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Abstract. Let H be an infinite dimensional separable complex Hilbert space and B(H) the algebra of all
bounded linear operators on H. T ∈ B(H) is said to satisfy property (UWΠ) if σa(T)\σea(T) = Π(T), where
σa(T) and σea(T) denote the approximate point spectrum and the essential approximate point spectrum of T
respectively,Π(T) denotes the set of all poles of T. T ∈ B(H) satisfies a-Weyl’s theorem ifσa(T)\σea(T) = πa

00(T),
where πa

00(T) = {λ ∈ isoσa(T) : 0 < n(T−λI) < ∞}. In this paper, we give necessary and sufficient conditions
for a bounded linear operator and its function calculus to satisfy both property (UWΠ) and a-Weyl’s theorem
by topological uniform descent. In addition, the property (UWΠ) and a-Weyl’s theorem under perturbations
are also discussed.

1. Introduction and preliminaries

Throughout this paper, C andN denote the set of complex numbers and the set of nonnegative integers.
The unit closed disk and unit circle on the complex planeC are denoted byD and Γ, respectively. Let H be a
complex separable infinite dimensional Hilbert space and B(H) the algebra of all bounded linear operators
on H. Let T ∈ B(H). We denote by n(T) the dimension of the kernel N(T) and by d(T) the codimension of the
range R(T). If R(T) is closed and n(T) < ∞, then T is called an upper semi-Fredholm operator. T is said to
be a lower semi-Fredholm operator if d(T) < ∞. An operator T is said to be Fredholm operator if it is both
lower and upper semi-Fredholm. Especially, if T is an upper semi-Fredholm operator and n(T) = 0, then T
is called a bounded below operator. The index of T is defined by ind(T) = n(T)− d(T). An operator T is said
to be an upper semi-Weyl operator if it is an upper semi-Fredholm operator with ind(T) ≤ 0. If T is an upper
semi-Fredholm operator and ind(T) = 0, then T is called Weyl operator. The spectrum of T, the approximate
point spectrum σa(T), the essential approximate point spectrum σea(T), the upper semi-Fredholm spectrum
σSF+ (T) are defined by

σ(T) = {λ ∈ C : T − λI is not invertible},

σa(T) = {λ ∈ C : T − λI is not a bounded below operator},

σea(T) = {λ ∈ C : T − λI is not an upper semi-Weyl operator},

σSF+ (T) = {λ ∈ C : T − λI is not an upper semi-Fredholm operator}.

The ascent and descent of T are defined by asc(T) = inf{n ∈ N : N(Tn) = N(Tn+1)} and des(T) = inf{n ∈
N : R(Tn) = R(Tn+1)}. If the infimum does not exist, then we write asc(T) = ∞(resp.des(T) = ∞). If
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asc(T) = des(T) < ∞, then T is Drazin invertible. T is called a Browder operator if T is both Fredholm
operator and Drazin invertible. The Drazin spectrum σD(T), the left Browder spectrum σab(T) and the
Browder spectrum σb(T) are defined by

σD(T) = {λ ∈ C : T − λI is not Drazin invertible},

σab(T) = {λ ∈ C : T − λI is not upper semi-Fredholm or asc(T − λI) = ∞},

σb(T) = {λ ∈ C : T − λI is not a Browder operator}.

Let ρ(T) = C\σ(T), ρa(T) = C\σa(T), ρb(T) = C\σb(T). We denote by σ0(T) the set of all normal eigenvalues
of T, thus σ0(T) = σ(T)\σb(T). For a set E ⊆ C, we write isoE, accE and ∂E as the set of isolated points,
accumulation points and boundary points of E.

For a Cauchy domain Ω, if all the curves of ∂Ω are regular analytic Jordan curves, we say that Ω is an
analytic Cauchy domain. For T ∈ B(H), if σ is a clopen subset of σ(T), then there exists an analytic Cauchy
domain Ω such that σ ⊆ Ω and [σ(T) \ σ] ∩ Ω = ∅, where Ω is the closure of Ω. We denote by E(σ; T) the
Riesz idempotent of T corresponding to σ, i.e.,

E(σ; T) =
1

2πi

∫
Γ

(λI − T)−1dλ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex variable theory. In this case,
we have H(σ; T) = R(E(σ; T)). Clearly, if λ ∈ isoσ(T), then {λ} is a clopen subset of σ(T). We write H(λ; T)
instead of H({λ}; T); if in addition, dim H(λ; T) < ∞, then λ ∈ σ0(T).

Spectral theory of operators is an important part of operator theory. Weyl’s theorem, as an important
conclusion in spectral theory, is discovered by H.Weyl in 1909 ([16]) when he studied the spectral set of
self-adjoint operators on Hilbert spaces. As one of the research focuses of spectral theory in recent years,
scholars have made various modifications to it.

The variation of Weyl’s theorem, namely, a-Weyl’s theorem ([13, 14]) were given by Rakoc̆evic̀. We say
that the a-Weyl’s theorem holds for T if

σa(T)\σea(T) = πa
00(T),

where πa
00(T) = {λ ∈ isoσa(T) : 0 < n(T − λI) < ∞}.

Property (UWΠ), as well as a-Weyl’s theorem, is also a variant of Weyl’s theorem. In [6], Berkani and
Kachad introduced the definition of property (UWΠ). T ∈ B(H) satisfies property (UWΠ) and denoted by
T ∈ (UWΠ), if

σa(T)\σea(T) = Π(T),

where Π(T) = σ(T)\σD(T). If λ ∈ Π(T), then λ is a pole of T.
The concept of topological uniform descent was first proposed by Sandy Grabiner ([9]). The introduction

of this concept provides a new tool for the study of operator theory, and many scholars have achieved
corresponding research results by using topological uniform descent ([8, 11, 15]). If T ∈ B(H), then for each
nonnegative integer n, T induces a linear transformation

Γn : R(Tn)/R(Tn+1) −→ R(Tn+1)/R(Tn+2),

we will let kn(T) be the dimension of the null space of the induced map and let k(T) =
∑
∞

n=0 kn(T). The
operator range topology on R(Tn) is defined by the norm ∥ y ∥n= inf{∥ x ∥, x ∈ H, y = Tnx}. If there is a
nonnegative integer d for which kn(T) = 0 for n ≥ d and R(Tn) is closed in the operator range topology of
R(Td) for n ≥ d, then we say that T has topological uniform descent.

It can be shown that if T is semi-Fredholm, then T has topological uniform descent. If T − λI has
topological uniform descent and λ ∈ ∂σ(T), then λ ∈ Π(T)([9, Corollary 4.9]). The topological uniform
descent spectrum of T is defined by

στ(T) = {λ ∈ C : T − λI has not topological uniform descent},

and ρτ(T) = C\στ(T).
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Example 1.1. (i) It is easy to see that if T ∈ (UWΠ), then σa(T)\σea(T) ⊆ πa
00(T). But property (UWΠ) does not

imply a-Weyl’s theorem. Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, x2, · · · ),B(x1, x2, · · · ) = (0, 0,
x2

2
,

x3

3
, · · · ).

Put T =
(

A 0
0 B

)
. Then we have σ(T) = D, Π(T) = ∅, σa(T) = σea(T) = {0} ∪ Γ, πa

00(T) = {0}. It follows that

T ∈ (UWΠ), but the a-Weyl’s theorem does not hold for T.
(ii) A-Weyl’s theorem does not imply property (UWΠ). Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, x2, · · · ),B(x1, x2, · · · ) = (0, x2, x3, · · · ).

Put T =
(

A 0
0 B

)
. Then we have σ(T) = D, Π(T) = ∅, σa(T) = {0} ∪ Γ, σea(T) = Γ πa

00(T) = {0}. It follows that T

satisfies a-Weyl’s theorem, but T < (UWΠ).
(iii) There exists T ∈ B(H) such that neither property (UWΠ) nor a-Weyl’s theorem holds for T. Let A,B ∈ B(ℓ2)

be defined by
A(x1, x2, · · · ) = (0, x2, 0, x4, · · · ), B(x1, x2, · · · ) = (0, 0,

x2

2
,

x3

3
, · · · ).

Put T =
(

A 0
0 B − I

)
. Then we have σ(T) = {−1, 0, 1}, Π(T) = {0, 1}, σa(T) = σea(T) = {−1, 0, 1}, πa

00(T) = {−1}.

Thus, neither property (UWΠ) nor a-Weyl’s theorem holds for T.

We have seen in Example 1.1 that there is no relationship between T ∈ (UWΠ) and T satisfies a-Weyl’s
theorem although the forms of property (UWΠ) and a-Weyl’s theorem are similar.

In this paper, we will give necessary and sufficient conditions for bounded linear operators to satisfy
both property (UWΠ) and a-Weyl’s theorem by topological uniform descent in section 2. What’s more, we
also discuss both property (UWΠ) and a-Weyl’s theorem under quasi-nilpotent perturbation for bounded
linear operators. In section 3, we will talk about operator functions to satisfy both property (UWΠ) and
a-Weyl’s theorem in terms of topological uniform descent. In addition, we also discuss the case that Drazin
invertible operators satisfy both property (UWΠ) and a-Weyl’s theorem.

2. Property (UWΠ) and a-Weyl’s theorem of bounded linear operators

In this section, we will describe both property (UWΠ) and a-Weyl’s theorem hold for T by means of the
property of topological uniform descent.

Theorem 2.1. Let T ∈ B(H). The following statements are equivalent:
(1) T satisfies both the property (UWΠ) and a-Weyl’s theorem;
(2) σb(T) = [στ(T)∩ {λ ∈ C : n(T −λI) = d(T −λI)}]∪ {λ ∈ σ(T) : n(T −λI) = 0} ∪ [accσa(T)∩ σea(T)]∪ {{λ ∈

C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)]}.

Proof. (1) ⇒ (2). The inclusion “⊇” is obvious. For the opposite inclusion, take arbitrarily λ0 that does
not belong to the right side of (2). Without loss of generality, suppose that λ0 ∈ σ(T). Then we have
n(T − λ0I) > 0.

Case 1 Suppose that λ0 < σea(T). Then λ0 ∈ σa(T)\σea(T). Since T ∈ (UWΠ), we have λ0 < σb(T).
Case 2 Suppose that λ0 < accσa(T) ∪ {λ ∈ C : n(T − λI) = ∞}. Then λ0 ∈ πa

00(T). Since T satisfies both
property (UWΠ) and a-Weyl’s theorem, we can get that λ0 < σb(T).

Case 3 Suppose that λ0 < στ(T) ∪ accσa(T) ∪ acc[ρa(T) ∩ σ(T)]. Then λ0 ∈ ρτ(T) ∩ ∂σ(T), we can get
λ0 ∈ Π(T)([9, Corollary 4.9]). From T ∈ (UWΠ) we get that λ0 < σb(T).

Case 4 Suppose that λ0 < {λ ∈ C : n(T − λI) = d(T − λI)} ∪ accσa(T) ∪ acc[ρa(T) ∩ σ(T)]. We have
0 < n(T − λ0I) < ∞, thus λ0 ∈ πa

00(T). Since T satisfies both property (UWΠ) and a-Weyl’s theorem, we get
that λ0 < σb(T).
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(2) ⇒ (1). It is clear that {[σa(T)\σea(T)] ∪Π(T) ∪ πa
00(T)} ∩ [στ(T) ∩ {λ ∈ C : n(T − λI) = d(T − λI)}] = ∅,

{[σa(T)\σea(T)]∪Π(T)∪πa
00(T)} ∩ {λ ∈ σ(T) : n(T − λI) = 0} = ∅, {[σa(T)\σea(T)]∪Π(T)∪πa

00(T)} ∩ [accσa(T)∩
σea(T)] = ∅, {[σa(T)\σea(T)] ∪ Π(T) ∪ πa

00(T)} ∩ {{λ ∈ C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)] = ∅. Hence
[σa(T)\σea(T)] ∪ Π(T) ∪ πa

00(T) = σ0(T). It follows that T satisfies both property (UWΠ) and a-Weyl’s
theorem.

Remark 2.2. (i) In Theorem 2.1, suppose T ∈ B(H) satisfies both property (UWΠ) and a-Weyl’s theorem, then each
part of the decomposition of σb(T) can not be deleted.

(a) Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, 0,
x3

3
, 0,

x5

5
, · · · ),B(x1, x2, · · · ) = (0, 0,

x2

2
,

x3

3
, · · · ).

Put T =
(

A 0
0 B

)
. Then we have σ(T) = {0}, Π(T) = ∅, σa(T) = σea(T) = {0}, πa

00(T) = ∅. Hence T satisfies both

property (UWΠ) and a-Weyl’s theorem. But {λ ∈ σ(T) : n(T−λI) = 0} = [accσa(T)∩σea(T)] = {{λ ∈ C : n(T−λI) =
∞} ∩ acc[ρa(T) ∩ σ(T)]} = ∅. Thus στ(T) ∩ {λ ∈ C : n(T − λI) = d(T − λI)} cannot be deleted.

(b) Let T ∈ B(ℓ2) be defined by
T(x1, x2, · · · ) = (0, x1, x2, · · · ).

Then we have σ(T) = D, Π(T) = ∅, σa(T) = σea(T) = Γ, πa
00(T) = ∅, and so T satisfies both property (UWΠ) and

a-Weyl’s theorem. But σb(T) , [στ(T)∩{λ ∈ C : n(T−λI) = d(T−λI)}]∪ [accσa(T)∩σea(T)]∪{{λ ∈ C : n(T−λI) =
∞} ∩ acc[ρa(T) ∩ σ(T)]}. It follows that {λ ∈ σ(T) : n(T − λI) = 0} cannot be deleted.

(c) Let T ∈ B(ℓ2) be defined by

T(x1, x2, · · · ) = (0,
x2

2
,

x3

3
, · · · ).

Then we have σ(T) = σa(T) = {0, 1
2 ,

1
3 ,

1
4 , · · · }, σea(T) = {0}, Π(T) = πa

00(T) = { 12 ,
1
3 ,

1
4 , · · · }. So property (UWΠ) and

a-Weyl’s theorem hold for T. But σb(T) , [στ(T) ∩ {λ ∈ C : n(T − λI) = d(T − λI)}] ∪ {λ ∈ σ(T) : n(T − λI) =
0} ∪ {{λ ∈ C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)]}. Thus accσa(T) ∩ σea(T) cannot be deleted.

(d) Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, x2, · · · ),B(x1, x2, · · · ) = (0, x2, 0, x4, · · · ).

Put T =
(

A 0
0 B

)
. Then we have σ(T) = D, Π(T) = ∅, σa(T) = σea(T) = {0} ∪ Γ, πa

00(T) = ∅. It follows that T

satisfies both property (UWΠ) and a-Weyl’s theorem. However, σb(T) , [στ(T)∩{λ ∈ C : n(T−λI) = d(T−λI)}]∪{λ ∈
σ(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σea(T)], which means that {λ ∈ C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)] cannot
be deleted.

(ii) It is clear that σea(T) = σSF+ (T)∪{λ ∈ C : n(T−λI) > d(T−λI)}. From Theorem 2.1, we can get that T satisfies
both property (UWΠ) and a-Weyl’s theorem if and only ifσb(T) = [στ(T)∩{λ ∈ C : n(T−λI) = d(T−λI)}]∪{λ ∈ σ(T) :
n(T−λI) = 0}∪[accσa(T)∩σSF+ (T)]∪{{λ ∈ C : n(T−λI) = ∞}∩acc[ρa(T)∩σ(T)]}∪{λ ∈ C : n(T−λI) > d(T−λI)}.

(iii) If στ(T) = ∅, we claim that intσ(T) = ∅. If not, there exists a continuous curve segment L ⊆ ∂σ(T). Take
λ0 ∈ L, from στ(T) = ∅ we can get that λ0 ∈ Π(T). Then λ0 ∈ isoσ(T), a contradiction. Thus, σ(T) = ∂σ(T). Take
arbitrarily λ ∈ σ(T) = ∂σ(T). It follows from λ < στ(T) that λ ∈ Π(T) and λ ∈ isoσ(T). Since σ(T) is a bounded set,
we can get that σ(T) consists of finite points. Therefore, if στ(T) = ∅, then σ(T) = Π(T).

From Theorem 2.1, we can obtain this result: If στ(T) = ∅ and T satisfies both property (UWΠ) and a-Weyl’s
theorem(or only property (UWΠ) is required), then σb(T) = ∅, a contradiction with the fact that σb(T) is nonempty.
Therefore, if T satisfies both property (UWΠ) and a-Weyl’s theorem(or only property (UWΠ)), στ(T) , ∅.

Corollary 2.3. Let T ∈ B(H). The following statements are equivalent:
(1) T satisfies both property (UWΠ) and a-Weyl’s theorem;
(2) σb(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σea(T)] ∪ {{λ ∈ C :

n(T − λI) = d(T − λI)} ∩ acc[ρa(T) ∩ σ(T)]}.



T. Zhang, X. Cao / Filomat 37:23 (2023), 7771–7780 7775

Proof. (1) ⇒ (2). The inclusion “⊇” is obvious. For the opposite inclusion, we know that στ(T) ∩ {λ ∈
C : n(T − λI) = d(T − λI) < ∞} = ∅. Hence [στ(T) ∩ {λ ∈ C : n(T − λI) = d(T − λI)}] = [στ(T) ∩ {λ ∈ C :
n(T − λI) = d(T − λI) = ∞}] ⊆ στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}. From {λ ∈ C : n(T − λI) = ∞, d(T − λI) <
∞} ∩ acc[ρa(T) ∩ σ(T)] = ∅we can get that {λ ∈ C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)] = {{λ ∈ C : n(T − λI) =
d(T−λI) = ∞}∩acc[ρa(T)∩σ(T)]} ⊆ {λ ∈ C : n(T−λI) = d(T−λI)}∩acc[ρa(T)∩σ(T)]. According to Theorem
2.1, the inclusion “⊆” is obvious.

(2)⇒ (1). Similar to the proof of Theorem 2.1, this result is trivial.

It is easy to get that [ρa(T) ∩ σ(T)] ⊆ {λ ∈ C : n(T − λI) < d(T − λI)} and {λ ∈ C : n(T − λI) > d(T − λI)} ⊆
acc{λ ∈ C : n(T − λI) > d(T − λI)}. From (ii) in Remark 2.2 we obtain the following corollary.

Corollary 2.4. Let T ∈ B(H). The following statements are equivalent:
(1) T satisfies both property (UWΠ) and a-Weyl’s theorem;
(2) σb(T) = [στ(T)∩{λ ∈ C : n(T−λI) = d(T−λI)}]∪{λ ∈ σ(T) : n(T−λI) = 0}∪ [accσa(T)∩σSF+ (T)]∪ [{λ ∈

C : n(T − λI) = ∞} ∩ acc{λ ∈ C : n(T − λI) < d(T − λI)}] ∪ acc{λ ∈ C : n(T − λI) > d(T − λI)}.

Corollary 2.5. Let T ∈ B(H). The following statements are equivalent:
(1) T satisfies both property (UWΠ) and a-Weyl’s theorem;
(2) πa

00(T) ⊆ ρτ(T) ⊆ ρb(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : n(T − λI) =
∞} ∩ acc{λ ∈ C : n(T − λI) < d(T − λI)}] ∪ acc{λ ∈ C : n(T − λI) > d(T − λI)}.

Proof. (1) ⇒ (2). It is obvious that πa
00(T) ⊆ ρτ(T). Suppose that λ0 ∈ ρτ(T). Then λ0 < [στ(T) ∩ {λ ∈ C :

n(T − λI) = d(T − λI)}]. If λ0 < {λ ∈ σ(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σSF+ (T)] ∪ [{λ ∈ C : n(T − λI) =
∞} ∩ acc{λ ∈ C : n(T − λI) < d(T − λI)}] ∪ acc{λ ∈ C : n(T − λI) > d(T − λI)}, from Corollary 2.4 we can get
that λ0 ∈ ρb(T).

(2) ⇒ (1). It is clear that {[σa(T)\σea(T)] ∪Π(T)} ⊆ ρτ(T). From Corollary 2.4 and the proof of Theorem
2.1, we have {[σa(T)\σea(T)] ∪Π(T)} ⊆ σ0(T) and πa

00(T) ⊆ σ0(T). Thus T satisfies both property (UWΠ) and
a-Weyl’s theorem.

Weyl type Theorem and its perturbation problems have attracted extensive attention in recent years([7,
10, 17]). In the following, we will discuss quasi-nilpotent perturbation of both property (UWΠ) and a-Weyl’s
theorem.

We call R ∈ B(H) is Riesz operator if R − λI is Fredholm operator for every nonzero λ. In [3, Theorem
4.7], we have that

σ∗(T) = σ∗(T + R)

for every Riesz operator R commuting with T ∈ B(H), where ∗ ∈ {ea, ab, b}. It is clear that quasi-nilpotent
operators are Riesz operators. T ∈ B(H) is said to be a-isoloid operator if isoσa(T) ⊆ σp(T), where σp(T) =
{λ ∈ C : n(T − λI) > 0}. If isoσa(T) ⊆ Π(T), then T is called a-polaroid operator.

Example 2.6. (1) Let T,Q ∈ B(ℓ2) be defined by

T(x1, x2, x3 · · · ) = (0, x1, x2, x3, · · · ),Q(x1, x2, x3, · · · ) = (0,−x1, 0, 0, · · · ).

We have that T satisfies both property (UWΠ) and a-Weyl’s theorem. However, σ(T+Q) = σa(T+Q) = D, σea(T) = Γ,
Π(T) = πa

00(T) = ∅. It follows that both property (UWΠ) and a-Weyl’s theorem don’t hold for T +Q.
(2)Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, 0,
x3

3
, 0,

x5

5
, · · · ),B(x1, x2, · · · ) = (0, 0,

x2

2
,

x3

3
, · · · ).

Put T =
(

A 0
0 B

)
, Q =

(
0 0
0 −B

)
. Then we have QT = TQ, T is a-isoloid operator, σ(T) = σa(T) = σea(T) = {0},

πa
00(T) = Π(T) = ∅. It follows that T satisfies both property (UWΠ) and a-Weyl’s theorem, but we can see that

T +Q < (UWΠ).
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From Example 2.6 we know that the commutativity of T is indispensable, and we can’t also induce
that T + Q satisfies both property (UWΠ) and a-Weyl’s theorem if T is a-isoloid operator. Now, let Q be a
quasi-nilpotent operator with QT = TQ. For T ∈ B(H), the quasi-nilpotent part of T is defined by

H0(T) = {x ∈ H : lim
n→∞
∥Tnx∥

1
n = 0}.

It is known that T is a quasi-nilpotent operator if and only if H0(T) = H. Thus we have the following lemma.

Lemma 2.7. [3, Theorem 4.9] Let T ∈ B(H) and Q a quasi-nilpotent operator with QT = TQ, then σ(T) = σ(T +Q)
and σa(T) = σa(T +Q).

Proof. Since −Q is quasi-nilpotent operator, we only need T + Q is bounded below if T is bounded below.
We claim that H0(T) = {0} if T is bounded below. In fact, since T is bounded below, there exists k > 0 such
that ∥Tx∥ ≥ k∥x∥, ∀x ∈ H. Suppose that x0 ∈ H0(T), then lim

n→∞
∥Tnx0∥

1
n = 0 and ∥Tnx0∥ ≥ kn

∥x0∥. It follows that

∥Tnx0∥
1
n ≥ k∥x0∥

1
n . Thus, x0 = 0. Since T + Q is upper semi-Weyl operator, we only need N(T + Q) = {0}.

For all x ∈ N(T + Q) we have that Qx = −Tx. Thus Qnx0 = (−1)nTnx0. From Q is quasi-nilpotent operator
we can get that lim

n→∞
∥Qnx∥

1
n = 0, so lim

n→∞
∥Tnx∥

1
n = 0. It follows that x ∈ H0(T). Since T is bounded below,

H0(T) = {0}. So, x = 0. Hence, T +Q is bounded below.
If T is invertible, we know that T + Q is Weyl operator. From T + Q is bounded below we can get that

T +Q is invertible.

Theorem 2.8. Let T ∈ B(H) and Q a quasi-nilpotent operator with QT = TQ. Then the following statements are
equivalent:

(1) T satisfies both property (UWΠ) and a-Weyl’s theorem, and T is a-polaroid operator;
(2) T +Q satisfies both property (UWΠ) and a-Weyl’s theorem, and T +Q is a-polaroid operator.

Proof. Since −Q is quasi-nilpotent operator, we only need to show (1)⇒ (2). Let λ ∈ σa(T +Q)\σea(T +Q),
from Lemma 2.7 we can get that λ ∈ σa(T)\σea(T). It follows from T ∈ (UWΠ) that λ ∈ σ0(T) and so
λ ∈ σ0(T + Q). Let λ0 ∈ Π(T + Q), then λ0 ∈ isoσ(T + Q). From Lemma 2.7 and T is a-polaroid operator
we have λ0 ∈ Π(T). By T ∈ (UWΠ) we can get λ0 ∈ σ0(T). Then λ0 ∈ σ0(T + Q). Let µ0 ∈ πa

00(T + Q),
from Lemma 2.7 and T is a-polaroid operator, we get that µ0 ∈ Π(T). By T ∈ (UWΠ) we can get µ0 ∈ σ0(T)
and µ0 ∈ σ0(T + Q). Let µ ∈ isoσa(T + Q). Similar to the above proof, it is clear that µ ∈ Π(T + Q). Thus,
T +Q ∈ (UWΠ) and satisfies a-Weyl’s theorem, and T +Q is a-polaroid operator.

In the following, we will discuss the quasi-nilpotent perturbation of both property (UWΠ) and a-Weyl’s
theorem according to topological uniform descent.

Theorem 2.9. Let T ∈ B(H). Then the following statements are equivalent:
(1) T satisfies both property (UWΠ) and a-Weyl’s theorem, and T is a-polaroid operator;
(2) σb(T) = [στ(T) ∩ accσa(T)] ∪ accσea(T) ∪ [ρa(T) ∩ σ(T)].

Proof. (1)⇒ (2). The inclusion “⊇” is obvious. For the opposite inclusion, take arbitrarily λ0 that does not
belong to the right side of (2). Without loss of generality, suppose that λ0 ∈ σ(T). Then we have λ0 ∈ σa(T).

Case 1 Suppose λ0 < στ(T)∪accσea(T). Then there exists ϵ > 0 such that λ ∈ ρa(T)∪ [σa(T)\σea(T)] when
0 < ∥λ− λ0∥ < ϵ. From T is a-polaroid operator and T ∈ (UWΠ), we can get that λ0 ∈ Π(T). Thus λ0 < σb(T).

Case 2 Suppose λ0 < accσa(T) ∪ accσea(T). Then λ0 ∈ isoσa(T). From T is a-polaroid operator and
T ∈ (UWΠ), we get that λ0 < σb(T).

(2)⇒ (1). It is clear that {[σa(T)\σea(T)]∪Π(T)∪πa
00(T)} ∩ [στ(T)∩ accσa(T)] = ∅, {[σa(T)\σea(T)]∪Π(T)∪

πa
00(T)}∩accσea(T) = ∅, {[σa(T)\σea(T)]∪Π(T)∪πa

00(T)}∩[ρa(T)∩σ(T)] = ∅. Thus, [σa(T)\σea(T)]∪Π(T)∪πa
00(T) =

σ0(T). And isoσa(T)∩{[στ(T)∩accσa(T)]∪accσea(T)∪ [ρa(T)∩σ(T)]} = ∅. It follows that both property (UWΠ)
and a-Weyl’s theorem hold for T, and T is a-polaroid operator.

From Theorem 2.8 and Theorem 2.9 we finally get the following result.
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Corollary 2.10. Let T ∈ B(H) and Q a quasi-nilpotent operator with QT = TQ. Then the following statements are
equivalent:

(1) T +Q satisfies both property (UWΠ) and a-Weyl’s theorem, and T +Q is a-polaroid operator;
(2) σb(T) = [στ(T) ∩ accσa(T)] ∪ accσea(T) ∪ [ρa(T) ∩ σ(T)].

3. Property (UWΠ) and a-Weyl’s theorem of operator functions

For T ∈ B(H), we use Hol(σ(T)) to denote the class of all complex-valued functions analytic on a
neighborhood of σ(T) and not constant on any components of σ(T).

Remark 3.1. (i) T satisfies both property (UWΠ) and a-Weyl’s theorem does not imply f (T) satisfies both property
(UWΠ) and a-Weyl’s theorem, where f ∈ Hol(σ(T)).

Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, · · · ) = (0, x1, x2, · · · ),B(x1, x2, · · · ) = (x2, x3, x4, · · · ).

Put T =
(

A + I 0
0 B − I

)
. Then T satisfies both property (UWΠ) and a-Weyl’s theorem. Let f (z) = (z−1)(z+1), z ∈

C, we can get 0 ∈ σa( f (T))\σea( f (T)). But 0 < Π(T), 0 < πa
00(T). We know that both property (UWΠ) and a-Weyl’s

theorem don’t hold for f (T).
(ii) f (T) satisfies both property (UWΠ) and a-Weyl’s theorem for some f ∈ Hol(σ(T)) does not imply T satisfies

both property (UWΠ) and a-Weyl’s theorem. Let A,B,C ∈ B(ℓ2) be defined by

A(x1, x2, · · · ) = (0, x2, 0, x4, · · · ),B(x1, x2, · · · ) = (0, 0,
x2

2
,

x3

3
, · · · ),C(x1, x2, · · · ) = (0, x1, x2, · · · ).

Put T =

 A + I 0 0
0 B − I 0
0 0 C + I

. We know that σa(T2) = σea(T2) = {reiθ : r = 2(1 + cosθ)} ∪ {1, 1
9 }, Π(T2) = ∅,

πa
00(T2) = ∅. So T2

∈ (UWΠ) and satisfies a-Weyl’s theorem. But Π(T) = { 13 }, π
a
00(T) = {−1}, σa(T) = σea(T) =

{−1,− 1
3 } ∪ {λ ∈ C : ∥λ − 1∥ = 1}. Thus both property (UWΠ) and a-Weyl’s theorem don’t hold for T.

From the above Remark, T and f (T) satisfy both property (UWΠ) and a-Weyl’s theorem are not directly
connected. In the following, we will discuss the property (UWΠ) and a-Weyl’s theorem for operator
functions through the relation between σb(T) and στ(T).

First we have this fact: For any f ∈ Hol(σ(T)), f (σea(T)) = σea( f (T)) if and only if for any λ, µ ∈ ρSF+ (T),
ind(T − λI) · ind(T − µI) ≥ 0. Next, we will use topological uniform descent to describe the properties of
Fredholm index.

Lemma 3.2. Let T ∈ B(H) and f ∈ Hol(σ(T)). If f (T) ∈ (UWΠ), then for any λ, µ ∈ ρSF+ (T), ind(T − λI) · ind(T −
µI) ≥ 0.

Proof. If not, then there exist λ0, µ0 ∈ ρSF+ (T) such that ind(T−λ0I) = m > 0, ind(T−µ0I) = −n < 0. Suppose
that f (z) = (z − λ0)n(z − µ0)m when n < ∞ and f (z) = (z − λ0)(z − µ0) when n = ∞. In both instances, we can
get 0 ∈ σa( f (T))\σea( f (T)). From f (T) ∈ (UWΠ), we know that f (T) is Browder operator. Thus λ0 < σb(T), a
contradiction.

Lemma 3.3. Let T ∈ B(H) and T ∈ (UWΠ). Then the following statements hold:
(1) ρτ(T) ⊆ ρb(T) ∪ accσea(T) if and only if for any λ ∈ ρSF+ (T), ind(T − λI) ≥ 0;
(2) ρτ(T) ⊆ ρb(T) ∪ accσSF+ (T) ∪ acc{λ ∈ C : n(T − λI) = 0} if and only if for any λ ∈ ρSF+ (T), ind(T − λI) ≤ 0.

Proof. (1). “⇒”. If not, there exist λ0 ∈ ρSF+ (T) such that ind(T − λ0I) < 0. We can get that λ0 ∈ ρτ(T) and
λ0 < accσea(T), then λ0 ∈ ρb(T), a contradiction.
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“⇐”. Suppose that for any λ ∈ ρSF+ (T), ind(T − λI) ≥ 0. Take λ0 ∈ ρτ(T) but λ0 < accσea(T), then there
exists ϵ > 0 such that T − λI is an upper semi-Weyl operator when 0 < ∥λ − λ0∥ < ϵ. By ind(T − λI) ≥ 0
and T ∈ (UWΠ) we get that T − λI is a Browder operator. It follows that λ0 ∈ ∂σ(T) ∩ ρτ(T) and λ0 ∈ Π(T).
Therefore, λ0 ∈ ρb(T).

(2). Similar to the proof of (1), this result is obvious.

Theorem 3.4. Let T ∈ B(H). Then for any f ∈ Hol(σ(T)), f (T) satisfies both property (UWΠ) and a-Weyl’s theorem
if and only if:

(1) T satisfies both property (UWΠ) and a-Weyl’s theorem;
(2) ρτ(T) ⊆ ρb(T) ∪ accσea(T) or ρτ(T) ⊆ ρb(T) ∪ accσSF+ (T) ∪ acc{λ ∈ C : n(T − λI) = 0};
(3) If σ0(T) , ∅, then σb(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ [accσa(T) ∩ σea(T)].

Proof. “⇒”. From Lemma 3.2 and Lemma 3.3, we only need to prove (3) holds. The inclusion “⊇” is
clear. For the converse, we first claim that {λ ∈ isoσa(T) : n(T − λI) < ∞} = σ0(T). In fact, take λ1 ∈ σ0(T),
λ2 ∈ {λ ∈ isoσa(T) : n(T − λI) < ∞}. Set σ1 = {λ1}, σ2 = {λ2} and σ3 = σ(T)\[σ1 ∪ σ2]. Then by [12, Theorem

2.10] T can be represented as T =

 T1 0 0
0 T2 0
0 0 T3

, where σ(Ti) = σi, i = 1, 2, 3. Put f0(z) = (z − λ1)(z − λ2).

Then f0(T) =

 f0(T1) 0 0
0 f0(T2) 0
0 0 f0(T3)

. Therefore 0 ∈ isoσa( f0(T)) and 0 < n( f0(T)) < ∞. It follows that

0 ∈ πa
00( f0(T)). From f0(T) satisfies both property (UWΠ) and a-Weyl’s theorem, we obtain that f0(T) is a

Browder operator, and so is T − λ2I. The inclusion “⊇” is clear. So {λ ∈ isoσa(T) : n(T − λI) < ∞} = σ0(T).
Then we prove σ(T) = σa(T). If not, put λ1 ∈ σ(T)\σa(T). Let λ2 ∈ σ0(T) and f1(T) = (T − λ1I)(T − λ2I),

then 0 ∈ σa( f1(T))\σea( f1(T)). Since f1(T) ∈ (UWΠ), we can get that f1(T) is a Browder operator. It implies
that λ1 ∈ ρ(T), a contradiction.

Take arbitrarily λ0 that does not belong to the right side of (3). Without loss of generality, suppose that
λ0 ∈ σ(T).

Case 1 Suppose that λ0 < στ(T)∪ accσa(T). From σ(T) = σa(T) we can get that λ0 ∈ ρτ(T)∩ isoσ(T), then
λ0 ∈ Π(T). It follows that λ0 < σb(T).

Case 2 Suppose that λ0 < {λ ∈ C : n(T − λI) = ∞} ∪ accσa(T). It follows that λ0 ∈ {λ ∈ isoσa(T) :
n(T − λI) < ∞}. Thus λ0 ∈ σ0(T).

Case 3 Suppose that λ0 < σea(T). Then λ0 ∈ ρa(T) ∪ [σa(T)\σea(T)]. Since σ(T) = σa(T) and T ∈ (UWΠ),
we can get λ0 < σb(T).

“⇐”. Case 1 Suppose that σ0(T) = ∅. Since T satisfies both property (UWΠ) and a-Weyl’s theorem,
we know that σa(T) = σea(T), Π(T) = πa

00(T) = ∅. From the condition (2) and Lemma 3.3 we can get that
σa( f (T)) = f (σa(T)) = f (σea(T)) = σea( f (T)). Thus σa( f (T))\σea( f (T)) = ∅. Meanwhile, Π( f (T)) ⊆ f (Π(T)) = ∅,
πa

00( f (T)) ⊆ f (πa
00(T)) = ∅. So f (T) satisfies both property (UWΠ) and a-Weyl’s theorem.

Case 2 Suppose that σ0(T) , ∅. The fact σb(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ [accσa(T) ∩ σea(T)]
implies that σea(T) = σb(T). Take µ0 ∈ σa( f (T)) \ σea( f (T)) and suppose that

f (T) − µ0I = a(T − λ1I)n1 (T − λ2I)n2 · · · (T − λtI)nt1(T),

where λi , λ j if i , j and 1(T) is invertible. From the condition (2) and Lemma 3.3 we have λi ∈

ρa(T) ∪ [σa(T)\σea(T)] for 1 ≤ i ≤ t. Since σea(T) = σb(T) and T ∈ (UWΠ), we know that λi ∈ ρb(T) for
1 ≤ i ≤ t. It follows that µ0 ∈ σ0( f (T)). Take arbitrarily µ0 ∈ Π( f (T)) and suppose that f (T) − µ0I has the
same decomposition as above. Then T − λiI is Drazin invertible for 1 ≤ i ≤ t. Since T ∈ (UWΠ), we can get
that µ0 ∈ σ0( f (T)). Take arbitrarily µ0 ∈ πa

00( f (T)) and suppose that f (T) − µ0I has the same decomposition
as above. Then λi ∈ ρa(T) ∪ isoσa(T) and n(T − λiI) < ∞. From the condition (3) we have µ0 ∈ σ0( f (T)).
Hence for any f ∈ Hol(σ(T)), f (T) satisfies both property (UWΠ) and a-Weyl’s theorem.

From (3) in Theorem 3.4 we can get that T satisfies both property (UWΠ) and a-Weyl’s theorem, and for
any λ ∈ ρSF+ (T), ind(T − λI) ≥ 0. Hence we have the following fact:
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Corollary 3.5. Let T ∈ B(H) and σ0(T) , ∅. Then for any f ∈ Hol(σ(T)), f (T) satisfies both property (UWΠ) and
a-Weyl’s theorem if and only if σb(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ [accσa(T) ∩ σea(T)].

Corollary 3.6. Let T ∈ B(H). Then σ0(T) = ∅ and for any f ∈ Hol(σ(T)), f (T) satisfies both property (UWΠ) and
a-Weyl’s theorem if and only if one of the following conditions holds:

(1) σ(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σea(T)];
(2) σ(T) = [στ(T)∩ {λ ∈ C : n(T−λI) = d(T−λI)}]∪ {λ ∈ σ(T) : n(T−λI) = 0} ∪ [accσa(T)∩ σSF+ (T)]∪ {{λ ∈

C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)]}.

Proof. “⇒”. The inclusion “⊇” is clear. For the converse, by Lemma 3.2 we know that for any λ, µ ∈ ρSF+ (T),
ind(T − λI) · ind(T − µI) ≥ 0.

Case 1 Suppose that λ ∈ ρSF+ (T), ind(T − λI) ≥ 0. Take arbitrarily λ0 that does not belong to the right
side of (1). We claim that λ0 < σa(T). In fact, if λ0 ∈ σa(T), then n(T − λ0I) > 0. If λ0 < στ(T) ∪ accσa(T),
from the proof of Theorem 3.4 we can get σ(T) = σa(T). Then λ0 ∈ isoσ(T) and λ0 ∈ Π(T). It follows from
T ∈ (UWΠ) that λ0 ∈ σ0(T). If λ0 < {λ ∈ C : n(T − λI) = ∞} ∪ accσa(T), then λ0 ∈ πa

00(T) and hence λ0 ∈ σ0(T).
If λ0 < σea(T), then λ0 ∈ σa(T)\σea(T). It follows that λ0 ∈ σ0(T). But σ0(T) = ∅. This contradiction shows that
λ0 < σa(T). From ind(T − λ0I) ≥ 0 we get that λ0 < σ(T).

Case 2 Suppose that λ ∈ ρSF+ (T), ind(T − λI) ≤ 0. Take arbitrarily λ0 that does not belong to the right
side of (2). We claim that λ0 < σ(T). Similar to the proof of case 1, this claim is clear.

“⇐”. Case 1 If condition (1) holds, we obtain that for any λ ∈ ρSF+ (T), ind(T − λI) ≥ 0. If not,
there exist λ0 ∈ ρSF+ (T), ind(T − λ0I) < 0. It follows that λ0 < [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ {λ ∈
σa(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σea(T)], then λ0 < σ(T), a contradiction. If there exist µ ∈ σ0(T), then
µ < [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σea(T)]. By condition (1)
we can get µ < σ(T), a contradiction. Hence σ0(T) = ∅. It is clear that {[σa(T)\σea(T)] ∪ Π(T) ∪ πa

00(T)} ∩
[στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] = ∅, {[σa(T)\σea(T)] ∪ Π(T) ∪ πa

00(T)} ∩ {λ ∈ σa(T) : n(T − λI) = 0} = ∅,
{[σa(T)\σea(T)] ∪ Π(T) ∪ πa

00(T)} ∩ [accσa(T) ∩ σea(T)] = ∅. Thus {[σa(T)\σea(T)] ∪ Π(T) ∪ πa
00(T)} ⊆ ρ(T), a

contradiction. So we can get σa(T)\σea(T) = Π(T) = πa
00(T) = ∅, then T satisfies both property (UWΠ) and

a-Weyl’s theorem. From Theorem 3.4 we know that for any f ∈ Hol(σ(T)), f (T) satisfies both property
(UWΠ) and a-Weyl’s theorem.

Case 2 If condition (2) holds, we get that for any λ ∈ ρSF+ (T), ind(T − λI) ≤ 0. Similar to the proof of
case 1, the result is trivial.

From Corollary 3.5 and Corollary 3.6 we can describe the property (UWΠ) and a-Weyl’s theorem for
operator functions through the relation between σb(T) and στ(T).

Theorem 3.7. Let T ∈ B(H). Then for any f ∈ Hol(σ(T)), f (T) satisfies both property (UWΠ) and a-Weyl’s theorem
if and only if one of the following statements holds:

(1) σ(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ {λ ∈ σa(T) : n(T − λI) = 0} ∪ [accσa(T) ∩ σea(T)];
(2) σ(T) = [στ(T)∩ {λ ∈ C : n(T−λI) = d(T−λI)}]∪ {λ ∈ σ(T) : n(T−λI) = 0} ∪ [accσa(T)∩ σSF+ (T)]∪ {{λ ∈

C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)]};
(3) σb(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ [accσa(T) ∩ σea(T)].

We can get that property (UWΠ) is transmitted from Drazin invertible operator to its Drazin inverse in
[2]. Now, we will discuss S satisfies both property (UWΠ) and a-Weyl’s theorem by topological uniform
descent.

If T ∈ B(H) is Drazin invertible with inverse S, then asc(T) = des(T) = p for any p ∈ N. We know that
R(Tp) is closed and H = N(Tp) ⊕ R(Tp). Under this space decomposition, T = T1 ⊕ T2, where T1 is nilpotent
operator and T2 is invertible. Thus S = 0 ⊕ T−1

2 . In [1, 4, 5], we get that

σ(S)\{0} = {
1
λ

: λ ∈ σ(T) \ {0}}, σ∗(S)\{0} = {
1
λ

: λ ∈ σ∗(T) \ {0}}, ∗ ∈ {b, ea, a, τ,D}.

Besides, one can verify that for any λ , 0, n(S − λI) = n(T − 1
λ I), d(S − λI) = d(T − 1

λ I) and accσa(S) \ {0} =
{

1
λ : λ ∈ accσa(T) \ {0}}.
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Theorem 3.8. Let T ∈ B(H) be Drazin invertible with inverse S. Then
(1) T satisfies both property (UWΠ) and a-Weyl’s theorem if and only if S satisfies both property (UWΠ) and

a-Weyl’s theorem;
(2) For any f ∈ Hol(σ(T)) ∩ Hol(σ(S)), f (T) satisfies both property (UWΠ) and a-Weyl’s theorem if and only if

f (S) satisfies both property (UWΠ) and a-Weyl’s theorem.

Proof. (1). “⇒”. From Theorem 2.1, we only need σb(S) = [στ(S) ∩ {λ ∈ C : n(S − λI) = d(S − λI)}] ∪ {λ ∈
σ(S) : n(S−λI) = 0} ∪ [accσa(S)∩ σea(S)]∪ {{λ ∈ C : n(S−λI) = ∞}∩ acc[ρa(S)∩ σ(S)]}. If T is invertible, then
S = T−1. The conclusion is clear. In the following, we assume T is not invertible but Drazin invertible.

Let λ does not belong to the right side. If λ = 0. Since 0 ∈ Π(T) and T ∈ (UWΠ), we get that 0 < σb(T).

Thus 0 < σb(S)([2, Lemma 4.9]). If λ , 0. Now, S − λI =
(
−λI 0

0 λT−1
2 ( 1
λ I − T2)

)
, then 1

λ < [στ(T2) ∩ {λ ∈

C : n(T2 − λI) = d(T2 − λI)}] ∪ {λ ∈ σ(T2) : n(T2 − λI) = 0} ∪ [accσa(T2) ∩ σea(T2)] ∪ {{λ ∈ C : n(T2 − λI) =

∞} ∩ acc[ρa(T2) ∩ σ(T2)]}. Under above space decomposition, we know that T − 1
λ I =

(
T1 −

1
λ I 0

0 T2 −
1
λ I

)
,

where T1 − λI is invertible. So 1
λ < [στ(T) ∩ {λ ∈ C : n(T − λI) = d(T − λI)}] ∪ {λ ∈ σ(T) : n(T − λI) =

0} ∪ [accσa(T) ∩ σea(T)] ∪ {{λ ∈ C : n(T − λI) = ∞} ∩ acc[ρa(T) ∩ σ(T)]}. By Theorem 2.1 we can get 1
λ < σb(T)

and so 1
λ < σb(S).

“⇐”. Suppose that S satisfies both property (UWΠ) and a-Weyl’s theorem. The Drazin inverse of S is
U := T2S = TST and Drazin inverse of U is T ([1, Chapter 1]). Thus, T satisfies both property (UWΠ) and
a-Weyl’s theorem.

(2). “⇒”. It is obvious that T satisfies both property (UWΠ) and a-Weyl’s theorem. Then from (1),
we get that S satisfies both property (UWΠ) and a-Weyl’s theorem. Suppose that σ0(S) , ∅, we claim
that σ0(T) , ∅. In fact, let λ ∈ σ0(S). If λ = 0, then 0 < dimN(Tp) < ∞. It follows that n(T1) > 0 and
T is not invertible. By T ∈ (UWΠ) we have that T1 is Browder operator. So T is Browder operator and

0 ∈ σ0(T). If λ , 0. Now, S − λI =
(
−λI 0

0 λT−1
2 ( 1
λ I − T2)

)
. It follows that 1

λ I − T2 is Browder operator

but not invertible. We know that T − 1
λ I =

(
T1 −

1
λ I 0

0 T2 −
1
λ I

)
, then 1

λ ∈ σ0(T). From Corollary 3.5 we

get σb(T) = [στ(T) ∩ {λ ∈ C : n(T − λI) = ∞}] ∪ [accσa(T) ∩ σea(T)]. By using the similar way of (1) we
get that σb(S) = [στ(S) ∩ {λ ∈ C : n(S − λI) = ∞}] ∪ [accσa(S) ∩ σea(S)]. Moreover, σea( f (S)) = f (σea(S)) for
any f ∈ Hol(σ(T)) ∩ Hol(σ(S)). From Lemma 3.3 and Theorem 3.4 f (S) satisfies both property (UWΠ) and
a-Weyl’s theorem.

“⇐”. The same as the above proof.
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