Judgement of two Weyl type theorems for bounded linear operators

Tengjie Zhang ${ }^{\text {a,* }}$, Xiaohong Cao ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China

Abstract

Let H be an infinite dimensional separable complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on $H . T \in B(H)$ is said to satisfy property $\left(U W_{\Pi}\right)$ if $\sigma_{a}(T) \backslash \sigma_{e a}(T)=\Pi(T)$, where $\sigma_{a}(T)$ and $\sigma_{e a}(T)$ denote the approximate point spectrum and the essential approximate point spectrum of T respectively, $\Pi(T)$ denotes the set of all poles of $T . T \in B(H)$ satisfies a-Weyl's theorem if $\sigma_{a}(T) \backslash \sigma_{e a}(T)=\pi_{00}^{a}(T)$, where $\pi_{00}^{a}(T)=\left\{\lambda \in \operatorname{iso} \sigma_{a}(T): 0<n(T-\lambda I)<\infty\right\}$. In this paper, we give necessary and sufficient conditions for a bounded linear operator and its function calculus to satisfy both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem by topological uniform descent. In addition, the property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem under perturbations are also discussed.

1. Introduction and preliminaries

Throughout this paper, \mathbb{C} and \mathbb{N} denote the set of complex numbers and the set of nonnegative integers. The unit closed disk and unit circle on the complex plane \mathbb{C} are denoted by \mathbb{D} and Γ, respectively. Let H be a complex separable infinite dimensional Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. Let $T \in B(H)$. We denote by $n(T)$ the dimension of the kernel $N(T)$ and by $d(T)$ the codimension of the range $R(T)$. If $R(T)$ is closed and $n(T)<\infty$, then T is called an upper semi-Fredholm operator. T is said to be a lower semi-Fredholm operator if $d(T)<\infty$. An operator T is said to be Fredholm operator if it is both lower and upper semi-Fredholm. Especially, if T is an upper semi-Fredholm operator and $n(T)=0$, then T is called a bounded below operator. The index of T is defined by ind $(T)=n(T)-d(T)$. An operator T is said to be an upper semi-Weyl operator if it is an upper semi-Fredholm operator with ind $(T) \leq 0$. If T is an upper semi-Fredholm operator and $\operatorname{ind}(T)=0$, then T is called Weyl operator. The spectrum of T, the approximate point spectrum $\sigma_{a}(T)$, the essential approximate point spectrum $\sigma_{e a}(T)$, the upper semi-Fredholm spectrum $\sigma_{S F_{+}}(T)$ are defined by

$$
\begin{gathered}
\sigma(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not invertible }\} \\
\sigma_{a}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a bounded below operator }\} \\
\sigma_{e a}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not an upper semi-Weyl operator }\}, \\
\sigma_{S F_{+}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not an upper semi-Fredholm operator }\} .
\end{gathered}
$$

The ascent and descent of T are defined by $\operatorname{asc}(T)=\inf \left\{n \in \mathbb{N}: N\left(T^{n}\right)=N\left(T^{n+1}\right)\right\}$ and $\operatorname{des}(T)=\inf \{n \in$ $\left.\mathbb{N}: R\left(T^{n}\right)=R\left(T^{n+1}\right)\right\}$. If the infimum does not exist, then we write $\operatorname{asc}(T)=\infty(\operatorname{resp} \cdot \operatorname{des}(T)=\infty)$. If

[^0]$\operatorname{asc}(T)=\operatorname{des}(T)<\infty$, then T is Drazin invertible. T is called a Browder operator if T is both Fredholm operator and Drazin invertible. The Drazin spectrum $\sigma_{D}(T)$, the left Browder spectrum $\sigma_{a b}(T)$ and the Browder spectrum $\sigma_{b}(T)$ are defined by
\[

$$
\begin{gathered}
\sigma_{D}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Drazin invertible }\}, \\
\sigma_{a b}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not upper semi-Fredholm or asc }(\mathrm{T}-\lambda \mathrm{I})=\infty\}, \\
\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a Browder operator }\} .
\end{gathered}
$$
\]

Let $\rho(T)=\mathbb{C} \backslash \sigma(T), \rho_{a}(T)=\mathbb{C} \backslash \sigma_{a}(T), \rho_{b}(T)=\mathbb{C} \backslash \sigma_{b}(T)$. We denote by $\sigma_{0}(T)$ the set of all normal eigenvalues of T, thus $\sigma_{0}(T)=\sigma(T) \backslash \sigma_{b}(T)$. For a set $E \subseteq \mathbb{C}$, we write iso E, acc E and ∂E as the set of isolated points, accumulation points and boundary points of E.

For a Cauchy domain Ω, if all the curves of $\partial \Omega$ are regular analytic Jordan curves, we say that Ω is an analytic Cauchy domain. For $T \in B(H)$, if σ is a clopen subset of $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\sigma \subseteq \Omega$ and $[\sigma(T) \backslash \sigma] \cap \bar{\Omega}=\emptyset$, where $\bar{\Omega}$ is the closure of Ω. We denote by $E(\sigma ; T)$ the Riesz idempotent of T corresponding to σ, i.e.,

$$
E(\sigma ; T)=\frac{1}{2 \pi i} \int_{\Gamma}(\lambda I-T)^{-1} d \lambda
$$

where $\Gamma=\partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. In this case, we have $H(\sigma ; T)=R(E(\sigma ; T))$. Clearly, if $\lambda \in \operatorname{iso} \sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$. We write $H(\lambda ; T)$ instead of $H(\{\lambda\} ; T)$; if in addition, $\operatorname{dim} H(\lambda ; T)<\infty$, then $\lambda \in \sigma_{0}(T)$.

Spectral theory of operators is an important part of operator theory. Weyl's theorem, as an important conclusion in spectral theory, is discovered by H.Weyl in 1909 ([16]) when he studied the spectral set of self-adjoint operators on Hilbert spaces. As one of the research focuses of spectral theory in recent years, scholars have made various modifications to it.

The variation of Weyl's theorem, namely, a-Weyl's theorem ($[13,14]$) were given by Rakoc̆evic̀. We say that the a-Weyl's theorem holds for T if

$$
\sigma_{a}(T) \backslash \sigma_{e a}(T)=\pi_{00}^{a}(T),
$$

where $\pi_{00}^{a}(T)=\left\{\lambda \in \operatorname{iso} \sigma_{a}(T): 0<n(T-\lambda I)<\infty\right\}$.
Property $\left(U W_{\Pi}\right)$, as well as a-Weyl's theorem, is also a variant of Weyl's theorem. In [6], Berkani and Kachad introduced the definition of property $\left(U W_{\Pi}\right) . T \in B(H)$ satisfies property $\left(U W_{\Pi}\right)$ and denoted by $T \in\left(U W_{\Pi}\right)$, if

$$
\sigma_{a}(T) \backslash \sigma_{e a}(T)=\Pi(T),
$$

where $\Pi(T)=\sigma(T) \backslash \sigma_{D}(T)$. If $\lambda \in \Pi(T)$, then λ is a pole of T.
The concept of topological uniform descent was first proposed by Sandy Grabiner ([9]). The introduction of this concept provides a new tool for the study of operator theory, and many scholars have achieved corresponding research results by using topological uniform descent $([8,11,15])$. If $T \in B(H)$, then for each nonnegative integer n, T induces a linear transformation

$$
\Gamma_{n}: R\left(T^{n}\right) / R\left(T^{n+1}\right) \longrightarrow R\left(T^{n+1}\right) / R\left(T^{n+2}\right),
$$

we will let $k_{n}(T)$ be the dimension of the null space of the induced map and let $k(T)=\sum_{n=0}^{\infty} k_{n}(T)$. The operator range topology on $R\left(T^{n}\right)$ is defined by the norm $\|y\|_{n}=\inf \left\{\|x\|, x \in H, y=T^{n} x\right\}$. If there is a nonnegative integer d for which $k_{n}(T)=0$ for $n \geq d$ and $R\left(T^{n}\right)$ is closed in the operator range topology of $R\left(T^{d}\right)$ for $n \geq d$, then we say that T has topological uniform descent.

It can be shown that if T is semi-Fredholm, then T has topological uniform descent. If $T-\lambda I$ has topological uniform descent and $\lambda \in \partial \sigma(T)$, then $\lambda \in \Pi(T)([9$, Corollary 4.9]). The topological uniform descent spectrum of T is defined by

$$
\sigma_{\tau}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { has not topological uniform descent }\}
$$

and $\rho_{\tau}(T)=\mathbb{C} \backslash \sigma_{\tau}(T)$.

Example 1.1. (i) It is easy to see that if $T \in\left(U W_{\Pi}\right)$, then $\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq \pi_{00}^{a}(T)$. But property $\left(U W_{\Pi}\right)$ does not imply a-Weyl's theorem. Let $A, B \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(0,0, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) .
$$

Put $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$. Then we have $\sigma(T)=\mathbb{D}, \Pi(T)=\emptyset, \sigma_{a}(T)=\sigma_{e a}(T)=\{0\} \cup \Gamma, \pi_{00}^{a}(T)=\{0\}$. It follows that $T \in\left(U W_{\Pi}\right)$, but the a-Weyl's theorem does not hold for T.
(ii) A-Weyl's theorem does not imply property (UW $\left.{ }_{\Pi}\right)$. Let $A, B \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, x_{3}, \cdots\right) .
$$

Put $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$. Then we have $\sigma(T)=\mathbb{D}, \Pi(T)=\emptyset, \sigma_{a}(T)=\{0\} \cup \Gamma, \sigma_{e a}(T)=\Gamma \pi_{00}^{a}(T)=\{0\}$. It follows that T satisfies a-Weyl's theorem, but $T \notin\left(U W_{\Pi}\right)$.
(iii) There exists $T \in B(H)$ such that neither property $\left(U W_{\Pi}\right)$ nor a-Weyl's theorem holds for T. Let $A, B \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, 0, x_{4}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(0,0, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) .
$$

Put $T=\left(\begin{array}{cc}A & 0 \\ 0 & B-I\end{array}\right)$. Then we have $\sigma(T)=\{-1,0,1\}, \Pi(T)=\{0,1\}, \sigma_{a}(T)=\sigma_{e a}(T)=\{-1,0,1\}, \pi_{00}^{a}(T)=\{-1\}$. Thus, neither property $\left(U W_{\Pi}\right)$ nor a-Weyl's theorem holds for T.

We have seen in Example 1.1 that there is no relationship between $T \in\left(U W_{\Pi}\right)$ and T satisfies a-Weyl's theorem although the forms of property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem are similar.

In this paper, we will give necessary and sufficient conditions for bounded linear operators to satisfy both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem by topological uniform descent in section 2 . What's more, we also discuss both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem under quasi-nilpotent perturbation for bounded linear operators. In section 3, we will talk about operator functions to satisfy both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem in terms of topological uniform descent. In addition, we also discuss the case that Drazin invertible operators satisfy both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.

2. Property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem of bounded linear operators

In this section, we will describe both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem hold for T by means of the property of topological uniform descent.

Theorem 2.1. Let $T \in B(H)$. The following statements are equivalent:
(1) T satisfies both the property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem;
(2) $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in \sigma(T): n(T-\lambda I)=0\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right] \cup\{\{\lambda \in$ $\left.\mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}$.

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, take arbitrarily λ_{0} that does not belong to the right side of (2). Without loss of generality, suppose that $\lambda_{0} \in \sigma(T)$. Then we have $n\left(T-\lambda_{0} I\right)>0$.

Case 1 Suppose that $\lambda_{0} \notin \sigma_{e a}(T)$. Then $\lambda_{0} \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Since $T \in\left(U W_{\Pi}\right)$, we have $\lambda_{0} \notin \sigma_{b}(T)$.
Case 2 Suppose that $\lambda_{0} \notin \operatorname{acc} \sigma_{a}(T) \cup\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}$. Then $\lambda_{0} \in \pi_{00}^{a}(T)$. Since T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, we can get that $\lambda_{0} \notin \sigma_{b}(T)$.

Case 3 Suppose that $\lambda_{0} \notin \sigma_{\tau}(T) \cup \operatorname{acc} \sigma_{a}(T) \cup \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]$. Then $\lambda_{0} \in \rho_{\tau}(T) \cap \partial \sigma(T)$, we can get $\lambda_{0} \in \Pi(T)\left(\left[9\right.\right.$, Corollary 4.9]). From $T \in\left(U W_{\Pi}\right)$ we get that $\lambda_{0} \notin \sigma_{b}(T)$.

Case 4 Suppose that $\lambda_{0} \notin\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\} \cup \operatorname{acc} \sigma_{a}(T) \cup \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]$. We have $0<n\left(T-\lambda_{0} I\right)<\infty$, thus $\lambda_{0} \in \pi_{00}^{a}(T)$. Since T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, we get that $\lambda_{0} \notin \sigma_{b}(T)$.
(2) \Rightarrow (1). It is clear that $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right]=\emptyset$, $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\{\lambda \in \sigma(T): n(T-\lambda I)=0\}=\emptyset,\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\left[\operatorname{acc} \sigma_{a}(T) \cap\right.$ $\left.\sigma_{e a}(T)\right]=\emptyset,\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\left\{\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]=\emptyset\right.$. Hence $\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)=\sigma_{0}(T)$. It follows that T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.

Remark 2.2. (i) In Theorem 2.1, suppose $T \in B(H)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, then each part of the decomposition of $\sigma_{b}(T)$ can not be deleted.
(a) Let $A, B \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, 0, \frac{x_{3}}{3}, 0, \frac{x_{5}}{5}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(0,0, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right)
$$

Put $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$. Then we have $\sigma(T)=\{0\}, \Pi(T)=\emptyset, \sigma_{a}(T)=\sigma_{e a}(T)=\{0\}, \pi_{00}^{a}(T)=\emptyset$. Hence T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. But $\{\lambda \in \sigma(T): n(T-\lambda I)=0\}=\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right]=\{\{\lambda \in \mathbb{C}: n(T-\lambda I)=$ $\left.\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}=\emptyset$. Thus $\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}$ cannot be deleted .
(b) Let $T \in B\left(\ell^{2}\right)$ be defined by

$$
T\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right)
$$

Then we have $\sigma(T)=\mathbb{D}, \Pi(T)=\emptyset, \sigma_{a}(T)=\sigma_{e a}(T)=\Gamma, \pi_{00}^{a}(T)=\emptyset$, and so T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. But $\sigma_{b}(T) \neq\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right] \cup\{\{\lambda \in \mathbb{C}: n(T-\lambda I)=$ $\left.\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}$. It follows that $\{\lambda \in \sigma(T): n(T-\lambda I)=0\}$ cannot be deleted.
(c) Let $T \in B\left(\ell^{2}\right)$ be defined by

$$
T\left(x_{1}, x_{2}, \cdots\right)=\left(0, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right)
$$

Then we have $\sigma(T)=\sigma_{a}(T)=\left\{0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}, \sigma_{e a}(T)=\{0\}, \Pi(T)=\pi_{00}^{a}(T)=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$. So property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem hold for T. But $\sigma_{b}(T) \neq\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in \sigma(T): n(T-\lambda I)=$ $0\} \cup\left\{\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}$. Thus acc $\sigma_{a}(T) \cap \sigma_{e a}(T)$ cannot be deleted.
(d) Let $A, B \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, 0, x_{4}, \cdots\right)
$$

Put $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$. Then we have $\sigma(T)=\mathbb{D}, \Pi(T)=\emptyset, \sigma_{a}(T)=\sigma_{e a}(T)=\{0\} \cup \Gamma, \pi_{00}^{a}(T)=\emptyset$. It follows that T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. However, $\sigma_{b}(T) \neq\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in$ $\sigma(T): n(T-\lambda I)=0\} \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$, which means that $\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]$ cannot be deleted.
(ii) It is clear that $\sigma_{e a}(T)=\sigma_{S F_{+}}(T) \cup\{\lambda \in \mathbb{C}: n(T-\lambda I)>d(T-\lambda I)\}$. From Theorem 2.1, we can get that T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if and only if $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in \sigma(T)$: $n(T-\lambda I)=0\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{S F_{+}}(T)\right] \cup\left\{\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cap a c c\left[\rho_{a}(T) \cap \sigma(T)\right]\right\} \cup\{\lambda \in \mathbb{C}: n(T-\lambda I)>d(T-\lambda I)\}$.
(iii) If $\sigma_{\tau}(T)=\emptyset$, we claim that int $\sigma(T)=\emptyset$. If not, there exists a continuous curve segment $L \subseteq \partial \sigma(T)$. Take $\lambda_{0} \in L$, from $\sigma_{\tau}(T)=\emptyset$ we can get that $\lambda_{0} \in \Pi(T)$. Then $\lambda_{0} \in$ iso $\sigma(T)$, a contradiction. Thus, $\sigma(T)=\partial \sigma(T)$. Take arbitrarily $\lambda \in \sigma(T)=\partial \sigma(T)$. It follows from $\lambda \notin \sigma_{\tau}(T)$ that $\lambda \in \Pi(T)$ and $\lambda \in$ iso $\sigma(T)$. Since $\sigma(T)$ is a bounded set, we can get that $\sigma(T)$ consists of finite points. Therefore, if $\sigma_{\tau}(T)=\emptyset$, then $\sigma(T)=\Pi(T)$.

From Theorem 2.1, we can obtain this result: If $\sigma_{\tau}(T)=\emptyset$ and T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem(or only property $\left(U W_{\Pi}\right)$ is required), then $\sigma_{b}(T)=\emptyset$, a contradiction with the fact that $\sigma_{b}(T)$ is nonempty. Therefore, if T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem (or only property $\left.\left(U W_{\Pi}\right)\right), \sigma_{\tau}(T) \neq \emptyset$.

Corollary 2.3. Let $T \in B(H)$. The following statements are equivalent:
(1) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem;
(2) $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\{\lambda \in \sigma(T): n(T-\lambda I)=0\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right] \cup\{\{\lambda \in \mathbb{C}:$ $\left.n(T-\lambda I)=d(T-\lambda I)\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}$.

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, we know that $\sigma_{\tau}(T) \cap\{\lambda \in$ $\mathbb{C}: n(T-\lambda I)=d(T-\lambda I)<\infty\}=\emptyset$. Hence $\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right]=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}:\right.$ $n(T-\lambda I)=d(T-\lambda I)=\infty\}] \subseteq \sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}$. From $\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty, d(T-\lambda I)<$ $\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]=\emptyset$ we can get that $\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]=\{\{\lambda \in \mathbb{C}: n(T-\lambda I)=$ $\left.d(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\} \subseteq\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]$. According to Theorem 2.1, the inclusion " \subseteq " is obvious.
$(2) \Rightarrow(1)$. Similar to the proof of Theorem 2.1, this result is trivial.
It is easy to get that $\left[\rho_{a}(T) \cap \sigma(T)\right] \subseteq\{\lambda \in \mathbb{C}: n(T-\lambda I)<d(T-\lambda I)\}$ and $\{\lambda \in \mathbb{C}: n(T-\lambda I)>d(T-\lambda I)\} \subseteq$ $\operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)>d(T-\lambda I)\}$. From (ii) in Remark 2.2 we obtain the following corollary.

Corollary 2.4. Let $T \in B(H)$. The following statements are equivalent:
(1) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem;
(2) $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in \sigma(T): n(T-\lambda I)=0\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{S F_{+}}(T)\right] \cup[\{\lambda \in$
$\mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)<d(T-\lambda I)\}] \cup \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)>d(T-\lambda I)\}$.
Corollary 2.5. Let $T \in B(H)$. The following statements are equivalent:
(1) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem;
(2) $\pi_{00}^{a}(T) \subseteq \rho_{\tau}(T) \subseteq \rho_{b}(T) \cup\{\lambda \in \sigma(T): n(T-\lambda I)=0\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{S F_{+}}(T)\right] \cup[\{\lambda \in \mathbb{C}: n(T-\lambda I)=$ $\infty\} \cap \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)<d(T-\lambda I)\}] \cup \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)>d(T-\lambda I)\}$.

Proof. (1) \Rightarrow (2). It is obvious that $\pi_{00}^{a}(T) \subseteq \rho_{\tau}(T)$. Suppose that $\lambda_{0} \in \rho_{\tau}(T)$. Then $\lambda_{0} \notin\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}\right.$: $n(T-\lambda I)=d(T-\lambda I)\}]$. If $\lambda_{0} \notin\{\lambda \in \sigma(T): n(T-\lambda I)=0\} \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{S F_{+}}(T)\right] \cup[\{\lambda \in \mathbb{C}: n(T-\lambda I)=$ $\infty\} \cap \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)<d(T-\lambda I)\}] \cup \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)>d(T-\lambda I)\}$, from Corollary 2.4 we can get that $\lambda_{0} \in \rho_{b}(T)$.
$(2) \Rightarrow(1)$. It is clear that $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T)\right\} \subseteq \rho_{\tau}(T)$. From Corollary 2.4 and the proof of Theorem 2.1, we have $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T)\right\} \subseteq \sigma_{0}(T)$ and $\pi_{00}^{a}(T) \subseteq \sigma_{0}(T)$. Thus T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.

Weyl type Theorem and its perturbation problems have attracted extensive attention in recent years([7, $10,17])$. In the following, we will discuss quasi-nilpotent perturbation of both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.

We call $R \in B(H)$ is Riesz operator if $R-\lambda I$ is Fredholm operator for every nonzero λ. In [3, Theorem 4.7], we have that

$$
\sigma_{*}(T)=\sigma_{*}(T+R)
$$

for every Riesz operator R commuting with $T \in B(H)$, where $* \in\{e a, a b, b\}$. It is clear that quasi-nilpotent operators are Riesz operators. $T \in B(H)$ is said to be a-isoloid operator if iso $\sigma_{a}(T) \subseteq \sigma_{p}(T)$, where $\sigma_{p}(T)=$ $\{\lambda \in \mathbb{C}: n(T-\lambda I)>0\}$. If iso $\sigma_{a}(T) \subseteq \Pi(T)$, then T is called a-polaroid operator.

Example 2.6. (1) Let $T, Q \in B\left(\ell^{2}\right)$ be defined by

$$
T\left(x_{1}, x_{2}, x_{3} \cdots\right)=\left(0, x_{1}, x_{2}, x_{3}, \cdots\right), Q\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\left(0,-x_{1}, 0,0, \cdots\right)
$$

We have that T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. However, $\sigma(T+Q)=\sigma_{a}(T+Q)=\mathbb{D}, \sigma_{e a}(T)=\Gamma$, $\Pi(T)=\pi_{00}^{a}(T)=\emptyset$. It follows that both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem don't hold for $T+Q$.
(2)Let $A, B \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, 0, \frac{x_{3}}{3}, 0, \frac{x_{5}}{5}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(0,0, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) .
$$

Put $T=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right), Q=\left(\begin{array}{cc}0 & 0 \\ 0 & -B\end{array}\right)$. Then we have $Q T=T Q, T$ is a-isoloid operator, $\sigma(T)=\sigma_{a}(T)=\sigma_{e a}(T)=\{0\}$, $\pi_{00}^{a}(T)=\Pi(T)=\emptyset$. It follows that T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, but we can see that $T+Q \notin\left(U W_{\Pi}\right)$.

From Example 2.6 we know that the commutativity of T is indispensable, and we can't also induce that $T+Q$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if T is a-isoloid operator. Now, let Q be a quasi-nilpotent operator with $Q T=T Q$. For $T \in B(H)$, the quasi-nilpotent part of T is defined by

$$
H_{0}(T)=\left\{x \in H: \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}=0\right\} .
$$

It is known that T is a quasi-nilpotent operator if and only if $H_{0}(T)=H$. Thus we have the following lemma.
Lemma 2.7. [3, Theorem 4.9] Let $T \in B(H)$ and Q a quasi-nilpotent operator with $Q T=T Q$, then $\sigma(T)=\sigma(T+Q)$ and $\sigma_{a}(T)=\sigma_{a}(T+Q)$.

Proof. Since $-Q$ is quasi-nilpotent operator, we only need $T+Q$ is bounded below if T is bounded below. We claim that $H_{0}(T)=\{0\}$ if T is bounded below. In fact, since T is bounded below, there exists $k>0$ such that $\|T x\| \geq k\|x\|, \forall x \in H$. Suppose that $x_{0} \in H_{0}(T)$, then $\lim _{n \rightarrow \infty}\left\|T^{n} x_{0}\right\|^{\frac{1}{n}}=0$ and $\left\|T^{n} x_{0}\right\| \geq k^{n}\left\|x_{0}\right\|$. It follows that $\left\|T^{n} x_{0}\right\|^{\frac{1}{n}} \geq k\left\|x_{0}\right\|^{\frac{1}{n}}$. Thus, $x_{0}=0$. Since $T+Q$ is upper semi-Weyl operator, we only need $N(T+Q)=\{0\}$. For all $x \in N(T+Q)$ we have that $Q x=-T x$. Thus $Q^{n} x_{0}=(-1)^{n} T^{n} x_{0}$. From Q is quasi-nilpotent operator we can get that $\lim _{n \rightarrow \infty}\left\|Q^{n} x\right\|^{\frac{1}{n}}=0$, so $\lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}=0$. It follows that $x \in H_{0}(T)$. Since T is bounded below, $H_{0}(T)=\{0\}$. So, $x=0$. Hence, $T+Q$ is bounded below.

If T is invertible, we know that $T+Q$ is Weyl operator. From $T+Q$ is bounded below we can get that $T+Q$ is invertible.

Theorem 2.8. Let $T \in B(H)$ and Q a quasi-nilpotent operator with $Q T=T Q$. Then the following statements are equivalent:
(1) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, and T is a-polaroid operator;
(2) $T+Q$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, and $T+Q$ is a-polaroid operator.

Proof. Since $-Q$ is quasi-nilpotent operator, we only need to show (1) \Rightarrow (2). Let $\lambda \in \sigma_{a}(T+Q) \backslash \sigma_{e n}(T+Q)$, from Lemma 2.7 we can get that $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. It follows from $T \in\left(U W_{\Pi}\right)$ that $\lambda \in \sigma_{0}(T)$ and so $\lambda \in \sigma_{0}(T+Q)$. Let $\lambda_{0} \in \Pi(T+Q)$, then $\lambda_{0} \in \operatorname{iso} \sigma(T+Q)$. From Lemma 2.7 and T is a-polaroid operator we have $\lambda_{0} \in \Pi(T)$. By $T \in\left(U W_{\Pi}\right)$ we can get $\lambda_{0} \in \sigma_{0}(T)$. Then $\lambda_{0} \in \sigma_{0}(T+Q)$. Let $\mu_{0} \in \pi_{00}^{a}(T+Q)$, from Lemma 2.7 and T is a-polaroid operator, we get that $\mu_{0} \in \Pi(T)$. By $T \in\left(U W_{\Pi}\right)$ we can get $\mu_{0} \in \sigma_{0}(T)$ and $\mu_{0} \in \sigma_{0}(T+Q)$. Let $\mu \in \operatorname{iso} \sigma_{a}(T+Q)$. Similar to the above proof, it is clear that $\mu \in \Pi(T+Q)$. Thus, $T+Q \in\left(U W_{\Pi}\right)$ and satisfies a-Weyl's theorem, and $T+Q$ is a-polaroid operator.

In the following, we will discuss the quasi-nilpotent perturbation of both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem according to topological uniform descent.

Theorem 2.9. Let $T \in B(H)$. Then the following statements are equivalent:
(1) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, and T is a-polaroid operator;
(2) $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap a c c \sigma_{a}(T)\right] \cup a c c \sigma_{e a}(T) \cup\left[\rho_{a}(T) \cap \sigma(T)\right]$.

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, take arbitrarily λ_{0} that does not belong to the right side of (2). Without loss of generality, suppose that $\lambda_{0} \in \sigma(T)$. Then we have $\lambda_{0} \in \sigma_{a}(T)$.

Case 1 Suppose $\lambda_{0} \notin \sigma_{\tau}(T) \cup \operatorname{acc} \sigma_{e a}(T)$. Then there exists $\epsilon>0$ such that $\lambda \in \rho_{a}(T) \cup\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right]$ when $0<\left\|\lambda-\lambda_{0}\right\|<\epsilon$. From T is a-polaroid operator and $T \in\left(U W_{\Pi}\right)$, we can get that $\lambda_{0} \in \Pi(T)$. Thus $\lambda_{0} \notin \sigma_{b}(T)$.

Case 2 Suppose $\lambda_{0} \notin \operatorname{acc} \sigma_{a}(T) \cup \operatorname{acc} \sigma_{e a}(T)$. Then $\lambda_{0} \in \operatorname{iso} \sigma_{a}(T)$. From T is a-polaroid operator and $T \in\left(U W_{\Pi}\right)$, we get that $\lambda_{0} \notin \sigma_{b}(T)$.
$(2) \Rightarrow(1)$. It is clear that $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\left[\sigma_{\tau}(T) \cap \operatorname{acc} \sigma_{a}(T)\right]=\emptyset,\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup\right.$ $\left.\pi_{00}^{a}(T)\right\} \cap \operatorname{acc} \sigma_{e a}(T)=\emptyset,\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\left[\rho_{a}(T) \cap \sigma(T)\right]=\emptyset$. Thus, $\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)=$ $\sigma_{0}(T)$. And iso $\sigma_{a}(T) \cap\left\{\left[\sigma_{\tau}(T) \cap \operatorname{acc} \sigma_{a}(T)\right] \cup \operatorname{acc} \sigma_{e a}(T) \cup\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}=\emptyset$. It follows that both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem hold for T, and T is a-polaroid operator.

From Theorem 2.8 and Theorem 2.9 we finally get the following result.

Corollary 2.10. Let $T \in B(H)$ and Q a quasi-nilpotent operator with $Q T=T Q$. Then the following statements are equivalent:
(1) $T+Q$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, and $T+Q$ is a-polaroid operator;
(2) $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap a \operatorname{ccc} \sigma_{a}(T)\right] \cup a c c \sigma_{e a}(T) \cup\left[\rho_{a}(T) \cap \sigma(T)\right]$.

3. Property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem of operator functions

For $T \in B(H)$, we use $\operatorname{Hol}(\sigma(T))$ to denote the class of all complex-valued functions analytic on a neighborhood of $\sigma(T)$ and not constant on any components of $\sigma(T)$.
Remark 3.1. (i) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem does not imply $f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, where $f \in \operatorname{Hol}(\sigma(T))$.

Let $A, B \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(x_{2}, x_{3}, x_{4}, \cdots\right)
$$

Put $T=\left(\begin{array}{cc}A+I & 0 \\ 0 & B-I\end{array}\right)$. Then T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. Let $f(z)=(z-1)(z+1), z \in$ \mathbb{C}, we can get $0 \in \sigma_{a}(f(T)) \backslash \sigma_{e a}(f(T))$. But $0 \notin \Pi(T), 0 \notin \pi_{00}^{a}(T)$. We know that both property (UW ${ }_{\Pi}$) and a-Weyl's theorem don't hold for $f(T)$.
(ii) $f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem for some $f \in \operatorname{Hol}(\sigma(T))$ does not imply T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. Let $A, B, C \in B\left(\ell^{2}\right)$ be defined by

$$
A\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{2}, 0, x_{4}, \cdots\right), B\left(x_{1}, x_{2}, \cdots\right)=\left(0,0, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right), C\left(x_{1}, x_{2}, \cdots\right)=\left(0, x_{1}, x_{2}, \cdots\right)
$$

Put $T=\left(\begin{array}{ccc}A+I & 0 & 0 \\ 0 & B-I & 0 \\ 0 & 0 & C+I\end{array}\right)$. We know that $\sigma_{a}\left(T^{2}\right)=\sigma_{e a}\left(T^{2}\right)=\left\{r e^{i \theta}: r=2(1+\cos \theta)\right\} \cup\left\{1, \frac{1}{9}\right\}, \Pi\left(T^{2}\right)=\emptyset$, $\pi_{00}^{a}\left(T^{2}\right)=\emptyset$. So $T^{2} \in\left(U W_{\Pi}\right)$ and satisfies a-Weyl's theorem. But $\Pi(T)=\left\{\frac{1}{3}\right\}, \pi_{00}^{a}(T)=\{-1\}, \sigma_{a}(T)=\sigma_{\text {ea }}(T)=$ $\left\{-1,-\frac{1}{3}\right\} \cup\{\lambda \in \mathbb{C}:\|\lambda-1\|=1\}$. Thus both property $\left(U_{\Pi}\right)$ and a-Weyl's theorem don't hold for T.

From the above Remark, T and $f(T)$ satisfy both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem are not directly connected. In the following, we will discuss the property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem for operator functions through the relation between $\sigma_{b}(T)$ and $\sigma_{\tau}(T)$.

First we have this fact: For any $f \in \operatorname{Hol}(\sigma(T)), f\left(\sigma_{e a}(T)\right)=\sigma_{e a}(f(T))$ if and only if for any $\lambda, \mu \in \rho_{S F_{+}}(T)$, $\operatorname{ind}(T-\lambda I) \cdot \operatorname{ind}(T-\mu I) \geq 0$. Next, we will use topological uniform descent to describe the properties of Fredholm index.

Lemma 3.2. Let $T \in B(H)$ and $f \in \operatorname{Hol}(\sigma(T))$. If $f(T) \in\left(U W_{\Pi}\right)$, then for any $\lambda, \mu \in \rho_{S F_{+}}(T)$, ind $(T-\lambda I) \cdot \operatorname{ind}(T-$ $\mu I) \geq 0$.

Proof. If not, then there exist $\lambda_{0}, \mu_{0} \in \rho_{S F_{+}}(T)$ such that ind $\left(T-\lambda_{0} I\right)=m>0, \operatorname{ind}\left(T-\mu_{0} I\right)=-n<0$. Suppose that $f(z)=\left(z-\lambda_{0}\right)^{n}\left(z-\mu_{0}\right)^{m}$ when $n<\infty$ and $f(z)=\left(z-\lambda_{0}\right)\left(z-\mu_{0}\right)$ when $n=\infty$. In both instances, we can get $0 \in \sigma_{a}(f(T)) \backslash \sigma_{e a}(f(T))$. From $f(T) \in\left(U W_{\Pi}\right)$, we know that $f(T)$ is Browder operator. Thus $\lambda_{0} \notin \sigma_{b}(T)$, a contradiction.

Lemma 3.3. Let $T \in B(H)$ and $T \in\left(U W_{\Pi}\right)$. Then the following statements hold:
(1) $\rho_{\tau}(T) \subseteq \rho_{b}(T) \cup \operatorname{acc} \sigma_{e a}(T)$ if and only if for any $\lambda \in \rho_{S F_{+}}(T)$, ind $(T-\lambda I) \geq 0$;
(2) $\rho_{\tau}(T) \subseteq \rho_{b}(T) \cup \operatorname{acc} \sigma_{S F_{+}}(T) \cup \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)=0\}$ if and only if for any $\lambda \in \rho_{S F_{+}}(T)$, ind $(T-\lambda I) \leq 0$.

Proof. (1). " \Rightarrow ". If not, there exist $\lambda_{0} \in \rho_{S F_{+}}(T)$ such that ind $\left(T-\lambda_{0} I\right)<0$. We can get that $\lambda_{0} \in \rho_{\tau}(T)$ and $\lambda_{0} \notin \operatorname{acc} \sigma_{e a}(T)$, then $\lambda_{0} \in \rho_{b}(T)$, a contradiction.
$" \Leftarrow "$. Suppose that for any $\lambda \in \rho_{S F_{+}}(T)$, ind $(T-\lambda I) \geq 0$. Take $\lambda_{0} \in \rho_{\tau}(T)$ but $\lambda_{0} \notin \operatorname{acc} \sigma_{e a}(T)$, then there exists $\epsilon>0$ such that $T-\lambda I$ is an upper semi-Weyl operator when $0<\left\|\lambda-\lambda_{0}\right\|<\epsilon$. By ind $(T-\lambda I) \geq 0$ and $T \in\left(U W_{\Pi}\right)$ we get that $T-\lambda I$ is a Browder operator. It follows that $\lambda_{0} \in \partial \sigma(T) \cap \rho_{\tau}(T)$ and $\lambda_{0} \in \Pi(T)$. Therefore, $\lambda_{0} \in \rho_{b}(T)$.
(2). Similar to the proof of (1), this result is obvious.

Theorem 3.4. Let $T \in B(H)$. Then for any $f \in \operatorname{Hol}(\sigma(T)), f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if and only if:
(1) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem;
(2) $\rho_{\tau}(T) \subseteq \rho_{b}(T) \cup \operatorname{acc} \sigma_{e a}(T)$ or $\rho_{\tau}(T) \subseteq \rho_{b}(T) \cup \operatorname{acco}_{S F_{+}}(T) \cup \operatorname{acc}\{\lambda \in \mathbb{C}: n(T-\lambda I)=0\}$;
(3) If $\sigma_{0}(T) \neq \emptyset$, then $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$.

Proof. " \Rightarrow ". From Lemma 3.2 and Lemma 3.3, we only need to prove (3) holds. The inclusion " \supseteq " is clear. For the converse, we first claim that $\left\{\lambda \in \operatorname{iso} \sigma_{a}(T): n(T-\lambda I)<\infty\right\}=\sigma_{0}(T)$. In fact, take $\lambda_{1} \in \sigma_{0}(T)$, $\lambda_{2} \in\left\{\lambda \in \operatorname{iso} \sigma_{a}(T): n(T-\lambda I)<\infty\right\}$. Set $\sigma_{1}=\left\{\lambda_{1}\right\}, \sigma_{2}=\left\{\lambda_{2}\right\}$ and $\sigma_{3}=\sigma(T) \backslash\left[\sigma_{1} \cup \sigma_{2}\right]$. Then by [12, Theorem 2.10] T can be represented as $T=\left(\begin{array}{ccc}T_{1} & 0 & 0 \\ 0 & T_{2} & 0 \\ 0 & 0 & T_{3}\end{array}\right)$, where $\sigma\left(T_{i}\right)=\sigma_{i}, i=1,2,3$. Put $f_{0}(z)=\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right)$. Then $f_{0}(T)=\left(\begin{array}{ccc}f_{0}\left(T_{1}\right) & 0 & 0 \\ 0 & f_{0}\left(T_{2}\right) & 0 \\ 0 & 0 & f_{0}\left(T_{3}\right)\end{array}\right)$. Therefore $0 \in \operatorname{iso} \sigma_{a}\left(f_{0}(T)\right)$ and $0<n\left(f_{0}(T)\right)<\infty$. It follows that $0 \in \pi_{00}^{a}\left(f_{0}(T)\right)$. From $f_{0}(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, we obtain that $f_{0}(T)$ is a Browder operator, and so is $T-\lambda_{2} I$. The inclusion " \supseteq " is clear. So $\left\{\lambda \in \operatorname{iso} \sigma_{a}(T): n(T-\lambda I)<\infty\right\}=\sigma_{0}(T)$.

Then we prove $\sigma(T)=\sigma_{a}(T)$. If not, put $\lambda_{1} \in \sigma(T) \backslash \sigma_{a}(T)$. Let $\lambda_{2} \in \sigma_{0}(T)$ and $f_{1}(T)=\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right)$, then $0 \in \sigma_{a}\left(f_{1}(T)\right) \backslash \sigma_{e a}\left(f_{1}(T)\right)$. Since $f_{1}(T) \in\left(U W_{\Pi}\right)$, we can get that $f_{1}(T)$ is a Browder operator. It implies that $\lambda_{1} \in \rho(T)$, a contradiction.

Take arbitrarily λ_{0} that does not belong to the right side of (3). Without loss of generality, suppose that $\lambda_{0} \in \sigma(T)$.

Case 1 Suppose that $\lambda_{0} \notin \sigma_{\tau}(T) \cup \operatorname{acc} \sigma_{a}(T)$. From $\sigma(T)=\sigma_{a}(T)$ we can get that $\lambda_{0} \in \rho_{\tau}(T) \cap \operatorname{iso} \sigma(T)$, then $\lambda_{0} \in \Pi(T)$. It follows that $\lambda_{0} \notin \sigma_{b}(T)$.

Case 2 Suppose that $\lambda_{0} \notin\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cup \operatorname{acc} \sigma_{a}(T)$. It follows that $\lambda_{0} \in\left\{\lambda \in \operatorname{iso} \sigma_{a}(T)\right.$: $n(T-\lambda I)<\infty\}$. Thus $\lambda_{0} \in \sigma_{0}(T)$.

Case 3 Suppose that $\lambda_{0} \notin \sigma_{e a}(T)$. Then $\lambda_{0} \in \rho_{a}(T) \cup\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right]$. Since $\sigma(T)=\sigma_{a}(T)$ and $T \in\left(U W_{\Pi}\right)$, we can get $\lambda_{0} \notin \sigma_{b}(T)$.
" \Leftarrow ". Case 1 Suppose that $\sigma_{0}(T)=\emptyset$. Since T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, we know that $\sigma_{a}(T)=\sigma_{e a}(T), \Pi(T)=\pi_{00}^{a}(T)=\emptyset$. From the condition (2) and Lemma 3.3 we can get that $\sigma_{a}(f(T))=f\left(\sigma_{a}(T)\right)=f\left(\sigma_{e a}(T)\right)=\sigma_{e a}(f(T))$. Thus $\sigma_{a}(f(T)) \backslash \sigma_{e a}(f(T))=\emptyset$. Meanwhile, $\Pi(f(T)) \subseteq f(\Pi(T))=\emptyset$, $\pi_{00}^{a}(f(T)) \subseteq f\left(\pi_{00}^{a}(T)\right)=\emptyset$. So $f(T)$ satisfies both property (UW ${ }_{\Pi}$) and a-Weyl's theorem.

Case 2 Suppose that $\sigma_{0}(T) \neq \emptyset$. The fact $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$ implies that $\sigma_{e a}(T)=\sigma_{b}(T)$. Take $\mu_{0} \in \sigma_{a}(f(T)) \backslash \sigma_{e a}(f(T))$ and suppose that

$$
f(T)-\mu_{0} I=a\left(T-\lambda_{1} I\right)^{n_{1}}\left(T-\lambda_{2} I\right)^{n_{2}} \cdots\left(T-\lambda_{t} I\right)^{n_{t}} g(T),
$$

where $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$ and $g(T)$ is invertible. From the condition (2) and Lemma 3.3 we have $\lambda_{i} \in$ $\rho_{a}(T) \cup\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right]$ for $1 \leq i \leq t$. Since $\sigma_{e a}(T)=\sigma_{b}(T)$ and $T \in\left(U W_{\Pi}\right)$, we know that $\lambda_{i} \in \rho_{b}(T)$ for $1 \leq i \leq t$. It follows that $\mu_{0} \in \sigma_{0}(f(T))$. Take arbitrarily $\mu_{0} \in \Pi(f(T))$ and suppose that $f(T)-\mu_{0} I$ has the same decomposition as above. Then $T-\lambda_{i} I$ is Drazin invertible for $1 \leq i \leq t$. Since $T \in\left(U W_{\Pi}\right)$, we can get that $\mu_{0} \in \sigma_{0}(f(T))$. Take arbitrarily $\mu_{0} \in \pi_{00}^{a}(f(T))$ and suppose that $f(T)-\mu_{0} I$ has the same decomposition as above. Then $\lambda_{i} \in \rho_{a}(T) \cup$ iso $\sigma_{a}(T)$ and $n\left(T-\lambda_{i} I\right)<\infty$. From the condition (3) we have $\mu_{0} \in \sigma_{0}(f(T))$. Hence for any $f \in \operatorname{Hol}(\sigma(T)), f(T)$ satisfies both property (UW ${ }_{\Pi}$) and a-Weyl's theorem.

From (3) in Theorem 3.4 we can get that T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem, and for any $\lambda \in \rho_{S F_{+}}(T), \operatorname{ind}(T-\lambda I) \geq 0$. Hence we have the following fact:

Corollary 3.5. Let $T \in B(H)$ and $\sigma_{0}(T) \neq \emptyset$. Then for any $f \in \operatorname{Hol}(\sigma(T)), f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if and only if $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$.

Corollary 3.6. Let $T \in B(H)$. Then $\sigma_{0}(T)=\emptyset$ and for any $f \in \operatorname{Hol}(\sigma(T)), f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if and only if one of the following conditions holds:
(1) $\sigma(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left\{\lambda \in \sigma_{a}(T): n(T-\lambda I)=0\right\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$;
(2) $\sigma(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in \sigma(T): n(T-\lambda I)=0\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{S F_{+}}(T)\right] \cup\{\{\lambda \in$ $\left.\mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}$.

Proof. " \Rightarrow ". The inclusion " \supseteq " is clear. For the converse, by Lemma 3.2 we know that for any $\lambda, \mu \in \rho_{S F_{+}}(T)$, $\operatorname{ind}(T-\lambda I) \cdot \operatorname{ind}(T-\mu I) \geq 0$.

Case 1 Suppose that $\lambda \in \rho_{S F_{+}}(T)$, ind $(T-\lambda I) \geq 0$. Take arbitrarily λ_{0} that does not belong to the right side of (1). We claim that $\lambda_{0} \notin \sigma_{a}(T)$. In fact, if $\lambda_{0} \in \sigma_{a}(T)$, then $n\left(T-\lambda_{0} I\right)>0$. If $\lambda_{0} \notin \sigma_{\tau}(T) \cup \operatorname{acc} \sigma_{a}(T)$, from the proof of Theorem 3.4 we can get $\sigma(T)=\sigma_{a}(T)$. Then $\lambda_{0} \in \operatorname{iso} \sigma(T)$ and $\lambda_{0} \in \Pi(T)$. It follows from $T \in\left(U W_{\Pi}\right)$ that $\lambda_{0} \in \sigma_{0}(T)$. If $\lambda_{0} \notin\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cup \operatorname{acc} \sigma_{a}(T)$, then $\lambda_{0} \in \pi_{00}^{a}(T)$ and hence $\lambda_{0} \in \sigma_{0}(T)$. If $\lambda_{0} \notin \sigma_{e a}(T)$, then $\lambda_{0} \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. It follows that $\lambda_{0} \in \sigma_{0}(T)$. But $\sigma_{0}(T)=\emptyset$. This contradiction shows that $\lambda_{0} \notin \sigma_{a}(T)$. From ind $\left(T-\lambda_{0} I\right) \geq 0$ we get that $\lambda_{0} \notin \sigma(T)$.

Case 2 Suppose that $\lambda \in \rho_{S F_{+}}(T)$, ind $(T-\lambda I) \leq 0$. Take arbitrarily λ_{0} that does not belong to the right side of (2). We claim that $\lambda_{0} \notin \sigma(T)$. Similar to the proof of case 1 , this claim is clear.
$" \Leftarrow$ ". Case 1 If condition (1) holds, we obtain that for any $\lambda \in \rho_{S F_{+}}(T)$, $\operatorname{ind}(T-\lambda I) \geq 0$. If not, there exist $\lambda_{0} \in \rho_{S F_{+}}(T), \operatorname{ind}\left(T-\lambda_{0} I\right)<0$. It follows that $\lambda_{0} \notin\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\{\lambda \in$ $\left.\sigma_{a}(T): n(T-\lambda I)=0\right\} \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$, then $\lambda_{0} \notin \sigma(T)$, a contradiction. If there exist $\mu \in \sigma_{0}(T)$, then $\mu \notin\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left\{\lambda \in \sigma_{a}(T): n(T-\lambda I)=0\right\} \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$. By condition (1) we can get $\mu \notin \sigma(T)$, a contradiction. Hence $\sigma_{0}(T)=\emptyset$. It is clear that $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap$ $\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right]=\emptyset,\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\left\{\lambda \in \sigma_{a}(T): n(T-\lambda I)=0\right\}=\emptyset$, $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \cap\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right]=\emptyset$. Thus $\left\{\left[\sigma_{a}(T) \backslash \sigma_{e a}(T)\right] \cup \Pi(T) \cup \pi_{00}^{a}(T)\right\} \subseteq \rho(T), \mathrm{a}$ contradiction. So we can get $\sigma_{a}(T) \backslash \sigma_{e a}(T)=\Pi(T)=\pi_{00}^{a}(T)=\emptyset$, then T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. From Theorem 3.4 we know that for any $f \in \operatorname{Hol}(\sigma(T)), f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.

Case 2 If condition (2) holds, we get that for any $\lambda \in \rho_{S F_{+}}(T), \operatorname{ind}(T-\lambda I) \leq 0$. Similar to the proof of case 1 , the result is trivial.

From Corollary 3.5 and Corollary 3.6 we can describe the property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem for operator functions through the relation between $\sigma_{b}(T)$ and $\sigma_{\tau}(T)$.

Theorem 3.7. Let $T \in B(H)$. Then for any $f \in \operatorname{Hol}(\sigma(T)), f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if and only if one of the following statements holds:
(1) $\sigma(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left\{\lambda \in \sigma_{a}(T): n(T-\lambda I)=0\right\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right] ;$
(2) $\sigma(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in \sigma(T): n(T-\lambda I)=0\} \cup\left[a c c \sigma_{a}(T) \cap \sigma_{S F_{+}}(T)\right] \cup\{\{\lambda \in$ $\left.\mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\} ;$
(3) $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left[a c c \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$.

We can get that property $\left(U W_{\Pi}\right)$ is transmitted from Drazin invertible operator to its Drazin inverse in [2]. Now, we will discuss S satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem by topological uniform descent.

If $T \in B(H)$ is Drazin invertible with inverse S, then $\operatorname{asc}(T)=\operatorname{des}(T)=p$ for any $p \in \mathbb{N}$. We know that $R\left(T^{p}\right)$ is closed and $H=N\left(T^{p}\right) \oplus R\left(T^{p}\right)$. Under this space decomposition, $T=T_{1} \oplus T_{2}$, where T_{1} is nilpotent operator and T_{2} is invertible. Thus $S=0 \oplus T_{2}^{-1}$. In [1, 4, 5], we get that

$$
\sigma(S) \backslash\{0\}=\left\{\frac{1}{\lambda}: \lambda \in \sigma(T) \backslash\{0\}\right\}, \sigma_{*}(S) \backslash\{0\}=\left\{\frac{1}{\lambda}: \lambda \in \sigma_{*}(T) \backslash\{0\}\right\}, * \in\{b, e a, a, \tau, D\} .
$$

Besides, one can verify that for any $\lambda \neq 0, n(S-\lambda I)=n\left(T-\frac{1}{\lambda} I\right), d(S-\lambda I)=d\left(T-\frac{1}{\lambda} I\right)$ and $\operatorname{acc} \sigma_{a}(S) \backslash\{0\}=$ $\left\{\frac{1}{\lambda}: \lambda \in \operatorname{acc} \sigma_{a}(T) \backslash\{0\}\right\}$.

Theorem 3.8. Let $T \in B(H)$ be Drazin invertible with inverse S. Then
(1) T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if and only if S satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem;
(2) For any $f \in \operatorname{Hol}(\sigma(T)) \cap \operatorname{Hol}(\sigma(S)), f(T)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem if and only if $f(S)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.

Proof. (1). " \Rightarrow ". From Theorem 2.1, we only need $\sigma_{b}(S)=\left[\sigma_{\tau}(S) \cap\{\lambda \in \mathbb{C}: n(S-\lambda I)=d(S-\lambda I)\}\right] \cup\{\lambda \in$ $\sigma(S): n(S-\lambda I)=0\} \cup\left[\operatorname{acc} \sigma_{a}(S) \cap \sigma_{e a}(S)\right] \cup\left\{\{\lambda \in \mathbb{C}: n(S-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(S) \cap \sigma(S)\right]\right\}$. If T is invertible, then $S=T^{-1}$. The conclusion is clear. In the following, we assume T is not invertible but Drazin invertible.

Let λ does not belong to the right side. If $\lambda=0$. Since $0 \in \Pi(T)$ and $T \in\left(U W_{\Pi}\right)$, we get that $0 \notin \sigma_{b}(T)$. Thus $0 \notin \sigma_{b}(S)\left(\left[2\right.\right.$, Lemma 4.9]). If $\lambda \neq 0$. Now, $S-\lambda I=\left(\begin{array}{cc}-\lambda I & 0 \\ 0 & \lambda T_{2}^{-1}\left(\frac{1}{\lambda} I-T_{2}\right)\end{array}\right)$, then $\frac{1}{\lambda} \notin\left[\sigma_{\tau}\left(T_{2}\right) \cap\{\lambda \in\right.$ $\left.\left.\mathbb{C}: n\left(T_{2}-\lambda I\right)=d\left(T_{2}-\lambda I\right)\right\}\right] \cup\left\{\lambda \in \sigma\left(T_{2}\right): n\left(T_{2}-\lambda I\right)=0\right\} \cup\left[\operatorname{acc} \sigma_{a}\left(T_{2}\right) \cap \sigma_{e a}\left(T_{2}\right)\right] \cup\left\{\left\{\lambda \in \mathbb{C}: n\left(T_{2}-\lambda I\right)=\right.\right.$ $\left.\infty\} \cap \operatorname{acc}\left[\rho_{a}\left(T_{2}\right) \cap \sigma\left(T_{2}\right)\right]\right\}$. Under above space decomposition, we know that $T-\frac{1}{\lambda} I=\left(\begin{array}{cc}T_{1}-\frac{1}{\lambda} I & 0 \\ 0 & T_{2}-\frac{1}{\lambda} I\end{array}\right)$, where $T_{1}-\lambda I$ is invertible. So $\frac{1}{\lambda} \notin\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=d(T-\lambda I)\}\right] \cup\{\lambda \in \sigma(T): n(T-\lambda I)=$ $0\} \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right] \cup\left\{\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\} \cap \operatorname{acc}\left[\rho_{a}(T) \cap \sigma(T)\right]\right\}$. By Theorem 2.1 we can get $\frac{1}{\lambda} \notin \sigma_{b}(T)$ and so $\frac{1}{\lambda} \notin \sigma_{b}(S)$.
" \Leftarrow ". Suppose that S satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. The Drazin inverse of S is $U:=T^{2} S=T S T$ and Drazin inverse of U is T ([1, Chapter 1]). Thus, T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.
(2). " \Rightarrow ". It is obvious that T satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. Then from (1), we get that S satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem. Suppose that $\sigma_{0}(S) \neq \emptyset$, we claim that $\sigma_{0}(T) \neq \emptyset$. In fact, let $\lambda \in \sigma_{0}(S)$. If $\lambda=0$, then $0<\operatorname{dim} N\left(T^{p}\right)<\infty$. It follows that $n\left(T_{1}\right)>0$ and T is not invertible. By $T \in\left(U W_{\Pi}\right)$ we have that T_{1} is Browder operator. So T is Browder operator and $0 \in \sigma_{0}(T)$. If $\lambda \neq 0$. Now, $S-\lambda I=\left(\begin{array}{cc}-\lambda I & 0 \\ 0 & \lambda T_{2}^{-1}\left(\frac{1}{\lambda} I-T_{2}\right)\end{array}\right)$. It follows that $\frac{1}{\lambda} I-T_{2}$ is Browder operator but not invertible. We know that $T-\frac{1}{\lambda} I=\left(\begin{array}{cc}T_{1}-\frac{1}{\lambda} I & 0 \\ 0 & T_{2}-\frac{1}{\lambda} I\end{array}\right)$, then $\frac{1}{\lambda} \in \sigma_{0}(T)$. From Corollary 3.5 we get $\sigma_{b}(T)=\left[\sigma_{\tau}(T) \cap\{\lambda \in \mathbb{C}: n(T-\lambda I)=\infty\}\right] \cup\left[\operatorname{acc} \sigma_{a}(T) \cap \sigma_{e a}(T)\right]$. By using the similar way of (1) we get that $\sigma_{b}(S)=\left[\sigma_{\tau}(S) \cap\{\lambda \in \mathbb{C}: n(S-\lambda I)=\infty\}\right] \cup\left[\operatorname{acc} \sigma_{a}(S) \cap \sigma_{e a}(S)\right]$. Moreover, $\sigma_{e a}(f(S))=f\left(\sigma_{e a}(S)\right)$ for any $f \in \operatorname{Hol}(\sigma(T)) \cap \operatorname{Hol}(\sigma(S))$. From Lemma 3.3 and Theorem $3.4 f(S)$ satisfies both property $\left(U W_{\Pi}\right)$ and a-Weyl's theorem.
$" \Leftarrow$ ". The same as the above proof.

References

[1] P. Aiena, Fredholm and local spectral theory II, with application to Weyl-type theorems, Springer Lecture Notes of Math 2235, 2018.
[2] P. Aiena, M.Kachad, Property $\left(U W_{\Pi}\right)$ under perturbations, Ann. Func. Anal. 11 (2020), 29-46.
[3] P. Aiena, Semi-Fredholm operators, perturbation theory and localizated SVEP, Mérida, Venezuela, 2007.
[4] P. Aiena, S. Triolo, Fredholm spectra and Weyl type theorems for Drazin invertible operators, Mediterr. J. Math. 13 (2016), 4385-4400.
[5] P. Aiena, S. Triolo, Local spectral theory for Drazin invertible operators, J. Math. Anal. Appl. 435 (2016), 414-424.
[6] M. Berkani, M. Kachad, New Browder and Weyl type theorems, Bull. Korean. Math. Soc. 52 (2015), 439-452.
[7] X. Cao, J. Dong, J. Liu, Weyl's theorem and its perturbations for the functions of operators, Oper. Matrices. 12 (2018), 1145-1157.
[8] X. Cao, Topological uniform descent and Weyl type theorem, Linear. Algebra. Appl. 420 (2007), 175-182.
[9] S. Grabiner, Uniform ascent and descent of bounded operaters, J. Math. Soc. Japan. 34 (1982), 317-337.
[10] C. Li, S. Zhu, Y. Feng, Weyl's theorem for functions of operators and approximation, Intege. Equ. Oper. Theory. 67 (2010), 481-497.
[11] S. Qiu, X. Cao, Property (UWE) for operators and operator matrices, J. Math. Anal. Appl. 509 (2022), 125951.
[12] H. Radjavi, P. Rosenthal, Invariant Subspaces, 2nd edn, Dover Publications, Mineola, 2003.
[13] V. Rakočević, On a class of operators, Mat. Vesnik. 37 (1985), 423-425.
[14] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roum. Math. Pures. Appl. 34 (1989), 915-919.
[15] W. Shi, Topological uniform descent and compact perturbations, RACSAM. 113 (2019), 2221-2233.
[16] H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Di. Palermo. 27 (1909), $373-392$.
[17] L. Yang, X. Cao, Single-Valued Extension Property and Property (w), Funct. Anal. its. Appl. 55 (2021), 316-325.

[^0]: 2020 Mathematics Subject Classification. Primary 47A10; Secondary 47A53, 47A55
 Keywords. property $\left(U W_{\Pi}\right)$; a-Weyl's theorem; topological uniform descent; perturbation.
 Received: 22 March 2023; Accepted: 06 April 2023
 Communicated by Dragan S. Djordjević

 * Corresponding author: Tengjie Zhang

 Email addresses: zhangtengjie123@snnu.edu.cn (Tengjie Zhang), xiaohongcao@snnu.edu.cn (Xiaohong Cao)

