11.95 12.33 11.22 11.82
Q4 11.59 12.29 11.21 11.71

1997

Q1 11.83 12.45 11.42 11.72

4.380136 33.861659Q2 12.62 13.72 12.29 13.41
Q3 14.86 16.25 14.68 15.69
Q4 16.17 17.79 15.45 16.45

1998

Q1 19.05 21.15 18.09 20.97

5.189126 77.127494Q2 26.18 29.81 25.06 28.70
Q3 29.16 30.90 25.68 27.23
Q4 28.56 31.20 26.16 30.77

1999

Q1 32.65 34.60 30.96 32.50

4.950197 32.131579Q2 32.71 35.41 30.13 32.51
Q3 29.17 30.13 26.19 27.64
Q4 28.69 30.60 27.15 29.07

2000

Q1 26.42 27.92 23.58 25.15

5.145706 71.271911Q2 27.49 30.00 25.08 27.12
Q3 25.26 28.31 24.12 25.44
Q4 24.92 26.19 22.54 24.10

2001

Q1 26.51 29.70 25.86 28.04

4.986016 4.581256Q2 26.97 29.00 24.95 26.13
Q3 23.21 24.00 19.56 20.90
Q4 17.28 18.77 15.56 16.90
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Table 3: Ford Motor Company’s quarterly average stock prices and their distances (2002-2011). The distances related to the outlier
data detected by GMD and RGMD were colored dark cyan and maroon, respectively. Also, the years related to the outlier data
detected by GMD, RGMD, and both were marked with dark cyan, maroon, and light orange boxes, respectively.

Year Quarter Open High Low Close GMD RGMD

2002

Q1 15.15 16.74 14.28 15.56

4.156131 4.086770Q2 16.53 17.61 15.24 16.55
Q3 13.62 13.76 10.47 11.68
Q4 9.92 11.13 8.17 9.71

2003

Q1 9.00 9.51 7.83 8.32

3.588619 21.898671Q2 9.42 11.08 9.00 10.60
Q3 11.24 11.95 10.51 11.13
Q4 12.10 14.38 11.73 13.78

2004

Q1 14.69 15.46 13.46 13.95

3.193159 4.013046Q2 14.53 16.12 13.85 15.29
Q3 14.81 15.18 13.85 14.29
Q4 13.80 14.59 13.13 13.95

2005

Q1 13.50 13.67 12.16 12.38

4.417089 4.491116Q2 10.28 11.21 9.33 9.78
Q3 10.30 10.81 9.77 10.19
Q4 8.86 8.99 7.73 8.06

2006

Q1 8.08 8.65 7.67 8.17

3.020631 3.283652Q2 7.45 7.58 6.61 7.01
Q3 7.36 8.31 6.71 7.71
Q4 8.18 8.67 7.55 7.97

2007

Q1 7.83 8.61 7.49 7.98

3.358693 3.414312Q2 8.10 9.02 7.89 8.60
Q3 8.61 9.17 7.63 8.27
Q4 8.28 8.58 7.22 7.70

2008

Q1 6.61 6.76 5.49 6.30

4.595666 4.512595Q2 6.97 8.13 5.61 6.62
Q3 4.73 5.84 4.24 4.82
Q4 3.33 3.92 1.61 2.39

2009

Q1 2.02 2.67 1.65 2.17

4.315896 4.426430Q2 4.83 6.35 4.11 5.93
Q3 7.43 8.21 6.37 7.60
Q4 7.97 9.16 7.54 8.63

2010

Q1 11.04 12.85 10.76 11.72

4.247945 4.175596Q2 12.51 13.40 10.75 11.61
Q3 11.61 13.06 10.81 12.10
Q4 14.27 16.31 14.14 15.62

2011

Q1 16.09 16.89 14.56 15.30

4.313366 4.294219Q2 15.11 15.59 13.83 14.73
Q3 12.60 12.77 10.38 11.00
Q4 10.50 11.92 9.55 11.01



A. Rezaei, K. Ahmadi / Filomat 37:23 (2023), 7993–8011 8008

Table 4: Ford Motor Company’s quarterly average stock prices and their distances (2012-2021). The distances related to the outlier
data detected by GMD and RGMD were colored dark cyan and maroon, respectively. Also, the years related to the outlier data
detected by GMD, RGMD, and both were marked with dark cyan, maroon, and light orange boxes, respectively.

Year Quarter Open High Low Close GMD RGMD

2012

Q1 12.07 13.03 11.66 12.43

4.153089 4.114499Q2 11.36 11.70 10.19 10.48
Q3 9.39 10.05 9.00 9.48
Q4 10.88 11.95 10.37 11.85

2013

Q1 12.96 13.69 12.38 12.90

4.159697 4.423241Q2 14.19 15.30 13.27 14.95
Q3 16.36 17.65 15.83 16.65
Q4 17.10 17.49 15.99 16.54

2014

Q1 15.21 16.03 14.78 15.32

4.034922 4.539254Q2 16.11 16.80 15.78 16.61
Q3 17.29 17.84 16.07 16.41
Q4 14.88 15.60 13.68 15.11

2015

Q1 15.56 16.34 14.91 15.73

4.818559 31.180452Q2 15.80 15.92 15.21 15.33
Q3 14.69 15.07 12.56 14.09
Q4 14.29 15.12 13.56 14.41

2016

Q1 12.93 13.50 11.65 12.65

4.354036 3.948091Q2 13.46 13.85 12.47 13.21
Q3 12.72 13.14 12.01 12.44
Q4 12.02 12.74 11.58 11.94

2017

Q1 12.44 12.93 11.92 12.18

2.802329 3.685898Q2 11.46 11.59 10.89 11.26
Q3 11.22 11.70 10.85 11.41
Q4 12.34 12.64 12.01 12.43

2018

Q1 11.37 11.99 10.41 10.89

3.741338 4.508144Q2 11.33 11.87 10.90 11.29
Q3 10.20 10.43 9.43 9.59
Q4 9.56 9.77 8.18 8.87

2019

Q1 8.38 9.00 7.99 8.78

3.214257 3.922030Q2 9.65 10.44 9.21 10.07
Q3 9.68 9.94 9.05 9.29
Q4 8.97 9.35 8.63 8.98

2020

Q1 8.42 8.67 6.45 6.87

4.379906 4.489953Q2 5.13 6.53 4.79 5.63
Q3 6.51 7.28 6.23 6.70
Q4 7.90 9.11 7.66 8.53

2021

Q1 10.44 12.72 10.14 11.49

4.644665 30.520030Q2 12.85 14.83 12.27 13.64
Q3 13.99 14.70 12.60 13.71
Q4 17.13 19.95 16.52 19.01
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Figure 5: Distance-distance plot of Ford Motor Company data.

5. A Simulation Study

In this section, we present a simulation study to investigate how the presented approach of detecting
outliers performs as well as its computation time with increasing data dimensions. For this purpose, we
consider p, n = 6, 18, 30, 42, and for each dimension from p × n = 6 × 6 to p × n = 42 × 42, we generate 15
random samples of size 8900 from the distribution Np×n(0p×n, Ip ⊗ In) and contaminate each generated
sample to have outliers by replacing 890 observations having the largest GMD with a sample of size 890
from the distribution Np×n(−101p×n, 1.5Ip ⊗ 0.75In). After being contaminated with outlier data, for each
contaminated sample of size 8900, we find outliers by the proposed method, obtain the number of the
real outliers that are not detected (false negatives) and the number of the non-outliers that are detected as
outliers (false positives), and compute the related computation times (in seconds). It should be noted that
in outlier detection, we consider k =

⌊ (8900+pn+1)
2

⌋
to obtain the MCD estimators and use the asymptotic

expression to estimate m and c.
The obtained results are reported in Table 5. It contains the averages of the percentage of false negatives

(PFN), the percentage of false positives (PFP), and the computation times (Time) of the 15 contaminated
samples for different dimensions. All the computations are performed in R software package (R x64 4.2.1)
using a machine equipped with an Intel Core i5-3230M 2.60 GHz processor and 4 GB RAM. The R code
can be obtained on request from the authors.

Table 5 shows that by increasing the dimension (p × n), the average of PFN decreases, and the average
of PFP increases for the GMD. This means that as the dimension of matrix observations increases, by the
GMD, more real outliers are detected and at the same time more non-outliers are detected as outliers. In
addition, the results show that for the RGMD, the averages of PFN and PFP are equal to zero, which
seems that increasing the dimension (as much as was considered here) does not affect the detection of
outlier data based on the RGMD.

Based on the results obtained for computing time in Table 5, it can be said that the computation time of
the GMD is always less than the computation time of the RGMD, and with the increase of the dimension,
the computation times of both types of distances increase.
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Table 5: Averages of PFN, PFP, and Time (in seconds) based on 15 contaminated samples.

p n GMD RGMD
PFN PFP Time PFN PFP Time

6

6 71.38577 0 0.02496 0 0 1.33120
18 69.33333 0 0.15704 0 0 7.16428
30 64.92884 0 0.41601 0 0 16.67331
42 60.82397 0 0.80392 0 0 30.53965

18

6 69.03371 0 0.15600 0 0 6.98881
18 56.95131 0 1.30520 0 0 47.73608
30 44.74906 0.05390 3.56096 0 0 131.27320
42 35.19850 0.11617 7.46647 0 0 270.08350

30

6 65.03371 0 0.42267 0 0 16.74084
18 44.56180 0.08128 3.75597 0 0 139.12780
30 30.30712 0.20374 10.02146 0 0 372.36430
42 20.89888 0.50792 20.62218 0 0 778.62360

42

6 60.95880 0 0.81251 0 0 30.27416
18 34.86142 0.04592 7.02001 0 0 259.35530
30 20.72659 0.30223 20.41971 0 0 783.47220
42 13.01873 0.69151 40.88713 0 0 1657.25500

6. Conclusion

In this paper, a new distance for matrix observations called generalized Mahalanobis distance (GMD)
was introduced. For observations of the matrix variate elliptically contoured distributions, some properties
of the GMD were investigated and its distribution was presented. As one of its significant applications,
the method of detecting outliers in observations having matrix variate normal distribution was described.
Finally, outliers of three simulated examples and two real datasets were detected by using the described
method to show the applicability of the GMD in detecting outliers, and a simulation study was presented to
examine how the presented approach of detecting outliers performs. The presented approach of detecting
outliers only is for the case of the matrix variate normal distribution. Providing a general method to detect
outliers among a sample of any matrix variate distribution can be considered as future research.
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