Filomat 37:23 (2023), 7771–7780 https://doi.org/10.2298/FIL2323771Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Judgement of two Weyl type theorems for bounded linear operators

Tengjie Zhang^{a,*}, Xiaohong Cao^a

^a School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China

Abstract. Let *H* be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on *H*. $T \in B(H)$ is said to satisfy property (UW_{Π}) if $\sigma_a(T) \setminus \sigma_{ea}(T) = \Pi(T)$, where $\sigma_a(T)$ and $\sigma_{ea}(T)$ denote the approximate point spectrum and the essential approximate point spectrum of *T* respectively, $\Pi(T)$ denotes the set of all poles of *T*. $T \in B(H)$ satisfies a-Weyl's theorem if $\sigma_a(T) \setminus \sigma_{ea}(T) = \pi_{00}^a(T)$, where $\pi_{00}^a(T) = \{\lambda \in iso\sigma_a(T) : 0 < n(T - \lambda I) < \infty\}$. In this paper, we give necessary and sufficient conditions for a bounded linear operator and its function calculus to satisfy both property (UW_{Π}) and a-Weyl's theorem by topological uniform descent. In addition, the property (UW_{Π}) and a-Weyl's theorem under perturbations are also discussed.

1. Introduction and preliminaries

Throughout this paper, \mathbb{C} and \mathbb{N} denote the set of complex numbers and the set of nonnegative integers. The unit closed disk and unit circle on the complex plane \mathbb{C} are denoted by \mathbb{D} and Γ , respectively. Let H be a complex separable infinite dimensional Hilbert space and B(H) the algebra of all bounded linear operators on H. Let $T \in B(H)$. We denote by n(T) the dimension of the kernel N(T) and by d(T) the codimension of the range R(T). If R(T) is closed and $n(T) < \infty$, then T is called an upper semi-Fredholm operator. T is said to be a lower semi-Fredholm operator if $d(T) < \infty$. An operator T is said to be Fredholm operator and n(T) = 0, then T is called a bounded below operator. The index of T is defined by ind(T) = n(T) - d(T). An operator T is said to be an upper semi-Fredholm operator if it is an upper semi-Fredholm operator T is said to be an upper semi-Weyl operator if it is an upper semi-Fredholm operator of T is said to be an upper semi-Weyl operator if it is an upper semi-Fredholm operator of T, the approximate point spectrum $\sigma_a(T)$, the essential approximate point spectrum $\sigma_{ea}(T)$, the upper semi-Fredholm spectrum $\sigma_{sF_+}(T)$ are defined by

$$\sigma(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\},\$$

 $\sigma_a(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a bounded below operator}\},\$

 $\sigma_{ea}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-Weyl operator}\},\$

 $\sigma_{SF_+}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-Fredholm operator}\}.$

The ascent and descent of *T* are defined by $\operatorname{asc}(T) = \inf\{n \in \mathbb{N} : N(T^n) = N(T^{n+1})\}\$ and $\operatorname{des}(T) = \inf\{n \in \mathbb{N} : R(T^n) = R(T^{n+1})\}\$. If the infimum does not exist, then we write $\operatorname{asc}(T) = \infty(\operatorname{resp.des}(T) = \infty)$. If

Keywords. property (UW_{Π}) ; a-Weyl's theorem; topological uniform descent; perturbation.

²⁰²⁰ Mathematics Subject Classification. Primary 47A10; Secondary 47A53, 47A55

Received: 22 March 2023; Accepted: 06 April 2023

Communicated by Dragan S. Djordjević

^{*} Corresponding author: Tengjie Zhang

Email addresses: zhangtengjie123@snnu.edu.cn (Tengjie Zhang), xiaohongcao@snnu.edu.cn (Xiaohong Cao)

 $\operatorname{asc}(T) = \operatorname{des}(T) < \infty$, then *T* is Drazin invertible. *T* is called a Browder operator if *T* is both Fredholm operator and Drazin invertible. The Drazin spectrum $\sigma_D(T)$, the left Browder spectrum $\sigma_{ab}(T)$ and the Browder spectrum $\sigma_b(T)$ are defined by

$$\sigma_D(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Drazin invertible}\},\$$

$$\sigma_{ab}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not upper semi-Fredholm or } \operatorname{asc}(T - \lambda I) = \infty\},\$$

 $\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a Browder operator}\}.$

Let $\rho(T) = \mathbb{C} \setminus \sigma(T)$, $\rho_a(T) = \mathbb{C} \setminus \sigma_a(T)$, $\rho_b(T) = \mathbb{C} \setminus \sigma_b(T)$. We denote by $\sigma_0(T)$ the set of all normal eigenvalues of *T*, thus $\sigma_0(T) = \sigma(T) \setminus \sigma_b(T)$. For a set $E \subseteq \mathbb{C}$, we write iso*E*, acc*E* and ∂E as the set of isolated points, accumulation points and boundary points of *E*.

For a Cauchy domain Ω , if all the curves of $\partial\Omega$ are regular analytic Jordan curves, we say that Ω is an analytic Cauchy domain. For $T \in B(H)$, if σ is a clopen subset of $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\sigma \subseteq \Omega$ and $[\sigma(T) \setminus \sigma] \cap \overline{\Omega} = \emptyset$, where $\overline{\Omega}$ is the closure of Ω . We denote by $E(\sigma; T)$ the Riesz idempotent of T corresponding to σ , i.e.,

$$E(\sigma;T) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda I - T)^{-1} d\lambda,$$

where $\Gamma = \partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. In this case, we have $H(\sigma; T) = R(E(\sigma; T))$. Clearly, if $\lambda \in iso\sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$. We write $H(\lambda; T)$ instead of $H(\{\lambda\}; T)$; if in addition, dim $H(\lambda; T) < \infty$, then $\lambda \in \sigma_0(T)$.

Spectral theory of operators is an important part of operator theory. Weyl's theorem, as an important conclusion in spectral theory, is discovered by H.Weyl in 1909 ([16]) when he studied the spectral set of self-adjoint operators on Hilbert spaces. As one of the research focuses of spectral theory in recent years, scholars have made various modifications to it.

The variation of Weyl's theorem, namely, a-Weyl's theorem ([13, 14]) were given by Rakočevič. We say that the a-Weyl's theorem holds for *T* if

$$\sigma_a(T) \setminus \sigma_{ea}(T) = \pi^a_{00}(T),$$

where $\pi_{00}^{a}(T) = \{\lambda \in iso\sigma_{a}(T) : 0 < n(T - \lambda I) < \infty\}.$

Property (UW_{Π}) , as well as a-Weyl's theorem, is also a variant of Weyl's theorem. In [6], Berkani and Kachad introduced the definition of property (UW_{Π}) . $T \in B(H)$ satisfies property (UW_{Π}) and denoted by $T \in (UW_{\Pi})$, if

$$\sigma_a(T) \backslash \sigma_{ea}(T) = \Pi(T),$$

where $\Pi(T) = \sigma(T) \setminus \sigma_D(T)$. If $\lambda \in \Pi(T)$, then λ is a pole of *T*.

The concept of topological uniform descent was first proposed by Sandy Grabiner ([9]). The introduction of this concept provides a new tool for the study of operator theory, and many scholars have achieved corresponding research results by using topological uniform descent ([8, 11, 15]). If $T \in B(H)$, then for each nonnegative integer n, T induces a linear transformation

$$\Gamma_n: R(T^n)/R(T^{n+1}) \longrightarrow R(T^{n+1})/R(T^{n+2}),$$

we will let $k_n(T)$ be the dimension of the null space of the induced map and let $k(T) = \sum_{n=0}^{\infty} k_n(T)$. The operator range topology on $R(T^n)$ is defined by the norm $|| y ||_n = \inf\{|| x ||, x \in H, y = T^n x\}$. If there is a nonnegative integer *d* for which $k_n(T) = 0$ for $n \ge d$ and $R(T^n)$ is closed in the operator range topology of $R(T^d)$ for $n \ge d$, then we say that *T* has topological uniform descent.

It can be shown that if *T* is semi-Fredholm, then *T* has topological uniform descent. If $T - \lambda I$ has topological uniform descent and $\lambda \in \partial \sigma(T)$, then $\lambda \in \Pi(T)([9, \text{ Corollary 4.9}])$. The topological uniform descent spectrum of *T* is defined by

 $\sigma_{\tau}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ has not topological uniform descent}\},\$

and $\rho_{\tau}(T) = \mathbb{C} \setminus \sigma_{\tau}(T)$.

Example 1.1. (i) It is easy to see that if $T \in (UW_{\Pi})$, then $\sigma_a(T) \setminus \sigma_{ea}(T) \subseteq \pi_{00}^a(T)$. But property (UW_{Π}) does not imply a-Weyl's theorem. Let $A, B \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \cdots) = (0, x_1, x_2, \cdots), B(x_1, x_2, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

Put $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Then we have $\sigma(T) = \mathbb{D}$, $\Pi(T) = \emptyset$, $\sigma_a(T) = \sigma_{ea}(T) = \{0\} \cup \Gamma$, $\pi^a_{00}(T) = \{0\}$. It follows that $T \in (UW_{\Pi})$, but the *a*-Weyl's theorem does not hold for T.

(ii) A-Weyl's theorem does not imply property (UW_{Π}) . Let $A, B \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \cdots) = (0, x_1, x_2, \cdots), B(x_1, x_2, \cdots) = (0, x_2, x_3, \cdots).$$

Put $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Then we have $\sigma(T) = \mathbb{D}$, $\Pi(T) = \emptyset$, $\sigma_a(T) = \{0\} \cup \Gamma$, $\sigma_{ea}(T) = \Gamma \pi^a_{00}(T) = \{0\}$. It follows that T satisfies a-Weul's theorem but $T \neq (11M)$. satisfies a-Weyl's theorem, but $T \notin (UW_{\Pi})$.

(iii) There exists $T \in B(H)$ such that neither property (UW_{Π}) nor a-Weyl's theorem holds for T. Let $A, B \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \cdots) = (0, x_2, 0, x_4, \cdots), \ B(x_1, x_2, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

 $Put \ T = \begin{pmatrix} A & 0 \\ 0 & B - I \end{pmatrix}.$ Then we have $\sigma(T) = \{-1, 0, 1\}, \ \Pi(T) = \{0, 1\}, \ \sigma_a(T) = \sigma_{ea}(T) = \{-1, 0, 1\}, \ \pi_{00}^a(T) = \{-1\}.$ Thus, neither property (UW_{Π}) nor a-Weyl's theorem holds for T.

We have seen in Example 1.1 that there is no relationship between $T \in (UW_{\Pi})$ and T satisfies a-Weyl's theorem although the forms of property (UW_{Π}) and a-Weyl's theorem are similar.

In this paper, we will give necessary and sufficient conditions for bounded linear operators to satisfy both property (UW_{Π}) and a-Weyl's theorem by topological uniform descent in section 2. What's more, we also discuss both property (UW_{Π}) and a-Weyl's theorem under quasi-nilpotent perturbation for bounded linear operators. In section 3, we will talk about operator functions to satisfy both property (UW_{Π}) and a-Weyl's theorem in terms of topological uniform descent. In addition, we also discuss the case that Drazin invertible operators satisfy both property (UW_{Π}) and a-Weyl's theorem.

2. Property (UW_{Π}) and a-Weyl's theorem of bounded linear operators

In this section, we will describe both property (UW_{Π}) and a-Weyl's theorem hold for T by means of the property of topological uniform descent.

Theorem 2.1. Let $T \in B(H)$. The following statements are equivalent:

(1) T satisfies both the property (UW_{Π}) and a-Weyl's theorem;

 $(2) \sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\}\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\lambda \in \mathcal{C} : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup [acc\sigma_{ea}(T) \cap \sigma_{ea}(T)] \cup$ $\mathbb{C}: n(T - \lambda I) = \infty\} \cap acc[\rho_a(T) \cap \sigma(T)]\}.$

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, take arbitrarily λ_0 that does not belong to the right side of (2). Without loss of generality, suppose that $\lambda_0 \in \sigma(T)$. Then we have $n(T - \lambda_0 I) > 0.$

Case 1 Suppose that $\lambda_0 \notin \sigma_{ea}(T)$. Then $\lambda_0 \in \sigma_a(T) \setminus \sigma_{ea}(T)$. Since $T \in (UW_{\Pi})$, we have $\lambda_0 \notin \sigma_b(T)$.

Case 2 Suppose that $\lambda_0 \notin \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}$. Then $\lambda_0 \in \pi_{00}^a(T)$. Since *T* satisfies both property (UW_{Π}) and a-Weyl's theorem, we can get that $\lambda_0 \notin \sigma_b(T)$.

Case 3 Suppose that $\lambda_0 \notin \sigma_{\tau}(T) \cup \operatorname{acc}\sigma_a(T) \cup \operatorname{acc}[\rho_a(T) \cap \sigma(T)]$. Then $\lambda_0 \in \rho_{\tau}(T) \cap \partial \sigma(T)$, we can get $\lambda_0 \in \Pi(T)([9, \text{Corollary 4.9}])$. From $T \in (UW_{\Pi})$ we get that $\lambda_0 \notin \sigma_b(T)$.

Case 4 Suppose that $\lambda_0 \notin \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\} \cup \operatorname{acc}_a(T) \cup \operatorname{acc}[\rho_a(T) \cap \sigma(T)]$. We have $0 < n(T - \lambda_0 I) < \infty$, thus $\lambda_0 \in \pi_{00}^a(T)$. Since *T* satisfies both property (UW_{Π}) and a-Weyl's theorem, we get that $\lambda_0 \notin \sigma_b(T)$.

 $(2) \Rightarrow (1). \text{ It is clear that } \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] = \emptyset, \\ \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} = \emptyset, \\ \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} = \emptyset, \\ \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap \operatorname{acc}[\rho_a(T) \cap \sigma(T)] = \emptyset. \text{ Hence } [\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T) = \sigma_0(T). \text{ It follows that } T \text{ satisfies both property } (UW_{\Pi}) \text{ and } a-Weyl's \text{ theorem. } \Box$

Remark 2.2. (*i*) In Theorem 2.1, suppose $T \in B(H)$ satisfies both property (UW_{Π}) and a-Weyl's theorem, then each part of the decomposition of $\sigma_b(T)$ can not be deleted.

(a) Let $A, B \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \cdots) = (0, x_1, 0, \frac{x_3}{3}, 0, \frac{x_5}{5}, \cdots), B(x_1, x_2, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

Put $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Then we have $\sigma(T) = \{0\}$, $\Pi(T) = \emptyset$, $\sigma_a(T) = \sigma_{ea}(T) = \{0\}$, $\pi^a_{00}(T) = \emptyset$. Hence T satisfies both property (UW_{Π}) and a-Weyl's theorem. But $\{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} = [acc\sigma_a(T) \cap \sigma_{ea}(T)] = \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc[\rho_a(T) \cap \sigma(T)]\} = \emptyset$. Thus $\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}$ cannot be deleted.

(b) Let $T \in B(\ell^2)$ be defined by

$$T(x_1, x_2, \cdots) = (0, x_1, x_2, \cdots).$$

Then we have $\sigma(T) = \mathbb{D}$, $\Pi(T) = \emptyset$, $\sigma_a(T) = \sigma_{ea}(T) = \Gamma$, $\pi^a_{00}(T) = \emptyset$, and so T satisfies both property (UW_{Π}) and a-Weyl's theorem. But $\sigma_b(T) \neq [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc[\rho_a(T) \cap \sigma(T)]\}$. It follows that $\{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ cannot be deleted.

(c) Let $T \in B(\ell^2)$ be defined by

$$T(x_1, x_2, \cdots) = (0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

Then we have $\sigma(T) = \sigma_a(T) = \{0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\}, \sigma_{ea}(T) = \{0\}, \Pi(T) = \pi_{00}^a(T) = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\}.$ So property (UW_{Π}) and a-Weyl's theorem hold for T. But $\sigma_b(T) \neq [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc[\rho_a(T) \cap \sigma(T)]\}.$ Thus $acc\sigma_a(T) \cap \sigma_{ea}(T)$ cannot be deleted.

(d) Let $A, B \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \cdots) = (0, x_1, x_2, \cdots), B(x_1, x_2, \cdots) = (0, x_2, 0, x_4, \cdots)$$

 $Put \ T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}. \ Then \ we \ have \ \sigma(T) = \mathbb{D}, \ \Pi(T) = \emptyset, \ \sigma_a(T) = \sigma_{ea}(T) = \{0\} \cup \Gamma, \ \pi_{00}^a(T) = \emptyset. \ It \ follows \ that \ T \ satisfies \ both \ property \ (UW_{\Pi}) \ and \ a-Weyl's \ theorem. \ However, \ \sigma_b(T) \neq [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)], \ which \ means \ that \ \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc[\rho_a(T) \cap \sigma(T)] \ cannot \ be \ deleted.$

(ii) It is clear that $\sigma_{ea}(T) = \sigma_{SF_+}(T) \cup \{\lambda \in \mathbb{C} : n(T - \lambda I) > d(T - \lambda I)\}$. From Theorem 2.1, we can get that T satisfies both property (UW_{Π}) and a-Weyl's theorem if and only if $\sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{SF_+}(T)] \cup \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc[\rho_a(T) \cap \sigma(T)]\} \cup \{\lambda \in \mathbb{C} : n(T - \lambda I) > d(T - \lambda I)\}.$ (iii) If $\sigma_\tau(T) = \emptyset$, we claim that $int\sigma(T) = \emptyset$. If not, there exists a continuous curve segment $L \subseteq \partial\sigma(T)$. Take

 $\lambda_0 \in L$, from $\sigma_{\tau}(T) = \emptyset$ we can get that $\lambda_0 \in \Pi(T)$. Then $\lambda_0 \in iso\sigma(T)$, a contradiction. Thus, $\sigma(T) = \partial\sigma(T)$. Take arbitrarily $\lambda \in \sigma(T) = \partial\sigma(T)$. It follows from $\lambda \notin \sigma_{\tau}(T)$ that $\lambda \in \Pi(T)$ and $\lambda \in iso\sigma(T)$. Since $\sigma(T)$ is a bounded set, we can get that $\sigma(T)$ consists of finite points. Therefore, if $\sigma_{\tau}(T) = \emptyset$, then $\sigma(T) = \Pi(T)$.

From Theorem 2.1, we can obtain this result: If $\sigma_{\tau}(T) = \emptyset$ and T satisfies both property (UW_{Π}) and a-Weyl's theorem(or only property (UW_{Π}) is required), then $\sigma_b(T) = \emptyset$, a contradiction with the fact that $\sigma_b(T)$ is nonempty. Therefore, if T satisfies both property (UW_{Π}) and a-Weyl's theorem(or only property (UW_{Π})), $\sigma_{\tau}(T) \neq \emptyset$.

Corollary 2.3. *Let* $T \in B(H)$ *. The following statements are equivalent:*

(1) *T* satisfies both property (UW_{Π}) and a-Weyl's theorem;

 $(2) \sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\} \cap acc[\rho_a(T) \cap \sigma(T)]\}.$

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, we know that $\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I) < \infty\} = \emptyset$. Hence $[\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] = [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] = [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}$. From $\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty, d(T - \lambda I) < \infty\} \cap \operatorname{acc}[\rho_a(T) \cap \sigma(T)] = \emptyset$ we can get that $\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap \operatorname{acc}[\rho_a(T) \cap \sigma(T)] = \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\} \cap \operatorname{acc}[\rho_a(T) \cap \sigma(T)]\} \subseteq \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\} \cap \operatorname{acc}[\rho_a(T) \cap \sigma(T)]\}$. According to Theorem 2.1, the inclusion " \subseteq " is obvious.

 $(2) \Rightarrow (1)$. Similar to the proof of Theorem 2.1, this result is trivial. \Box

It is easy to get that $[\rho_a(T) \cap \sigma(T)] \subseteq \{\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)\}$ and $\{\lambda \in \mathbb{C} : n(T - \lambda I) > d(T - \lambda I)\} \subseteq acc\{\lambda \in \mathbb{C} : n(T - \lambda I) > d(T - \lambda I)\}$. From (ii) in Remark 2.2 we obtain the following corollary.

Corollary 2.4. *Let* $T \in B(H)$ *. The following statements are equivalent:*

(1) *T* satisfies both property (UW_{Π}) and a-Weyl's theorem;

 $(2) \sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{SF_+}(T)] \cup [\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc\{\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)\}] \cup acc\{\lambda \in \mathbb{C} : n(T - \lambda I) > d(T - \lambda I)\}.$

Corollary 2.5. Let $T \in B(H)$. The following statements are equivalent:

(1) *T* satisfies both property (UW_{Π}) and a-Weyl's theorem;

 $(2) \ \pi^a_{00}(T) \subseteq \rho_\tau(T) \subseteq \rho_b(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{SF_+}(T)] \cup [\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc\{\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)\}] \cup acc\{\lambda \in \mathbb{C} : n(T - \lambda I) > d(T - \lambda I)\}.$

Proof. (1) \Rightarrow (2). It is obvious that $\pi_{00}^{a}(T) \subseteq \rho_{\tau}(T)$. Suppose that $\lambda_{0} \in \rho_{\tau}(T)$. Then $\lambda_{0} \notin [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}]$. If $\lambda_{0} \notin \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [\operatorname{acc}\sigma_{a}(T) \cap \sigma_{SF_{+}}(T)] \cup [\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap \operatorname{acc}\{\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)\}] \cup \operatorname{acc}\{\lambda \in \mathbb{C} : n(T - \lambda I) > d(T - \lambda I)\}$, from Corollary 2.4 we can get that $\lambda_{0} \in \rho_{b}(T)$.

(2) \Rightarrow (1). It is clear that $\{[\sigma_a(T)\setminus\sigma_{ea}(T)]\cup\Pi(T)\}\subseteq\rho_{\tau}(T)$. From Corollary 2.4 and the proof of Theorem 2.1, we have $\{[\sigma_a(T)\setminus\sigma_{ea}(T)]\cup\Pi(T)\}\subseteq\sigma_0(T)$ and $\pi^a_{00}(T)\subseteq\sigma_0(T)$. Thus *T* satisfies both property (UW_{Π}) and a-Weyl's theorem. \Box

Weyl type Theorem and its perturbation problems have attracted extensive attention in recent years ([7, 10, 17]). In the following, we will discuss quasi-nilpotent perturbation of both property (UW_{Π}) and a-Weyl's theorem.

We call $R \in B(H)$ is Riesz operator if $R - \lambda I$ is Fredholm operator for every nonzero λ . In [3, Theorem 4.7], we have that

$$\sigma_*(T) = \sigma_*(T+R)$$

for every Riesz operator *R* commuting with $T \in B(H)$, where $* \in \{ea, ab, b\}$. It is clear that quasi-nilpotent operators are Riesz operators. $T \in B(H)$ is said to be a-isoloid operator if $iso\sigma_a(T) \subseteq \sigma_p(T)$, where $\sigma_p(T) = \{\lambda \in \mathbb{C} : n(T - \lambda I) > 0\}$. If $iso\sigma_a(T) \subseteq \Pi(T)$, then *T* is called a-polaroid operator.

Example 2.6. (1) Let $T, Q \in B(\ell^2)$ be defined by

$$T(x_1, x_2, x_3 \cdots) = (0, x_1, x_2, x_3, \cdots), Q(x_1, x_2, x_3, \cdots) = (0, -x_1, 0, 0, \cdots).$$

We have that T satisfies both property (UW_{Π}) and a-Weyl's theorem. However, $\sigma(T+Q) = \sigma_a(T+Q) = \mathbb{D}$, $\sigma_{ea}(T) = \Gamma$, $\Pi(T) = \pi^a_{00}(T) = \emptyset$. It follows that both property (UW_{Π}) and a-Weyl's theorem don't hold for T + Q.

(2)Let $A, B \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \cdots) = (0, x_1, 0, \frac{x_3}{3}, 0, \frac{x_5}{5}, \cdots), B(x_1, x_2, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

Put $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, $Q = \begin{pmatrix} 0 & 0 \\ 0 & -B \end{pmatrix}$. Then we have QT = TQ, T is a-isoloid operator, $\sigma(T) = \sigma_a(T) = \sigma_{ea}(T) = \{0\}$, $\pi^a_{00}(T) = \Pi(T) = \emptyset$. It follows that T satisfies both property (UW_{Π}) and a-Weyl's theorem, but we can see that $T + Q \notin (UW_{\Pi})$.

From Example 2.6 we know that the commutativity of *T* is indispensable, and we can't also induce that T + Q satisfies both property (UW_{Π}) and a-Weyl's theorem if *T* is a-isoloid operator. Now, let *Q* be a quasi-nilpotent operator with QT = TQ. For $T \in B(H)$, the quasi-nilpotent part of *T* is defined by

$$H_0(T) = \{x \in H : \lim_{n \to \infty} ||T^n x||^{\frac{1}{n}} = 0\}$$

It is known that T is a quasi-nilpotent operator if and only if $H_0(T) = H$. Thus we have the following lemma.

Lemma 2.7. [3, Theorem 4.9] Let $T \in B(H)$ and Q a quasi-nilpotent operator with QT = TQ, then $\sigma(T) = \sigma(T + Q)$ and $\sigma_a(T) = \sigma_a(T + Q)$.

Proof. Since -Q is quasi-nilpotent operator, we only need T + Q is bounded below if T is bounded below. We claim that $H_0(T) = \{0\}$ if T is bounded below. In fact, since T is bounded below, there exists k > 0 such that $||Tx|| \ge k||x||, \forall x \in H$. Suppose that $x_0 \in H_0(T)$, then $\lim_{n \to \infty} ||T^n x_0||^{\frac{1}{n}} = 0$ and $||T^n x_0|| \ge k^n ||x_0||$. It follows that

 $||T^n x_0||_n^{\frac{1}{n}} \ge k||x_0||_n^{\frac{1}{n}}$. Thus, $x_0 = 0$. Since T + Q is upper semi-Weyl operator, we only need $N(T + Q) = \{0\}$. For all $x \in N(T + Q)$ we have that Qx = -Tx. Thus $Q^n x_0 = (-1)^n T^n x_0$. From Q is quasi-nilpotent operator we can get that $\lim_{n \to \infty} ||Q^n x||_n^{\frac{1}{n}} = 0$, so $\lim_{n \to \infty} ||T^n x||_n^{\frac{1}{n}} = 0$. It follows that $x \in H_0(T)$. Since T is bounded below, $H_0(T) = \{0\}$. So, x = 0. Hence, T + Q is bounded below.

If *T* is invertible, we know that T + Q is Weyl operator. From T + Q is bounded below we can get that T + Q is invertible. \Box

Theorem 2.8. Let $T \in B(H)$ and Q a quasi-nilpotent operator with QT = TQ. Then the following statements are equivalent:

(1) *T* satisfies both property (UW_{Π}) and a-Weyl's theorem, and *T* is a-polaroid operator;

(2) T + Q satisfies both property (UW_{Π}) and a-Weyl's theorem, and T + Q is a-polaroid operator.

Proof. Since -Q is quasi-nilpotent operator, we only need to show $(1) \Rightarrow (2)$. Let $\lambda \in \sigma_a(T+Q) \setminus \sigma_{ea}(T+Q)$, from Lemma 2.7 we can get that $\lambda \in \sigma_a(T) \setminus \sigma_{ea}(T)$. It follows from $T \in (UW_{\Pi})$ that $\lambda \in \sigma_0(T)$ and so $\lambda \in \sigma_0(T+Q)$. Let $\lambda_0 \in \Pi(T+Q)$, then $\lambda_0 \in \text{iso}\sigma(T+Q)$. From Lemma 2.7 and *T* is a-polaroid operator we have $\lambda_0 \in \Pi(T)$. By $T \in (UW_{\Pi})$ we can get $\lambda_0 \in \sigma_0(T)$. Then $\lambda_0 \in \sigma_0(T+Q)$. Let $\mu_0 \in \pi_{00}^a(T+Q)$, from Lemma 2.7 and *T* is a-polaroid operator, we get that $\mu_0 \in \Pi(T)$. By $T \in (UW_{\Pi})$ we can get $\mu_0 \in \sigma_0(T)$ and $\mu_0 \in \sigma_0(T+Q)$. Let $\mu \in \text{iso}\sigma_a(T+Q)$. Similar to the above proof, it is clear that $\mu \in \Pi(T+Q)$. Thus, $T+Q \in (UW_{\Pi})$ and satisfies a-Weyl's theorem, and T+Q is a-polaroid operator. \Box

In the following, we will discuss the quasi-nilpotent perturbation of both property (UW_{Π}) and a-Weyl's theorem according to topological uniform descent.

Theorem 2.9. Let $T \in B(H)$. Then the following statements are equivalent:

(1) *T* satisfies both property (UW_Π) and a-Weyl's theorem, and *T* is a-polaroid operator; (2) $\sigma_b(T) = [\sigma_\tau(T) \cap acc\sigma_a(T)] \cup acc\sigma_{ea}(T) \cup [\rho_a(T) \cap \sigma(T)].$

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, take arbitrarily λ_0 that does not belong to the right side of (2). Without loss of generality, suppose that $\lambda_0 \in \sigma(T)$. Then we have $\lambda_0 \in \sigma_a(T)$.

Case 1 Suppose $\lambda_0 \notin \sigma_{\tau}(T) \cup \operatorname{acc} \sigma_{ea}(T)$. Then there exists $\epsilon > 0$ such that $\lambda \in \rho_a(T) \cup [\sigma_a(T) \setminus \sigma_{ea}(T)]$ when $0 < ||\lambda - \lambda_0|| < \epsilon$. From *T* is a-polaroid operator and $T \in (UW_{\Pi})$, we can get that $\lambda_0 \in \Pi(T)$. Thus $\lambda_0 \notin \sigma_b(T)$. **Case 2** Suppose $\lambda_0 \notin \operatorname{acc} \sigma_a(T) \cup \operatorname{acc} \sigma_{ea}(T)$. Then $\lambda_0 \in \operatorname{iso} \sigma_a(T)$. From *T* is a-polaroid operator and

 $T \in (UW_{\Pi}), \text{ we get that } \lambda_0 \notin \sigma_b(T).$ $(2) \Rightarrow (1). \text{ It is clear that } \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap [\sigma_\tau(T) \cap \operatorname{acc}\sigma_a(T)] = \emptyset, \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \Pi(T) \cup \Pi(T)\} \cap [\sigma_\tau(T) \cap \operatorname{acc}\sigma_a(T)] = \emptyset, \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \Pi(T) \cup \Pi(T)\} \cap [\sigma_\tau(T) \cap \operatorname{acc}\sigma_a(T)] = \emptyset, \{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \Pi(T) \cup \Pi(T) \cap \operatorname{acc}\sigma_a(T)\} = \emptyset$

 $\pi_{00}^{a}(T) \cap \operatorname{acc}_{ea}(T) = \emptyset, \{[\sigma_{a}(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^{a}(T)\} \cap [\rho_{a}(T) \cap \sigma(T)] = \emptyset. \text{ Thus, } [\sigma_{a}(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^{a}(T) = \sigma_{0}(T). \text{ And } \operatorname{iso}_{\sigma_{a}}(T) \cap \{[\sigma_{\tau}(T) \cap \operatorname{acc}_{\sigma_{a}}(T)] \cup \operatorname{acc}_{ea}(T)] \cup [\rho_{a}(T) \cap \sigma(T)]\} = \emptyset. \text{ It follows that both property } (UW_{\Pi}) \text{ and a-Weyl's theorem hold for } T, \text{ and } T \text{ is a-polaroid operator.} \square$

From Theorem 2.8 and Theorem 2.9 we finally get the following result.

Corollary 2.10. Let $T \in B(H)$ and Q a quasi-nilpotent operator with QT = TQ. Then the following statements are equivalent:

(1) T + Q satisfies both property (UW_{Π}) and a-Weyl's theorem, and T + Q is a-polaroid operator; (2) $\sigma_b(T) = [\sigma_\tau(T) \cap acc\sigma_a(T)] \cup acc\sigma_{ea}(T) \cup [\rho_a(T) \cap \sigma(T)].$

3. Property (UW_{Π}) and a-Weyl's theorem of operator functions

For $T \in B(H)$, we use $Hol(\sigma(T))$ to denote the class of all complex-valued functions analytic on a neighborhood of $\sigma(T)$ and not constant on any components of $\sigma(T)$.

Remark 3.1. (*i*) *T* satisfies both property (UW_{Π}) and a-Weyl's theorem does not imply f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem, where $f \in Hol(\sigma(T))$.

Let $A, B \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \cdots) = (0, x_1, x_2, \cdots), B(x_1, x_2, \cdots) = (x_2, x_3, x_4, \cdots).$$

Put $T = \begin{pmatrix} A + I & 0 \\ 0 & B - I \end{pmatrix}$. Then T satisfies both property (UW_{Π}) and a-Weyl's theorem. Let $f(z) = (z - 1)(z + 1), z \in \mathbb{C}$, we can get $0 \in \sigma_a(f(T)) \setminus \sigma_{ea}(f(T))$. But $0 \notin \Pi(T), 0 \notin \pi_{00}^a(T)$. We know that both property (UW_{Π}) and a-Weyl's theorem don't hold for f(T).

(*ii*) f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem for some $f \in Hol(\sigma(T))$ does not imply T satisfies both property (UW_{Π}) and a-Weyl's theorem. Let $A, B, C \in B(\ell^2)$ be defined by

$$A(x_1, x_2, \dots) = (0, x_2, 0, x_4, \dots), B(x_1, x_2, \dots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \dots), C(x_1, x_2, \dots) = (0, x_1, x_2, \dots)$$

 $Put T = \begin{pmatrix} A + I & 0 & 0 \\ 0 & B - I & 0 \\ 0 & 0 & C + I \end{pmatrix}. We know that \sigma_a(T^2) = \sigma_{ea}(T^2) = \{re^{i\theta} : r = 2(1 + \cos\theta)\} \cup \{1, \frac{1}{9}\}, \Pi(T^2) = \emptyset,$

 $\pi_{00}^{a}(T^{2}) = \emptyset$. So $T^{2} \in (UW_{\Pi})$ and satisfies a-Weyl's theorem. But $\Pi(T) = \{\frac{1}{3}\}$, $\pi_{00}^{a}(T) = \{-1\}$, $\sigma_{a}(T) = \sigma_{ea}(T) = \{-1, -\frac{1}{3}\} \cup \{\lambda \in \mathbb{C} : \|\lambda - 1\| = 1\}$. Thus both property (UW_{Π}) and a-Weyl's theorem don't hold for T.

From the above Remark, *T* and *f*(*T*) satisfy both property (UW_{Π}) and a-Weyl's theorem are not directly connected. In the following, we will discuss the property (UW_{Π}) and a-Weyl's theorem for operator functions through the relation between $\sigma_b(T)$ and $\sigma_\tau(T)$.

First we have this fact: For any $f \in Hol(\sigma(T))$, $f(\sigma_{ea}(T)) = \sigma_{ea}(f(T))$ if and only if for any $\lambda, \mu \in \rho_{SF_+}(T)$, $ind(T - \lambda I) \cdot ind(T - \mu I) \ge 0$. Next, we will use topological uniform descent to describe the properties of Fredholm index.

Lemma 3.2. Let $T \in B(H)$ and $f \in Hol(\sigma(T))$. If $f(T) \in (UW_{\Pi})$, then for any $\lambda, \mu \in \rho_{SF_+}(T)$, $ind(T - \lambda I) \cdot ind(T - \mu I) \ge 0$.

Proof. If not, then there exist $\lambda_0, \mu_0 \in \rho_{SF_+}(T)$ such that $\operatorname{ind}(T - \lambda_0 I) = m > 0$, $\operatorname{ind}(T - \mu_0 I) = -n < 0$. Suppose that $f(z) = (z - \lambda_0)^n (z - \mu_0)^m$ when $n < \infty$ and $f(z) = (z - \lambda_0)(z - \mu_0)$ when $n = \infty$. In both instances, we can get $0 \in \sigma_a(f(T)) \setminus \sigma_{ea}(f(T))$. From $f(T) \in (UW_{\Pi})$, we know that f(T) is Browder operator. Thus $\lambda_0 \notin \sigma_b(T)$, a contradiction. \Box

Lemma 3.3. Let $T \in B(H)$ and $T \in (UW_{\Pi})$. Then the following statements hold: (1) $\rho_{\tau}(T) \subseteq \rho_{b}(T) \cup acc\sigma_{ea}(T)$ if and only if for any $\lambda \in \rho_{SF_{+}}(T)$, $ind(T - \lambda I) \ge 0$; (2) $\rho_{\tau}(T) \subseteq \rho_{b}(T) \cup acc\sigma_{SF_{+}}(T) \cup acc\{\lambda \in \mathbb{C} : n(T - \lambda I) = 0\}$ if and only if for any $\lambda \in \rho_{SF_{+}}(T)$, $ind(T - \lambda I) \le 0$.

Proof. (1). " \Rightarrow ". If not, there exist $\lambda_0 \in \rho_{SF_+}(T)$ such that $\operatorname{ind}(T - \lambda_0 I) < 0$. We can get that $\lambda_0 \in \rho_{\tau}(T)$ and $\lambda_0 \notin \operatorname{acc}\sigma_{ea}(T)$, then $\lambda_0 \in \rho_b(T)$, a contradiction.

"⇐". Suppose that for any $\lambda \in \rho_{SF_+}(T)$, $\operatorname{ind}(T - \lambda I) \ge 0$. Take $\lambda_0 \in \rho_\tau(T)$ but $\lambda_0 \notin \operatorname{acc}_{ea}(T)$, then there exists $\epsilon > 0$ such that $T - \lambda I$ is an upper semi-Weyl operator when $0 < ||\lambda - \lambda_0|| < \epsilon$. By $\operatorname{ind}(T - \lambda I) \ge 0$ and $T \in (UW_{\Pi})$ we get that $T - \lambda I$ is a Browder operator. It follows that $\lambda_0 \in \partial\sigma(T) \cap \rho_\tau(T)$ and $\lambda_0 \in \Pi(T)$. Therefore, $\lambda_0 \in \rho_b(T)$.

(2). Similar to the proof of (1), this result is obvious. \Box

Theorem 3.4. Let $T \in B(H)$. Then for any $f \in Hol(\sigma(T))$, f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem *if and only if:*

(1) *T* satisfies both property (UW_{Π}) and a-Weyl's theorem;

(2) $\rho_{\tau}(T) \subseteq \rho_b(T) \cup acc\sigma_{ea}(T) \text{ or } \rho_{\tau}(T) \subseteq \rho_b(T) \cup acc\sigma_{SF_+}(T) \cup acc\{\lambda \in \mathbb{C} : n(T - \lambda I) = 0\};$

(3) If $\sigma_0(T) \neq \emptyset$, then $\sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)].$

Proof. " \Rightarrow ". From Lemma 3.2 and Lemma 3.3, we only need to prove (3) holds. The inclusion " \supseteq " is clear. For the converse, we first claim that { $\lambda \in iso\sigma_a(T) : n(T - \lambda I) < \infty$ } = $\sigma_0(T)$. In fact, take $\lambda_1 \in \sigma_0(T)$, $\lambda_2 \in \{\lambda \in iso\sigma_a(T) : n(T - \lambda I) < \infty\}$. Set $\sigma_1 = \{\lambda_1\}, \sigma_2 = \{\lambda_2\}$ and $\sigma_3 = \sigma(T) \setminus [\sigma_1 \cup \sigma_2]$. Then by [12, Theorem (T = 0, 0, 0)

2.10] *T* can be represented as
$$T = \begin{pmatrix} T_1 & 0 & 0 \\ 0 & T_2 & 0 \\ 0 & 0 & T_3 \end{pmatrix}$$
, where $\sigma(T_i) = \sigma_i$, $i = 1, 2, 3$. Put $f_0(z) = (z - \lambda_1)(z - \lambda_2)$.
Then $f_0(T) = \begin{pmatrix} f_0(T_1) & 0 & 0 \\ 0 & f_0(T_2) & 0 \\ 0 & 0 & f_0(T_3) \end{pmatrix}$. Therefore $0 \in iso\sigma_a(f_0(T))$ and $0 < n(f_0(T)) < \infty$. It follows that

 $0 \in \pi_{00}^a(f_0(T))$. From $f_0(T)$ satisfies both property (UW_{Π}) and a-Weyl's theorem, we obtain that $f_0(T)$ is a Browder operator, and so is $T - \lambda_2 I$. The inclusion " \supseteq " is clear. So { $\lambda \in iso\sigma_a(T) : n(T - \lambda I) < \infty$ } = $\sigma_0(T)$.

Then we prove $\sigma(T) = \sigma_a(T)$. If not, put $\lambda_1 \in \sigma(T) \setminus \sigma_a(T)$. Let $\lambda_2 \in \sigma_0(T)$ and $f_1(T) = (T - \lambda_1 I)(T - \lambda_2 I)$, then $0 \in \sigma_a(f_1(T)) \setminus \sigma_{ea}(f_1(T))$. Since $f_1(T) \in (UW_{\Pi})$, we can get that $f_1(T)$ is a Browder operator. It implies that $\lambda_1 \in \rho(T)$, a contradiction.

Take arbitrarily λ_0 that does not belong to the right side of (3). Without loss of generality, suppose that $\lambda_0 \in \sigma(T)$.

Case 1 Suppose that $\lambda_0 \notin \sigma_{\tau}(T) \cup \operatorname{acc}\sigma_a(T)$. From $\sigma(T) = \sigma_a(T)$ we can get that $\lambda_0 \in \rho_{\tau}(T) \cap \operatorname{iso}\sigma(T)$, then $\lambda_0 \in \Pi(T)$. It follows that $\lambda_0 \notin \sigma_b(T)$.

Case 2 Suppose that $\lambda_0 \notin \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cup \operatorname{acc}\sigma_a(T)$. It follows that $\lambda_0 \in \{\lambda \in \operatorname{iso}\sigma_a(T) : n(T - \lambda I) < \infty\}$. Thus $\lambda_0 \in \sigma_0(T)$.

Case 3 Suppose that $\lambda_0 \notin \sigma_{ea}(T)$. Then $\lambda_0 \in \rho_a(T) \cup [\sigma_a(T) \setminus \sigma_{ea}(T)]$. Since $\sigma(T) = \sigma_a(T)$ and $T \in (UW_{\Pi})$, we can get $\lambda_0 \notin \sigma_b(T)$.

"←". **Case 1** Suppose that $\sigma_0(T) = \emptyset$. Since *T* satisfies both property (UW_{Π}) and a-Weyl's theorem, we know that $\sigma_a(T) = \sigma_{ea}(T)$, $\Pi(T) = \pi_{00}^a(T) = \emptyset$. From the condition (2) and Lemma 3.3 we can get that $\sigma_a(f(T)) = f(\sigma_a(T)) = f(\sigma_{ea}(T)) = \sigma_{ea}(f(T))$. Thus $\sigma_a(f(T)) \setminus \sigma_{ea}(f(T)) = \emptyset$. Meanwhile, $\Pi(f(T)) \subseteq f(\Pi(T)) = \emptyset$, $\pi_{00}^a(f(T)) \subseteq f(\pi_{00}^a(T)) = \emptyset$. So f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem.

Case 2 Suppose that $\sigma_0(T) \neq \emptyset$. The fact $\sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup [\operatorname{acc}\sigma_a(T) \cap \sigma_{ea}(T)]$ implies that $\sigma_{ea}(T) = \sigma_b(T)$. Take $\mu_0 \in \sigma_a(f(T)) \setminus \sigma_{ea}(f(T))$ and suppose that

$$f(T) - \mu_0 I = a(T - \lambda_1 I)^{n_1} (T - \lambda_2 I)^{n_2} \cdots (T - \lambda_t I)^{n_t} g(T),$$

where $\lambda_i \neq \lambda_j$ if $i \neq j$ and g(T) is invertible. From the condition (2) and Lemma 3.3 we have $\lambda_i \in \rho_a(T) \cup [\sigma_a(T) \setminus \sigma_{ea}(T)]$ for $1 \leq i \leq t$. Since $\sigma_{ea}(T) = \sigma_b(T)$ and $T \in (UW_{\Pi})$, we know that $\lambda_i \in \rho_b(T)$ for $1 \leq i \leq t$. It follows that $\mu_0 \in \sigma_0(f(T))$. Take arbitrarily $\mu_0 \in \Pi(f(T))$ and suppose that $f(T) - \mu_0 I$ has the same decomposition as above. Then $T - \lambda_i I$ is Drazin invertible for $1 \leq i \leq t$. Since $T \in (UW_{\Pi})$, we can get that $\mu_0 \in \sigma_0(f(T))$. Take arbitrarily $\mu_0 \in \pi_{00}^a(f(T))$ and suppose that $f(T) - \mu_0 I$ has the same decomposition as above. Then $\lambda_i \in \rho_a(T) \cup iso\sigma_a(T)$ and $n(T - \lambda_i I) < \infty$. From the condition (3) we have $\mu_0 \in \sigma_0(f(T))$. Hence for any $f \in Hol(\sigma(T))$, f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem. \Box

From (3) in Theorem 3.4 we can get that *T* satisfies both property (UW_{Π}) and a-Weyl's theorem, and for any $\lambda \in \rho_{SF_+}(T)$, $ind(T - \lambda I) \ge 0$. Hence we have the following fact:

Corollary 3.5. Let $T \in B(H)$ and $\sigma_0(T) \neq \emptyset$. Then for any $f \in Hol(\sigma(T))$, f(T) satisfies both property (UW_{Π}) and *a*-Weyl's theorem if and only if $\sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)]$.

Corollary 3.6. Let $T \in B(H)$. Then $\sigma_0(T) = \emptyset$ and for any $f \in Hol(\sigma(T))$, f(T) satisfies both property (UW_{Π}) and *a*-Weyl's theorem if and only if one of the following conditions holds:

 $(1) \sigma(T) = [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)];$

 $(2) \sigma(T) = [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_{a}(T) \cap \sigma_{SF_{+}}(T)] \cup \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc[\rho_{a}(T) \cap \sigma(T)]\}.$

Proof. " \Rightarrow ". The inclusion " \supseteq " is clear. For the converse, by Lemma 3.2 we know that for any $\lambda, \mu \in \rho_{SF_+}(T)$, ind $(T - \lambda I) \cdot \operatorname{ind}(T - \mu I) \ge 0$.

Case 1 Suppose that $\lambda \in \rho_{SF_+}(T)$, $\operatorname{ind}(T - \lambda I) \ge 0$. Take arbitrarily λ_0 that does not belong to the right side of (1). We claim that $\lambda_0 \notin \sigma_a(T)$. In fact, if $\lambda_0 \in \sigma_a(T)$, then $n(T - \lambda_0 I) > 0$. If $\lambda_0 \notin \sigma_\tau(T) \cup \operatorname{acc}\sigma_a(T)$, from the proof of Theorem 3.4 we can get $\sigma(T) = \sigma_a(T)$. Then $\lambda_0 \in \operatorname{iso}\sigma(T)$ and $\lambda_0 \in \Pi(T)$. It follows from $T \in (UW_{\Pi})$ that $\lambda_0 \in \sigma_0(T)$. If $\lambda_0 \notin \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cup \operatorname{acc}\sigma_a(T)$, then $\lambda_0 \in \pi_{00}^a(T)$ and hence $\lambda_0 \in \sigma_0(T)$. If $\lambda_0 \notin \sigma_{ea}(T)$. It follows that $\lambda_0 \in \sigma_0(T)$. But $\sigma_0(T) = \emptyset$. This contradiction shows that $\lambda_0 \notin \sigma_a(T)$. From $\operatorname{ind}(T - \lambda_0 I) \ge 0$ we get that $\lambda_0 \notin \sigma(T)$.

Case 2 Suppose that $\lambda \in \rho_{SF_+}(T)$, $\operatorname{ind}(T - \lambda I) \leq 0$. Take arbitrarily λ_0 that does not belong to the right side of (2). We claim that $\lambda_0 \notin \sigma(T)$. Similar to the proof of case 1, this claim is clear.

" \leftarrow ". **Case 1** If condition (1) holds, we obtain that for any $\lambda \in \rho_{SF_+}(T)$, $\operatorname{ind}(T - \lambda I) \ge 0$. If not, there exist $\lambda_0 \in \rho_{SF_+}(T)$, $\operatorname{ind}(T - \lambda_0 I) < 0$. It follows that $\lambda_0 \notin [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} \cup [\operatorname{acc}\sigma_a(T) \cap \sigma_{ea}(T)]$, then $\lambda_0 \notin \sigma(T)$, a contradiction. If there exist $\mu \in \sigma_0(T)$, then $\mu \notin [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} \cup [\operatorname{acc}\sigma_a(T) \cap \sigma_{ea}(T)]$. By condition (1) we can get $\mu \notin \sigma(T)$, a contradiction. Hence $\sigma_0(T) = \emptyset$. It is clear that $\{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] = \emptyset$, $\{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] = \emptyset$, $\{[\sigma_a(T) \setminus \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap [\sigma_\tau(T) \cap \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)\} \cap [\sigma_\tau(T) \cap \sigma_{ea}(T)] \cup \Pi(T) \cup \pi_{00}^a(T)] \subseteq \rho(T)$, a contradiction. So we can get $\sigma_a(T) \setminus \sigma_{ea}(T) = \Pi(T) = \pi_{00}^a(T) = \emptyset$, then T satisfies both property (UW_{Π}) and a-Weyl's theorem. From Theorem 3.4 we know that for any $f \in Hol(\sigma(T))$, f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem.

Case 2 If condition (2) holds, we get that for any $\lambda \in \rho_{SF_+}(T)$, $ind(T - \lambda I) \leq 0$. Similar to the proof of case 1, the result is trivial. \Box

From Corollary 3.5 and Corollary 3.6 we can describe the property (UW_{Π}) and a-Weyl's theorem for operator functions through the relation between $\sigma_b(T)$ and $\sigma_\tau(T)$.

Theorem 3.7. Let $T \in B(H)$. Then for any $f \in Hol(\sigma(T))$, f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem *if and only if one of the following statements holds:*

 $(1) \sigma(T) = [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)];$

 $(2) \sigma(T) = [\sigma_{\tau}(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [acc\sigma_{a}(T) \cap \sigma_{SF_{+}}(T)] \cup \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap acc[\rho_{a}(T) \cap \sigma(T)]\};$

(3) $\sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup [acc\sigma_a(T) \cap \sigma_{ea}(T)].$

We can get that property (UW_{Π}) is transmitted from Drazin invertible operator to its Drazin inverse in [2]. Now, we will discuss *S* satisfies both property (UW_{Π}) and a-Weyl's theorem by topological uniform descent.

If $T \in B(H)$ is Drazin invertible with inverse *S*, then $\operatorname{asc}(T) = \operatorname{des}(T) = p$ for any $p \in \mathbb{N}$. We know that $R(T^p)$ is closed and $H = N(T^p) \oplus R(T^p)$. Under this space decomposition, $T = T_1 \oplus T_2$, where T_1 is nilpotent operator and T_2 is invertible. Thus $S = 0 \oplus T_2^{-1}$. In [1, 4, 5], we get that

$$\sigma(S)\setminus\{0\} = \{\frac{1}{\lambda} : \lambda \in \sigma(T) \setminus \{0\}\}, \sigma_*(S)\setminus\{0\} = \{\frac{1}{\lambda} : \lambda \in \sigma_*(T) \setminus \{0\}\}, * \in \{b, ea, a, \tau, D\}.$$

Besides, one can verify that for any $\lambda \neq 0$, $n(S - \lambda I) = n(T - \frac{1}{\lambda}I)$, $d(S - \lambda I) = d(T - \frac{1}{\lambda}I)$ and $\operatorname{acc}\sigma_a(S) \setminus \{0\} = \{\frac{1}{\lambda} : \lambda \in \operatorname{acc}\sigma_a(T) \setminus \{0\}\}.$

Theorem 3.8. Let $T \in B(H)$ be Drazin invertible with inverse S. Then

(1) T satisfies both property (UW_{Π}) and a-Weyl's theorem if and only if S satisfies both property (UW_{Π}) and *a*-Weyl's theorem;

(2) For any $f \in Hol(\sigma(T)) \cap Hol(\sigma(S))$, f(T) satisfies both property (UW_{Π}) and a-Weyl's theorem if and only if f(S) satisfies both property (UW_{Π}) and a-Weyl's theorem.

Proof. (1). " \Rightarrow ". From Theorem 2.1, we only need $\sigma_b(S) = [\sigma_\tau(S) \cap \{\lambda \in \mathbb{C} : n(S - \lambda I) = d(S - \lambda I)\}] \cup \{\lambda \in \mathbb{C} : n(S - \lambda I) \in \mathbb{C} \}$ $\sigma(S) : n(S - \lambda I) = 0\} \cup [\operatorname{acc}\sigma_a(S) \cap \sigma_{ea}(S)] \cup \{\{\lambda \in \mathbb{C} : n(S - \lambda I) = \infty\} \cap \operatorname{acc}[\rho_a(S) \cap \sigma(S)]\}.$ If *T* is invertible, then $S = T^{-1}$. The conclusion is clear. In the following, we assume T is not invertible but Drazin invertible.

Let λ does not belong to the right side. If $\lambda = 0$. Since $0 \in \Pi(T)$ and $T \in (UW_{\Pi})$, we get that $0 \notin \sigma_b(T)$.

Let λ does not belong to the right side. If $\lambda \neq 0$. Now, $S - \lambda I = \begin{pmatrix} -\lambda I & 0 \\ 0 & \lambda T_2^{-1}(\frac{1}{\lambda}I - T_2) \end{pmatrix}$, then $\frac{1}{\lambda} \notin [\sigma_\tau(T_2) \cap \{\lambda \in \mathbb{C} : n(T_2 - \lambda I) = d(T_2 - \lambda I)\}] \cup \{\lambda \in \sigma(T_2) : n(T_2 - \lambda I) = 0\} \cup [\operatorname{acc}\sigma_a(T_2) \cap \sigma_{ea}(T_2)] \cup \{\{\lambda \in \mathbb{C} : n(T_2 - \lambda I) = \infty\} \cap \operatorname{acc}[\rho_a(T_2) \cap \sigma(T_2)]\}$. Under above space decomposition, we know that $T - \frac{1}{\lambda}I = \begin{pmatrix} T_1 - \frac{1}{\lambda}I & 0 \\ 0 & T_2 - \frac{1}{\lambda}I \end{pmatrix}$, where $T_1 - \lambda I$ is invertible. So $\frac{1}{\lambda} \notin [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I)\}] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = d(T - \lambda I)\}$ 0} $\cup [\operatorname{acc}\sigma_a(T) \cap \sigma_{ea}(T)] \cup \{\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\} \cap \operatorname{acc}[\rho_a(T) \cap \sigma(T)]\}$. By Theorem 2.1 we can get $\frac{1}{\lambda} \notin \sigma_b(T)$

and so $\frac{1}{\lambda} \notin \sigma_b(S)$.

" \Leftarrow ". Suppose that *S* satisfies both property (UW_{Π}) and a-Weyl's theorem. The Drazin inverse of *S* is $U := T^2 S = TST$ and Drazin inverse of U is T ([1, Chapter 1]). Thus, T satisfies both property (UW_{Π}) and a-Weyl's theorem.

(2). " \Rightarrow ". It is obvious that *T* satisfies both property (UW_{Π}) and a-Weyl's theorem. Then from (1), we get that *S* satisfies both property (UW_{Π}) and a-Weyl's theorem. Suppose that $\sigma_0(S) \neq \emptyset$, we claim that $\sigma_0(T) \neq \emptyset$. In fact, let $\lambda \in \sigma_0(S)$. If $\lambda = 0$, then $0 < \dim N(T^p) < \infty$. It follows that $n(T_1) > 0$ and T is not invertible. By $T \in (UW_{\Pi})$ we have that T_1 is Browder operator. So T is Browder operator and $0 \in \sigma_0(T). \text{ If } \lambda \neq 0. \text{ Now, } S - \lambda I = \begin{pmatrix} -\lambda I & 0 \\ 0 & \lambda T_2^{-1}(\frac{1}{\lambda}I - T_2) \end{pmatrix}. \text{ It follows that } \frac{1}{\lambda}I - T_2 \text{ is Browder operator but not invertible. We know that } T - \frac{1}{\lambda}I = \begin{pmatrix} T_1 - \frac{1}{\lambda}I & 0 \\ 0 & T_2 - \frac{1}{\lambda}I \end{pmatrix}, \text{ then } \frac{1}{\lambda} \in \sigma_0(T). \text{ From Corollary 3.5 we get } \sigma_b(T) = [\sigma_\tau(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}] \cup [\operatorname{accc}_a(T) \cap \sigma_{ea}(T)]. \text{ By using the similar way of (1) we have that } T = \int_{T_1}^{T_2} |\sigma_{T_2} - \sigma_{T_1}| = \int_{T_1}^{T_2} |\sigma_{T_2} - \sigma_{T_1}| = \int_{T_1}^{T_2} |\sigma_{T_2} - \sigma_{T_1}| = \int_{T_1}^{T_2} |\sigma_{T_1} - \sigma_{T_1}| = \int_{T_1}^{T_2} |\sigma_{T_1} - \sigma_{T_1}| = \int_{T_1}^{T_1} |\sigma_{T_1} - \sigma_{T_1} - \sigma_{T_1}| = \int_{T_1}^{T_1} |\sigma_{T_1} - \sigma_{T_1}| = \int_{T_1}^{T_1} |\sigma_{T_1} - \sigma_{T_1} - \sigma_{T_1}| = \int_{T_1}^{T_1} |\sigma_{T_1} - \sigma_{T_1}| = \int_{T_1}^{T_1} |\sigma_{T_1} - \sigma_$

get that $\sigma_b(S) = [\sigma_\tau(S) \cap \{\lambda \in \mathbb{C} : n(S - \lambda I) = \infty\}] \cup [\operatorname{acc}\sigma_a(S) \cap \sigma_{ea}(S)]$. Moreover, $\sigma_{ea}(f(S)) = f(\sigma_{ea}(S))$ for any $f \in Hol(\sigma(T)) \cap Hol(\sigma(S))$. From Lemma 3.3 and Theorem 3.4 f(S) satisfies both property (UW_{Π}) and a-Weyl's theorem.

" \leftarrow ". The same as the above proof. \Box

References

- [1] P. Aiena, Fredholm and local spectral theory II, with application to Weyl-type theorems, Springer Lecture Notes of Math 2235, 2018.
- [2] P. Aiena, M.Kachad, Property (UW_{Π}) under perturbations, Ann. Func. Anal. **11** (2020), 29–46.
- [3] P. Aiena, Semi-Fredholm operators, perturbation theory and localizated SVEP, Mérida, Venezuela, 2007.
- [4] P. Aiena, S. Triolo, Fredholm spectra and Weyl type theorems for Drazin invertible operators, Mediterr. J. Math. 13 (2016), 4385–4400.
- [5] P. Aiena, S. Triolo, Local spectral theory for Drazin invertible operators, J. Math. Anal. Appl. 435 (2016), 414-424.
- [6] M. Berkani, M. Kachad, New Browder and Weyl type theorems, Bull. Korean. Math. Soc. 52 (2015), 439-452.
- [7] X. Cao, J. Dong, J. Liu, Weyl's theorem and its perturbations for the functions of operators, Oper. Matrices. 12 (2018), 1145–1157.
- [8] X. Cao, Topological uniform descent and Weyl type theorem, Linear. Algebra. Appl. 420 (2007), 175–182.
- [9] S. Grabiner, Uniform ascent and descent of bounded operaters, J. Math. Soc. Japan. 34 (1982), 317–337.
- [10] C. Li, S. Zhu, Y. Feng, Weyl's theorem for functions of operators and approximation, Intege. Equ. Oper. Theory. 67 (2010), 481-497.
- [11] S. Qiu, X. Cao, Property (UWE) for operators and operator matrices, J. Math. Anal. Appl. 509 (2022), 125951.
- [12] H. Radjavi, P. Rosenthal, Invariant Subspaces, 2nd edn, Dover Publications, Mineola, 2003.
- [13] V. Rakočević, On a class of operators, Mat. Vesnik. 37 (1985), 423-425.
- [14] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roum. Math. Pures. Appl. 34 (1989), 915–919.
- [15] W. Shi, Topological uniform descent and compact perturbations, RACSAM. 113 (2019), 2221–2233.
- [16] H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Di. Palermo. 27 (1909), 373–392.
- [17] L. Yang, X. Cao, Single-Valued Extension Property and Property (w), Funct. Anal. its. Appl. 55 (2021), 316–325.