
Filomat 37:23 (2023), 7761–7769
https://doi.org/10.2298/FIL2323761A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In the present work, we are concerned with the estimation of some mixed variants of multifractal
dimensions for a special class of measures characterized by a weak Ahlfors assumption applying mixed
multifractal generalizations of Hausdorff and packing measures. Exact computation of such dimensions is
shown to be valid for a class of Moran-type measures in some special cases.

1. Introduction

In recent years, fractals have been widely mentioned in many fields of science. Their application solves
a lot of problems. The most commonly used concepts to characterize fractals are their dimensions, such as
Hausdorff, packing, box-counting, and Rényi dimensions ([15–17, 21]). Different variants, generalizations
and simplified forms have been derived according to the need and the use. One of the most known practical
cases are the so-called Moran sets and measures ([8, 20, 25]).

In [9], Dai applied these concepts to a class of Moran sets satisfying the strong separation condition, and
showed that the Hausdorff and packing measures are equivalent, although their corresponding dimensions
are different. In [1, 2], some density results have been generalized based on the multifractal formalism
introduced by Cole [7]. Inspired from [26], Selmi and collaborators developed different approaches for the
computation of the exact multifractal dimension, and the equivalence between the Hausdorff and packing
measures on a class of Moran sets satisfying the strong separation condition. The authors in [22, 23]
extended the mixed multifractal analysis to a large class of non necessary Gibbs cases. The authors in
[3, 4, 18, 19] conducted an extension to the case of mixed multifractal generalization of Hausdorff and
packing measures, and introduced a simultaneous density characteristic of finitely many measures, where
one measure at least satisfies a quasi-Ahlfors property.

In [12] a decomposition theorem of Besicovitch’s type is established for the regularities of general
Hausdorff and packing functions, which is applied by the next to describe a Tricot’s density theorem.
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In [13], projection related results are established for relative multifractal box-dimensions, density and
multifractal dimensions. Selmi in [27] improve many known density results by connecting various relative
multifractal measures and density theorems. The equivalence of the relative multifractal Hausdorff and
packing measures on cookie-cutter-like sets is discussed in the case of a relative strong separation condition.

In [28], the authors are concerned with some multifractal dimensions estimations of vector-valued
measures where the measures are no longer Gibbs.

In [29], relative multifractal formalism is established in the case of generalized Hausdorff and packing
measures in a special case where such measures differ.

In [5], some non-necessary Gibbs vector-valued measures are studied in the framework of the mixed
multifractal analysis based on gauge functions and suitable multifractal densities.

In [14], some non-regular homogeneous Moran measures are investigated. Sufficient conditions are
shown to yield an explicit computation of the relative multifractal dimensions of the level sets. Mutual
singularities of the relative multifractal measures are investigated for the homogeneous Moran case with
different multifractal dimensions.

We recall finally that the results established in the present paper are discussed in some special cases in
[30, 31, 33, 34] improving results in [1, 2].

In the present paper, we analyse the correlation between the mixed generalized Hausdorff and packing
measures relatively to a suitable vector-valued measure ξ = (µ, ν) = (µ1, µ2, . . . , µk, ν) composed of Borel
probability measures on Rn, n, k ∈ N fixed. We estimate a corresponding entropy-type dimension in the
case where the vector-valued measure satisfies some weak Ahlfors assumption on the regularity. We also
analyse the equivalence between the mixed generalized Hausdorff and packing measures on a class of
Moran sets in some special cases. Our results join and improved many cases already developed such as
[8–11]

Finally, before developing our main results, it is worthy to mention that by adopting both the proofs
in [31] with necessary modifications, our results may be extended effectively to non-atomic measures.
However, we stress on the fact that in our main results we already assumed that the gauge measure ν is
non-atomic. It is also easily noticeable that in [30, 31], the case of a single measure is considered. The results
may be extended to our mixed case in a natural way. The quantity µ(B(x, r))q, µ ∈ P(Rn) and q ∈ R will be
replaced by µ1(B(x, r))q1 . . . µk(B(x, r))qk . In general when, q ≥ 0 or the qi ≥ 0,∀i, the results is an adoption of
the same proofs. For q < 0 (the single case), or some of the qi < 0 (the mixed case), we may use the doubling
property or the property Pq,t

µ,ν < ∞.
The present paper is organized as follows. Section 2 is devoted to the development of some general

concepts to be used later. Section 3 is concerned with the presentation of our main results. In particular,
new and direct proofs of main results are provided. Section 4 is devoted to the development of a practical
case due to our theoretical results provided previously. An exact computation of the fractal dimension of a
Moran type construction is provided.

2. General settings

In this section, we aim to introduce the general tools that will be applied next. We will review in brief
the notion of mixed multifractal generalizations of Hausdorff and packing measures and the associated
dimensions already introduced in [3, 18], and next recall the mixed multifractal generalisations of densities
associated to vector valued measures developed in [4, 19].

For n ≥ 1 an integer, consider on Rn, the set P(Rn) of Borel probability measures, and the set of Borel
quasi-Ahlfors probability measures defined by

QAH(Rn) =

µ ∈ P(Rn); ∃α > 0, such that, lim sup
|U|−→0

µ(U)
|U|α

< +∞

 .
U being a subset of Rn, and |U| its diameter, |U| = sup

x,y∈U
∥x − y∥2, where ∥x − y∥2 is the usual Euclidean

norm on Rn. For µ ∈ QAH(Rn), the corresponding exponent α is called the quasi-Ahlfors exponent, or
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quasi-Ahlfors regularity, or also the quasi-Ahlfors index of µ, and µ is said to be α-quasi-Ahlfors regular.
Let k ∈ N be fixed. For a vector-valued measure µ = (µ1, µ2, ..., µk) ∈ P(Rn)k, q = (q1, q2, ..., qk) ∈ Rk. For

x = (x1, x2, . . . , xn) ∈ Rn, and r > 0, denote

µ(B(x, r)) = (µ1(B(x, r)), ..., µk(B(x, r))),

and (
µ(B(x, r)

)q =

k∏
i=1

(
µi(B(x, r)

)qi ,

where B(x, r) is the ball of center x and radius r in Rn. Next, for a Borel vector-valued probability measure
ξ = (µ, ν) = (µ1, µ2, ..., µk, ν) ∈ P(Rn)k

× QAH(Rn) and (q, t) = (q1, q2, ..., qk, t) ∈ Rk+1, we write

Φ
q,t
ξ (B(x, r)) = µ(B(x, r)))q(ν(B(x, r)))t.

For E ⊂ Rn, and ε > 0, let

H
q,t
ξ (E) = lim

ε↓0
H

q,t
ξ,ε(E) = lim

ε↓0

(
inf

∑
i

Φ
q,t
ξ (B(xi, ri))

)
,

and
H

q,t
ξ (E) = sup

F⊆E
H

q,t
ξ (F).

The lower bound above is taken over all centred ε-coverings of E. We mean here by an ε-covering any
collection of balls (B(xi, ri))i, with xi ∈ E, ri ≤ ε, and E ⊂ ∪

i
B(xi, ri). The quantity Hq,t

ξ is known as the

generalized mixed Hausdorffmeasure relatively to ξ. Similarly, let

P
q,t
ξ (E) = lim

ε↓0
P

q,t
ξ,ε(E) = lim

ε↓0

(
sup

∑
i

Φ
q,t
ξ (B(xi, ri))

)
,

and
P

q,t
ξ (E) = inf

E⊆∪iEi

∑
i

P
q,t
ξ (Ei).

The upper bound above is taken over all centred ε-packings of E. We mean by centred ε-packings any
collection of balls (B(xi, ri))i, with xi ∈ E, ri ≤ ε, and B(xi, ri) ∩ B(x j, r j) = ∅, for all i, j; i , j. The quantity
P

q,t
ξ is known as the generalized mixed packing measure relatively to ξ. See [3, 18] for backgrounds on

such measures. The authors showed there that the quasi-Ahlfors assumption allows to associate to these
measures some mixed generalisations of Hausdorff and packing dimensions, and a mixed generalizations
of the Rényi entropy dimension as follows,

dimq
ξ(E) = inf

{
t ∈ R; Hq,t

ξ (E) = 0
}
= sup

{
t ∈ R; Hq,t

ξ (E) = ∞
}
,

Dimq
ξ(E) = inf

{
t ∈ R; Pq,t

ξ (E) = 0
}
= sup

{
t ∈ R; Pq,t

ξ (E) = ∞
}
,

and
∆

q
ξ(E) = inf

{
t ∈ R; P

q,t
ξ (E) = 0

}
= sup

{
t ∈ R; P

q,t
ξ (E) = ∞

}
.

We now recall the generalized mixed multifractal density of measures introduced in [4, 19]. Original
definitions are introduced in [6, 7]. Let θ ∈ P(Rn), and x ∈ Support(θ), The upper and lower generalized
mixed multifractal (q, t)-densities of θ at x, with respect to ξ, are defined respectively by

d
q,t
ξ (x, θ) = lim sup

r→0

θ(B(x, r))

Φ
q,t
ξ (B(x, r))

,
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and
dq,t
ξ (x, θ) = lim inf

r→0

θ(B(x, r))

Φ
q,t
ξ (B(x, r))

.

Whenever d
q,t
ξ (x, θ) = dq,t

ξ (x, θ), we denote the common value by dq,t
ξ (x, θ), and call it the (q, t)-density of θ at

x with respect to ξ.
The following result is proved in [4, 19] as a general case of [1, 2, 26], and it provides lower and upper

bounds for the generalized mixed multifractal (q, t)-density.

Theorem 2.1. [4, 19] Let E be a Borel subset of Support(ξ). The following assertions hold.

1. IfHq,t
ξ (E) < ∞, there exists constants K1 and K2; 0 < K1 ≤ K2 < ∞ such that

K1H
q,t
ξ (E) inf

x∈E
d

q,t
ξ (x, θ) ≤ θ(E) ≤ K2H

q,t
ξ (E) sup

x∈E
d

q,t
ξ (x, θ). (2.1)

2. If Pq,t
ξ (E) < ∞, then

P
q,t
ξ (E) inf

x∈E
dq,t
ξ (x, θ) ≤ θ(E) ≤ Pq,t

ξ (E) sup
x∈E

dq,t
ξ (x, θ). (2.2)

Next, we need to introduce the following quantities which will be useful later. For a single measure
µ ∈ P(Rn), and a > 1, we write

Pa(µ) = lim sup
r↓0

sup
x∈Sµ

µ(B(x, ar))
µ(B(x, r))

 ,
and for a vector-valued measure µ = (µ1, µ2, ..., µk) ∈ (P(Rn))k, we write

Pa(µ) =
k⋂

i=1

Pa(µi).

Finally, we denote the set of the so-called doubling vector-valued measures on Rn by

PD(Rn) =
⋃
a>1

{
µ ∈ P(Rn); Pa(µ) < ∞

}
.

We denote also
QAHD(Rn) = QAH(Rn) ∩ PD(Rn).

3. Main results

In this section, we propose to provide a generalization of a result proved in [2]. Let µ and ν be Borel
probability measures on Rn. We say that µ is absolutely continuous with respect to ν if for any set A ⊂ Rn,
ν(A) = 0 implies µ(A) = 0. We write ν ≪ µ. We also say that µ and ν are mutually singular if there exists
A ⊂ Rn, such that µ(A) = ν(Rn

\A) = 0, and we write µ ⊥ ν. Finally we say that µ is non-atomic if µ({x}) = 0,
∀x ∈ Rn.

Theorem 3.1. [2] Let α, q ∈ R, µ, ν ∈ PD(Rn) and θ a probability measure on Rn. If ν is non-atomic, then, the
following assertions are equivalent.

1. θ has α as a multifractal exact dimension.
2. We have

(a) There exist a set S ⊂ Rn with dimq
µ,ν(S) = α, such that θ(S) = 1.

(b) If E ⊂ Rn satisfies dimq
µ,ν(E) < α, then, θ(E) = 0.
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3. We have
(a) θ is absolutely continuous with respect toHq,γ

µ,ν for all γ < α.
(b) θ andHq,β

µ,ν are mutually singular for all β > α.

The first extension of [1, 2] to the mixed case starts with the following definition.

Definition 3.2. Let ξ = (µ, ν) = (µ1, µ2, ..., µk, ν) be a vector-valued measure composed of Borel probability measures
on Rn, q = (q1, q2, . . . , qk) ∈ Rk, and α ∈ R. A Borel probability measure θ on Rn is said to posses α as mixed
q-multifractal exact dimension if

lim
r→0

logθ(B(x, r)) − logµ(B(x, r))q

log ν(B(x, r))
= α, for θ. a. a x ∈ Rn.

Next, as in the single multifractal case, we speak here also about the mixed multifractal extensions of
Hausdorff and packing dimensions of Borel probability measures, and relate them to the mixed multifractal
exact dimension introduced in Definition 3.2 above.

For a vector-valued Borel probability measure ξ = (µ, ν) = (µ1, µ2, . . . , µk, ν), and θ on Rn, we write

H
q,t
ξ (θ) = inf

E

{
H

q,t
ξ (E), θ(E) = 1

}
, (3.1)

and the dual measure

P
q,t
ξ (θ) = inf

E

{
P

q,t
ξ (E), θ(E) = 1

}
. (3.2)

Write also

dimq
ξθ = inf

E

{
dimq

ξE, θ(E) = 1
}
, (3.3)

and

Dimq
ξθ = inf

E

{
Dimq

ξE, θ(E) = 1
}
. (3.4)

As in the single multifractal case, we may also show here that

dimq
ξθ = sup

{
t ≥ 0, Hq,t

ξ (θ) = ∞
}
= inf

{
t ≥ 0, Hq,t

ξ (θ) = 0
}
, (3.5)

and

Dimq
ξθ = sup

{
t ≥ 0, Pq,t

ξ (θ) = ∞
}
= inf

{
t ≥ 0, Pq,t

ξ (θ) = 0
}
. (3.6)

We get also the inequalities
dimq

ξ(support(µ) ∩ support(ν)) ≥ dimq
ξθ,

and
Dimq

ξ(support(µ) ∩ support(ν)) ≥ Dimq
ξθ.

As [1, 2], Proposition 1, we get here an analogue for the mixed case.

Proposition 3.3. There exists a minimum-dimension support Sθ satisfying

dimq
ξSθ = dimq

ξθ.

The proof is a simple compilation of the one due to [2], Proposition 1, and thus omitted here, and left to the
reader.

Now, a first main extension to the case of mixed multifractal densities introduced in [4, 19] consists as
in the single case in relating these densities to the concept of mixed multifractal dimensions. We get the
following result.
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Proposition 3.4. Let x ∈ support(ξ), q = (q1, q2, ..., qk) ∈ Rk, and α ∈ R. Assume further that ν is non-atomic, and
that there exists a real number α0 satisfying

d
q,α
ξ (x, θ) =

{
∞ if α > α0,
0 if α < α0.

Then, θ has α0 as a mixed q-multifractal exact dimension.

Proof. Denote αθ = lim
r→0

logθ(B(x, r)) − logµ(B(x, r))q

log ν(B(x, r))
, and let α > α0. So, d

q,α
ξ (x, θ) = ∞. There exists δ > 0,

small enough, for which
θ(B(x, r))
Φ

q,α
ξ (B(x, r))

≥ 1, ∀ r, 0 < r < δ.

As a result,
θ(B(x, r)) ≥ Φq,α

ξ (B(x, r)), ∀ r, 0 < r < δ.

Applying next the logarithm in both sides, we get

logθ(B(x, r)) − log(µ(B(x, r))q

log ν(B(x, r))
< α, ∀ r, 0 < r < δ.

which gives easily αθ ≤ α, ∀α > α0, which in turns yields that αθ ≤ α0.
The converse is similar. So, we get αθ = α0.

Now, our second main result in the present paper constitutes a mixed multifractal generalization
of Theorem 3.1, and is subject of Theorem 3.5 below. The second improvement of [2] consists in the
development of a different and direct proof for our extension in Theorem 3.5.

Theorem 3.5. With the same notations as in Definition 3.2, assume that θ is non-atomic, and that ξ ∈ (PD(Rn))k
×

QAHD(Rn). The following assertions are equivalent.

1. α is the the mixed q-multifractal exact dimension of θ.
2. There exists a set S ⊂ Rn with dimq

ξS = α, and θ(S) = 1. Moreover, for any E ⊂ Rn with dimq
ξE < α, we have

θ(E) = 0.
3. θ is absolutely continuous with respect toHq,γ

ξ , ∀γ < α, and θ andHq,β
ξ are mutually singular, ∀ β > α.

Proof.
(1) =⇒ (2) follows immediately from Proposition 3.3, and equations (3.1), (3.3) and (3.5).
(2) =⇒ (3) Let A ⊂ Rn be such that Hq,γ

ξ (A) = 0, with γ < α. We immediately observe that dimq
ξA ≤ γ < α.

Therefore, Assertion 2 implies that θ(A) = 0, which shows that θ≪Hq,γ
ξ .

Now, take A = S in Assertion 2. We get in one hand θ(A) = 1. On the other hand, again from Assertion 2,
we have β > α = dimq

ξA, which yields thatHq,β
ξ (A) = 0. Therefore, θ ⊥ Hq,β

ξ .
(3) =⇒ (1) Observe firstly that

lim
r→0

θ(B(x, r))

Φ
q,t
ξ (B(x, r))

< ∞.

As a consequence,

d
q,γ−ε
ξ (x, θ) = 0, ∀ε > 0.

Hence, dimq
ξ(θ) ≤ γ − ε, ∀ε > 0, and ∀γ < α. Therefore, dimq

ξ(θ) ≤ α.

On the other hand, by using similarly the fact that θ ⊥ Hq,β
ξ , ∀β > α, we deduce that dimq

ξ(θ) ≥ α. So as the
result.



S. Arfaoui, A. Ben Mabrouk / Filomat 37:23 (2023), 7761–7769 7767

4. A Moran case for the mixed q-multifractal exact dimension

In this section, we propose to construct a special case of Moran sets to apply our theoretical findings
already exposed in the previous section. Denote nk = 2k, k ∈ N, and consider a vector of real numbers

(ci1 , ci2 , ...., cink
) ⊂ (0, 1)nk , with

nk∑
j=1

ci j ≤ 1,. Write next Dk =
{
(i1, i2, .....ik) : 1 ≤ i j ≤ n j, 1 ≤ j ≤ k

}
. Denote

finally, D0 = ∅, and D = ∪
k≥0

Dk. For σ = (i1, i2, .....ik) ∈ Dk, and τ = ( j1, j2, ..... jm) ∈ Dl, we write σ ∗ τ =

(i1, i2, .....ik, j1, j2, ..... jm). Consider next the unit interval I = [0, 1], and the collection F = {Iσ, σ ∈ D} of
sub-intervals of I for which I∅ = I, and for all k ≥ 1, σ, τ ∈ Dk, σ , τ, we have int(Iσ) ∩ int(Iτ) = ∅, where
int(.) denotes the topological interior. Assume further that for all k ≥ 1, for all 1 ≤ j ≤ nk, and i ∈ Dk,
we have |Ii∗ j| = c j|Ii|, where |.| denotes the diameter of I. The system (I,F ) is known as a Moran structure.
The set E = ∩

k≥1
∪
σ∈Dk

Iσ is called Moran set associated to F . For k ∈ N, the collection Fk={Iσ, σ ∈ Dk} is the

k-order fundamental sets of E. The interval I is called the original set of E. Whenever lim
k→∞

max
σ∈Dk

|Iσ| = 0,

then, for all i ∈ D, the intersection set ∩
n≥1

Ii1i2.....ik is reduced to a single point denoted by φ(i). Next, for

k ∈N, and σ = (i1, i2, .....ik, ....) ∈ D, we write σ|k to designate the truncation σ|k = (i1, i2, .....ik), and we denote
accordingly, Ik(σ) = Iσ|k = Ii1i2.....ik . Finally, we assume that the Moran sets E satisfies a strong separation
condition in the sense that for all σ ∈ D,

dist(Iσ∗i, I σ∗ j) ≥ ak × |Iσ| , ∀ i , j, (4.1)

where (ak)k is a sequence of positive real numbers, bounded away from 0.
Let next (ξ, θ) = (µ, ν, θ) = (µ1, µ2, . . . , µk, ν, θ) ∈ P(Rn)k+2 be such that support(θ) ⊂ E. We will show that

the Moran construction permits the computation of the mixed q-multifractal exact dimension of sets in the
sense of the following definition.

Definition 4.1. We say that the collection F permits the computation of the mixed q-multifractal exact dimension
of sets if

d
q,t
ξ,F (x, θ) = lim

n→+∞

θ(In(i))
µq(In(i))νt(In(i))

=

{
0 if t < α
∞ if t > α for any i ∈ D, (4.2)

where α is the mixed q-multifractal exact dimension of θ.

Definition 4.2. We say that two Borel measures µ and ν are equivalent and we write µ ∼ ν if for any Borel set A, we
have

µ(A) = 0 ⇔ ν(A) = 0.

The following theorem confirms effectively that the collectionF of the Moran construction above permits
the computation of the mixed q-multifractal exact dimension of the measure θ.

Theorem 4.3. Let E ⊂ I be the Moran set described above for which the assumption (4.1) holds, and α ∈ R satisfying
(4.2) with Pq,α

ξ (E) < ∞. The following assertions hold.

1. The collection F permits the computation of the mixed q-multifractal exact dimension of θ. Furthermore,
dimq

ξ(E) = dimq
ξ(θ) = α.

2. Assume that 0 < d
q,t
ξ,F (x, θ) < ∞, ∀ i ∈ D, then the restrictions of θ andHq,α

ξ on E are equivalent.

Proof.
1) Using (4.1), we deduce that d

q,α
ξ (x, θ) = d

q,α
ξ,F (x, θ), ∀ x = φ(i) ∈ E.

Next, using Theorem 2.1, Assertion 1, we get dimq
ξ(E) = dimq

ξ(θ). Using 3.4, we have α = dimq
ξθ. Assertion 1

is thus proved.
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2) Let B ⊂ E be a Borel set with θ(B) = 0. We shall show thatHq,α
ξ (B) = 0. Consider a sequence of open sets

(Bk)k such that
B ⊂ Bk and θ(Bk) ≤ 2−k, ∀ k ≥ 0.

Denote next for k ∈N, θk(.) = θ(. ∩ Bk), and for n ∈N,

Ωn =
{
i ∈ D; d

q,t
ξ (φ(i), θ) < n

}
.

From Theorem 2.1, Assertion 1, We obtain

K1H
q,α
ξ (B ∩ φ(Ωn)) ≤ θk(B) × sup

x∈B∩φ(Ωn)

1
dq,α
ξ (x, θk)

≤ θ(B) × sup
x∈B∩φ(Ωn)

1
dq,α
ξ (x, θ)

≤ n2−k, ∀n, k.

As a results,
H

q,α
ξ (B ∩ φ(Ωn)) = 0,∀n ∈N,

which leads toHq,α
ξ (B) = 0.

The opposite sense (Hq,α
ξ (B) = 0 =⇒ θ(b) = 0) may be proved by similar techniques.

By similar arguments and techniques as in Theorem 4.3, we can prove the following result.

Theorem 4.4. Let E ⊂ I be the Moran set described above for which the assumption (4.1) holds, and α ∈ R satisfying
(4.2) with Pq,α

ξ (E) < ∞. The following assertions hold.

1. Dimq
ξE = Dimq

ξθ = α.

2. Assume that 0 < d
q,t
ξ,F (x, θ) < ∞, ∀ i ∈ D, then the restrictions of θ and Pq,α

ξ on E are equivalent.

Finally, as a consequence of Theorem 4.3, and Theorem 4.4, we deduce the following results which gives a
case of equivalence for the mixed HausdorffmeasureHq,t

ξ and the mixed packing measure Pq,t
ξ .

Corollary 4.5. Let E ⊂ I be a Moran set satisfying (4.1). Let also (ξ, θ) = (µ, ν, θ) ∈ P(Rn)k+1
× AHP(Rn) be a

vector-valued probability measure on Rn, such that support(θ) ⊂ E, and α satisfying (4.2). Then the restrictions of
the measures θ,Hq,α

ξ and Pq,α
ξ are equivalent.

Bibliography

[1] N. Attia, and B. Selmi, Relative multifractal box-dimensions. Filomat 33(9) (2019), pp.
[2] N. Attia, B. Selmi and C. Souissi, Some density results of relative multifractal analysis. Chaos, Solitons and Fractals 103 (2017),

pp. 1–11.
[3] A. Ben Mabrouk, and A. Farhat, A Mixed Multifractal Analysis For Quasi-Ahlfors Vector-Valued Measures. Fractals 30(01),

2240001 (2022).
[4] A. Ben Mabrouk, and A. Farhat, Mixed Multifractal Densities For Quasi-Ahlfors Vector-Valued Measures. Fractals 30(01),

2240003 (2022).
[5] A. Ben Mabrouk and B. Selmi, A mixed multifractal analysis of vector-valued measures: Review and extension to densities

and regularities of non-necessary Gibbs cases, Frontiers of Fractal Analysis: Recent Advances and Challenges, Taylor & Francis
Group, LLC, CRC Press, (2022).

[6] J. Cole, Relative multifractal analysis. Choas Solitons Fractals 11 (2000), pp. 2233–2250.
[7] J. Cole and L. Olsen, Multifractal variation measures and multifractal density theorems. Real Anal Exch 28 (2003), pp. 501–514.
[8] M. Dai. On the equivalence of the multifractal centred hausdorff measure and the multifractal packing measure. Nonlinearity

21 (2008), 1443-1453.
[9] M. Dai, Multifractal analysis of a measure of multifractal exact dimension. Nonlinear Anal. 70 (2009), 1069-1079.

[10] M. Dai, The equivalence of measures on Moran set in general metric space. Chaos, Solitons and Fractals 29 (2006), 55–64.
[11] M. Dai and Y. Li. Multifractal dimension inequalities in a probability space. Chaos Solitons Fractals 34 (2007), pp. 213-23 .



S. Arfaoui, A. Ben Mabrouk / Filomat 37:23 (2023), 7761–7769 7769

[12] Z. Douzi and B. Selmi. Regularities of general Hausdorff and packing functions. Chaos, Solitons and Fractals. 123 (2019), 240-243.
[13] Z. Douzi and B. Selmi. A relative multifractal analysis: box-dimensions, densities, and projections. Quaestiones Mathematicae.

2022, 45(8): 1243–1296.
[14] Z. Douzi, B. Selmi and A. Ben Mabrouk, The refined multifractal formalism of some homogeneous Moran measures, The

European Physical Journal Special Topics 230 (2021) 3815-3834.
[15] G. A. Edgar, Centered densities and fractal measures. New York J Math 13 (2007), pp. 33-87.
[16] K. Falconer, Techniques in Fractal Geometry, Chichester: John Wiley and Sons, Ltd, 1997.
[17] K. Falconer, Random fractals, Math. Proc. Cambridge Phli. Soc., 1986, 100: 559.
[18] A. Ben Mabrouk, and A. Farhat, A Joint Multifractal Analysis of Finitely Many Non Gibbs-Ahlfors Type Measures. 20 pages,

viXra:1808.0576, (2018).
[19] A. Ben Mabrouk, and A. Farhat, Mixed Mixed Generalized Multifractal Densities for Vector Valued Quasi-Ahlfors Measures.

19 pages, viXra:1804.0405, (2018),
[20] S. Hua and W. Li, Packing dimension of generalized Moran Sets, Progr. Natur. Sci. (English Ed.) 6(2) (1996), pp. 148–152.
[21] P. Mattila. Geometry of sets and measures in euclidian spaces: fractals and rectifiability. Cambridge University Press; 1995 .
[22] M. Menceur, A. Ben Mabrouk and K. Betina, The Multifractal Formalism For Measures, Review and Extension to Mixed Cases.

Anal. Theory Appl., 32(1) (2016), pp. 77-106.
[23] M. Menceur and A. Ben Mabrouk, A mixed multifractal formalism for finitely many non Gibbs Frostman-like measures, (2018),

19 pages, ArXiv:1804.09034v1.
[24] M. Menceur and A. Ben Mabrouk, A joint multifractal analysis of vector valued non Gibbs measures. Chaos, Solitons & Fractals,

126 (2019), pp. 203-217.
[25] Moran, P. A. P. Additive functions of intervals and Hausdorffmeasure. Proc. Cambridge Philos. Soc. 42 (1946), 15–23.
[26] L. Olsen, A multifractal formalism, Adv. Math., 116 (1995), 82-196.
[27] B. Selmi. The relative multifractal densities: a review and application. Journal of Interdisciplinary Mathematics. Vol. 24 (2021),

No. 6, pp. 1627-1644.
[28] B. Selmi. Multifractal dimensions of vector-valued non-Gibbs measures. Gen. Lett. Math., 8 (2020), 51-66.
[29] B. Selmi, The relative multifractal analysis, review and examples, Acta Scientiarum Mathematicarum 86 (2020) 635-666.
[30] B. Selmi. Multifractal dimensions for projections of measures. Bol. Soc. Paran. Mat., (to appear).
[31] B. Selmi, Measure of relative multifractal exact dimensions. Advances and Applications in Mathematical Sciences, 17 (2018),

629-643.
[32] B. Selmi, On the projections of the multifractal Hewitt-Stromberg dimensions. Filomat, Vol 37, No 15 (2023), pp.
[33] B. Selmi, A. Ben Mabrouk, On the equivalence of multifractal measures on Moran sets. Filomat, Vol 36, No 10 (2022), pp.
[34] B. Selmi, A. Ben Mabrouk, M. Menceur, On the mixed multifractal densities and regularities with respect to gauges. Filomat,

Vol 36, No 12 (2022), pp.


