# Extension of the generalized $n$-strong Drazin inverse 

Dijana Mosicića, ${ }^{\text {a, }}$, Honglin Zou ${ }^{\text {b }}$, Long Wang ${ }^{c}$<br>${ }^{a}$ Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia<br>${ }^{b}$ College of Basic Science, Zhejiang Shuren University, Hangzhou 310015, China<br>${ }^{\text {c }}$ School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China


#### Abstract

The aim of this paper is to present an extension of the generalized $n$-strong Drazin inverse for Banach algebra elements using a $g$-Drazin invertible element rather than a quasinilpotent element in the definition of the generalized $n$-strong Drazin inverse. Thus, we introduce a new class of generalized inverses which is a wider class than the classes of the generalized $n$-strong Drazin inverse and the extended generalized strong Drazin inverses. We prove a number of characterizations for this new inverse and some of them are based on idempotents and tripotents. Several generalizations of Cline's formula are investigated for the extension of the generalized $n$-strong Drazin inverse.


## 1. Introduction

In this paper, $\mathcal{A}$ represents a complex Banach algebra with unit 1. For $a \in \mathcal{A}$, the symbols $\sigma(a), r(a)$ and acc $\sigma(a)$, respectively, will denote the spectrum of $a$, the spectral radius of $a$ and the set of all accumulation points of $\sigma(a)$. The sets of all invertible, nilpotent and quasinilpotent elements of $\mathcal{A}$, respectively, are denoted by $\mathcal{A}^{-1}, \mathcal{A}^{\text {nil }}$ and $\mathcal{A}^{\text {qnil }}$, respectively. Recall that $a \in \mathcal{A}^{\text {qnil }}$ if $\sigma(a)=\{0\}$. We use $\sigma_{\mathcal{B}}(a)$ for the spectrum of $a \in \mathcal{B}$ with respect to $\mathcal{B}$, where $\mathcal{B}$ is a subalgebra of $\mathcal{A}$, and also $a_{\mathcal{B}}^{-1}$ will be the inverse of $a$ in $\mathcal{B}$. It is known that $a \in \mathcal{A}$ is tripotent (or idempotent) if $a^{3}=a$ (or $a^{2}=a$ ).

Koliha [9] presented the definition of the $g$-Drazin inverse for elements of Banach algebras, extending the notion of the Drazin inverse [7]. An element $a \in \mathcal{A}$ is $g$-Drazin invertible if there exists an element $x \in \mathcal{A}$ which satisfies

$$
x a x=x, \quad a x=x a \quad \text { and } \quad a-a x a \in \mathcal{A}^{\text {qnil }} .
$$

In this case, $x$ is called the $g$-Drazin inverse of $a$ (or Koliha-Drazin inverse of $a$ ) [9]. The $g$-Drazin inverse of $a$ is unique, if it exists, and denoted by $a^{d}$. Recall that $a^{d}$ exists if and only if $0 \notin$ acc $\sigma(a)$. The $g$-Drazin inverse of $a$ doubly commutes with $a$, that is, $a^{d}$ commutes with every element of $\mathcal{A}$ that commutes with $a$ (that is, $a b=b a$ implies $a^{d} b=b a^{d}$ ) [9]. We use $\mathcal{A}^{d}$ to denote the set of all $g$-Drazin invertible elements of $\mathcal{A}$.

[^0]Since the $g$-Drazin inverse of a quasinilpotent element is equal to zero, we have that $\mathcal{A}^{\text {nil }} \subseteq \mathcal{A}^{d}$. For $a \in \mathcal{A}^{d}$, $a^{\pi}=1-a a^{d}$ is the spectral idempotent of $a$ corresponding to the set $\{0\}$. More properties of the $g$-Drazin inverse were given in [4-6].

When $a-a x a \in \mathcal{A}^{\text {nil }}$ in the definition of the $g$-Drazin inverse, then $a^{d}=a^{D}$ is the Drazin inverse of $a$. The group inverse of $a$, denoted by $a^{\#}$, is a special case of the Drazin inverse for which $a=a x a$ is satisfied. The sets of all Drazin invertible and group invertible elements of $\mathcal{A}$ are denoted by $\mathcal{A}^{D}$ and $\mathcal{A}^{\#}$, respectively.

One significant property of the Drazin inverse was presented by Cline [2] as: if $a b \in \mathcal{A}^{D}$, then $b a \in \mathcal{A}^{D}$ and $(b a)^{D}=b\left((a b)^{D}\right)^{2} a$. This so-called Cline's formula was generalized to many generalized inverses under different assumptions [10, 20].

The concept of a strong Drazin inverse was introduced by Wang [19]. As a generalization of the strong Drazin inverse, a generalized strong Drazin inverse was defined in [12] for Banach algebra elements. For $n \in \mathbb{N}$, the generalized $n$-strong Drazin inverse was presented in [13] for elements of rings as a new class of generalized inverses which extends the generalized strong Drazin inverse from [12] and the generalized Hirano inverse presented in [18].

Let $n \in \mathbb{N}$. An element $a \in \mathcal{A}$ is called generalized $n$-strongly Drazin invertible (or $g n s$-Drazin invertible) if there exists an element $x \in \mathcal{A}$ such that

$$
x a x=x, \quad a x=x a \quad \text { and } \quad a^{n}-a x \in \mathcal{A}^{q n i l} .
$$

The $g n s$-Drazin inverse $x$ of $a$ is unique if it exists [13]. If $a^{n}-a x \in \mathcal{A}^{n i l}$ in the above definition, then $x$ is the $n$-strong Drazin inverse (or $n s$-Drazin inverse) of $a$. For $n=1$, the $g n s$-Drazin inverse becomes the generalized strong Drazin inverse [12]. In the case that $n=2$, the gns-Drazin inverse reduces to the generalized Hirano inverse [18]. Some interesting results about (generalized) strong Drazin inverse, (generalized) Hirano inverse and (generalized) $n$-strongly Drazin inverse can be found in [1, 8, 17, 21, 22].

Using an adequate $g$-Drazin invertible element rather than a quasinilpotent element in the definition of $g$-Drazin inverse, the concept of the $g$-Drazin inverse was extended in [11]. An element $a \in \mathcal{A}$ is called extended $g$-Drazin invertible (or $e g$-Drazin invertible) if there exists an element $x \in \mathcal{A}$ such that

$$
x a x=x, \quad x a=a x \quad \text { and } \quad a-a x a \in \mathcal{F}^{d}
$$

In this case, $x$ is an extended $g$-Drazin inverse (or $e g$-Drazin inverse) of $a$ and it is not uniquely determined. Notice that $a$ is extended $g$-Drazin invertible if and only if $a$ is $g$-Drazin invertible [11]. Replacing $a-a x a \in \mathcal{A}^{d}$ with $a-a x a \in \mathcal{A}^{D}$ in the definition of $e g$-Drazin inverse, $x$ is an extended Drazin inverse (or $e$-Drazin inverse) of $a$. The sets of all $e g$-Drazin invertible and $e$-Drazin invertible elements of $\mathcal{A}$ will be denoted by $\mathcal{A}^{e d}$ and $\mathcal{A}^{e D}$, respectively.

The notion of the generalized strong Drazin inverse was generalized in [16] using the condition $a-a x \in$ $\mathcal{A}^{d}$ instead of $a-a x \in \mathcal{F}^{\text {quil }}$ in its definition. An element $a \in \mathcal{A}$ is called extended $g s$-Drazin invertible (or egs-Drazin invertible) if there exists an element $x \in \mathcal{A}$ such that

$$
x a x=x, \quad x a=a x \quad \text { and } \quad a-a x \in \mathcal{A}^{d} .
$$

In this case, $x$ is an extended $g s$-Drazin inverse (or $e g s-D r a z i n ~ i n v e r s e) ~ o f ~ a . ~ I f ~ a-a x \in \mathcal{A}^{D}$ in this definition, $x$ is an extended $s$-Drazin inverse (or es-Drazin inverse) of $a$. The symbols $\mathcal{A}^{\text {esd }}$ and $\mathcal{A}^{\text {esD }}$, respectively, represent the sets of all egs-Drazin invertible and $e s$-Drazin invertible elements of $\mathcal{A}$.

Motivated by previous research papers about $g$-Drazin inverse, generalized strong Drazin inverse and their extensions, our aim is to present a wider class of the $g n s$-Drazin inverse and egs-Drazin inverse. Precisely, we introduce an extended $g n s$-Drazin inverse replacing the condition $a^{n}-a x \in \mathcal{A}^{\text {qnil }}$ in the definition of the $g n s-D r a z i n$ inverse with $a^{n}-a x \in \mathcal{A}^{d}$. In this way, we define a new class of generalized inverses for elements of Banach algebra. We present different kinds of equivalent conditions for an element to be extended $g n s$-Drazin invertible. Some of these characterizations contain idempotent, and some of them involve tripotents. We prove that an element $a \in \mathcal{A}$ is extended $g n s$-Drazin invertible if and only if $a$ is $e g$-Drazin invertible if and only if $a$ is $g$-Drazin invertible. Several extensions of Cline's formula for extended $g n s$-Drazin inverse are proposed. Applying these results, we can get new characterizations for egDrazin invertible and $g$-Drazin invertible elements. At the end, we define weighted extended $g n s$-Drazin invertible and weighted extended $n s$-Drazin invertible Banach algebra elements.

## 2. Extended $g n s$-Drazin inverse

The new class of generalized inverses in a Banach algebra is defined in this section by replacing the condition $a^{n}-a x \in \mathcal{A}^{q n i l}$ in the definition of $g n s$-Drazin inverse with $a^{n}-a x \in \mathcal{A}^{d}$. In this way, we propose an extension of $g n s-D r a z i n ~ i n v e r s e, ~ i . e . ~ a ~ w i d e r ~ c l a s s ~ o f ~ g e n e r a l i z e d ~ i n v e r s e s . ~$

Definition 2.1. For $n \in \mathbb{N}$, an element $a \in \mathcal{A}$ is called extended gns-Drazin invertible (or egns-Drazin invertible) if there exists an element $x \in \mathcal{A}$ such that

$$
x a x=x, \quad x a=a x \quad \text { and } \quad a^{n}-a x \in \mathcal{A}^{d} .
$$

In this case, $x$ is an extended gns-Drazin inverse (or egns-Drazin inverse) of $a$.
Obviously, for $n=1$, the egns-Drazin inverse reduces to the egs-Drazin inverse.
In particular, when $a^{n}-a x \in \mathcal{A}^{D}$, an extended $g n s$-Drazin inverse becomes an extended $n s$-Drazin inverse.

Definition 2.2. For $n \in \mathbb{N}$, an element $a \in \mathcal{A}$ is called extended $n s$-Drazin invertible (or ens-Drazin invertible) if there exists an element $x \in \mathcal{A}$ such that

$$
x a x=x, \quad x a=a x \quad \text { and } \quad a^{n}-a x \in \mathcal{A}^{D} .
$$

In this case, $x$ is an extended $n s$-Drazin inverse (or ens-Drazin inverse) of $a$.
Denote by $\mathcal{A}^{n, e s d}$ (resp. $\mathcal{A}^{n, e s D}$ ) the set of all egns-Drazin (resp. ens-Drazin) invertible elements of $\mathcal{A}$.
Lemma 2.3. If $a \in \mathcal{A}^{n, e s d}$, then $a \in \mathcal{A}^{\text {ed }}$. Furthermore, an egns-Drazin inverse of $a$ is an eg-Drazin inverse of $a$.
Proof. Assume that $x$ is an egns-Drazin inverse of $a$. Then $1-a x$ is an idempotent and so $1-a x \in \mathcal{A}^{\#} \subseteq \mathcal{A}^{d}$. Notice that $a^{n}-a x \in \mathcal{A}^{d}$ and, applying [9, Theorem 5.5], $\left(a-a^{2} x\right)^{n}=a^{n}(1-a x)=\left(a^{n}-a x\right)(1-a x) \in \mathcal{A}^{d}$. By [10, Corollary 2.2], we deduce that $a-a^{2} x \in \mathcal{F}^{d}$ and $x$ is an $e g$-Drazin inverse of $a$.

Using Lemma 2.3, we can note that the similar result holds for ens-Drazin invertible elements.
Corollary 2.4. If $a \in \mathcal{A}^{n, e s D}$, then $a \in \mathcal{A}^{e D}$. Furthermore, an ens-Drazin inverse of $a$ is an $e-D r a z i n ~ i n v e r s e ~ o f ~ a . ~$
According to Lemma 2.3 and [11, Theorem 2.2], we conclude that $\mathcal{A}^{n, e s d} \subseteq \mathcal{A}^{e d}=\mathcal{A}^{d}$. In the following theorem, we show that $\mathcal{A}^{n, e s d}=\mathcal{A}^{e d}=\mathcal{A}^{d}$ and give more characterizations of egns-Drazin invertible elements.

Theorem 2.5. Let $a \in \mathcal{A}$ and $n, m \in \mathbb{N}$. The following statements are equivalent:
(i) a is egns-Drazin invertible;
(ii) $a$ is eg-Drazin invertible;
(iii) $a$ is $g$-Drazin invertible;
(iv) there exists an idempotent $p \in \mathcal{A}$ commuting with a such that $a p \in(p \mathcal{A} p)^{-1}$ and $a^{n}-p \in \mathcal{A}^{d}$;
(v) there exists an idempotent $p \in \mathcal{A}$ commuting with a such that $a p+1-p \in \mathcal{A}^{-1}$ and $a^{n}-p \in \mathcal{A}^{d}$;
(vi) there exists an idempotent $p \in \mathcal{A}$ commuting with a such that ap $\in(p \mathcal{A} p)^{-1}$ and $a-a^{m} p \in \mathcal{A}^{d}$.

In this case, we have that 0 and $(a p)_{p \notin p}^{-1}=(a p+1-p)^{-1} p$ are egns-Drazin inverses of $a$.

Proof. (i) $\Rightarrow$ (ii): It follows by Lemma 2.3.
(ii) $\Leftrightarrow$ (iii): Using [11, Theorem 2], this equivalence is evident.
(iii) $\Rightarrow$ (i): If $a \in \mathcal{A}^{d}$, by [10, Corollary 2.2], notice that $a^{n} \in \mathcal{A}^{d}$ and so 0 is an egns-Drazin inverse of $a$.
(i) $\Rightarrow$ (iv) $\wedge(\mathrm{v})$ : For an egns-Drazin inverse $x$ of $a$ and $p=a x$, we observe that $p^{2}=p, p a=a p$ and $a^{n}-p=a^{n}-a x \in \mathcal{A}^{d}$. Applying $a p x=a^{2} x^{2}=a x=p=x a p$, we deduce that $a p$ is invertible in the Banach algebra $p \mathcal{A} p$ and $x=(a p)_{p \mathcal{A} p}^{-1}$. Similarly, we get $(a p+1-p)^{-1}=(a p)_{p \not{A} p}^{-1}+1-p$.
(iv) $\Rightarrow$ (i): Let (iv) hold and $x=(a p)_{p \mathcal{A} p}^{-1}$. Then $x=x p=p x$ gives $x a=x p a=(a p)_{p \mathcal{A} p}^{-1} a p=p=a p(a p)_{p \not p p}^{-1}=a x$, $x a x=x p=x$ and $a^{n}-a x=a^{n}-p \in \mathcal{A}^{d}$, i.e. $x$ is an egns-Drazin inverse of $a$.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$ : Set $x=(a p+1-p)^{-1} p$. The equality $(a p+1-p) p=a p$ yields $p=(a p+1-p)^{-1} a p=x a=a x$. Now, $x a x=p x=x$ and $a^{n}-a x=a^{n}-p \in \mathcal{A}^{d}$, that is, $x$ is an egns-Drazin inverse of $a$.
(i) $\Rightarrow$ (vi): Case 1. $m \geq 2$ : By the hypotheses and the proof of (i) $\Rightarrow$ (iv), there exists an idempotent $p \in \mathcal{A}$ commuting with $a$ such that $a p \in(p \mathcal{A} p)^{-1}$ and $a^{m-1}-p \in \mathcal{A}^{d}$. Hence, $(a-a p)^{m-1}=\left(a^{m-1}-p\right)(1-p) \in \mathcal{A}^{d}$, which implies $a-a p \in \mathcal{A}^{d}$. Note that $a p \in \mathcal{A}^{d}$. So, $a-a^{m} p=(a-a p)-\left(a^{m-1}-p\right) a p \in \mathcal{A}^{d}$.

Case 2: $m=1$. This is clear by the implication of (i) $\Rightarrow$ (iv).
(vi) $\Rightarrow$ (ii). Suppose that (vi) holds. Then, $a-a p=\left(a-a^{m} p\right)(1-p) \in \mathcal{A}^{d}$. By [11, Theorem 1], we get that (ii) holds.

By Theorem 2.5, we observe that the egns-Drazin inverse is not unique in general. The symbols $a^{n, e s d}$ and $a^{n, e s D}$ stand for an egns-Drazin inverse and ens-Drazin inverse of $a$, respectively. The set of all egns-Drazin (or ens-Drazin) inverses of $a$ will be denoted by $a\{n, e s d\}$ (or $a\{n, e s D\}$ ).

Applying Theorem 2.5, new characterizations for ens-Drazin invertible elements can be given.
Corollary 2.6. Let $a \in \mathcal{A}$ and $n, m \in \mathbb{N}$. The following statements are equivalent:
(i) $a$ is ens-Drazin invertible;
(ii) $a$ is $e$-Drazin invertible;
(iii) a is Drazin invertible;
(iv) there exists an idempotent $p \in \mathcal{A}$ commuting with a such that ap $\in(p \mathcal{A} p)^{-1}$ and $a^{n}-p \in \mathcal{A}^{D}$;
(v) there exists an idempotent $p \in \mathcal{A}$ commuting with a such that $a p+1-p \in \mathcal{A}^{-1}$ and $a^{n}-p \in \mathcal{A}^{D}$;
(iv) there exists an idempotent $p \in \mathcal{A}$ commuting with a such that ap $\in(p \mathcal{A} p)^{-1}$ and $a-a^{m} p \in \mathcal{A}^{D}$.

In this case, we have that 0 and $(a p)_{p \notin p}^{-1}=(a p+1-p)^{-1} p$ are ens-Drazin inverses of $a$.
We now establish some characterizations of egns-Drazin invertible elements by means of tripotents.
Theorem 2.7. Let $a \in \mathcal{A}$ and $n \in \mathbb{N}$. The following statements are equivalent:
(i) a is egns-Drazin invertible;
(ii) there exists a tripotent $p \in \mathcal{A}$ commuting with a such that ap $\in\left(p^{2} \mathcal{A} p^{2}\right)^{-1}$ and $a^{n}-p^{2} \in \mathcal{A}^{d}$;
(iii) there exists a tripotent $p \in \mathcal{A}$ commuting with a such that $a p+1-p^{2} \in \mathcal{A}^{-1}$ and $a^{n}-p^{2} \in \mathcal{A}^{d}$.

In this case, we have that $(a p)_{p^{2} \mathcal{A} p^{2}}^{-1} p=\left(a p+1-p^{2}\right)^{-1} p$ is the egns-Drazin inverse of $a$.
Proof. (i) $\Rightarrow$ (ii): According to Theorem 2.5(iv), there exists $p^{2}=p \in \mathcal{A}$ commuting with $a$ such that $a p \in\left(p^{2} \mathcal{A} p^{2}\right)^{-1}$ and $a^{n}-p^{2} \in \mathcal{A}^{d}$. Hence, $p^{3}=p$.
(ii) $\Rightarrow$ (i): Let $p \in \mathcal{A}$ be a tripotent commuting with $a, a p \in\left(p^{2} \mathcal{A} p^{2}\right)^{-1}$ and $a^{n}-p^{2} \in \mathcal{A}^{d}$. For $x=(a p)_{p^{2} \mathcal{A} p^{2}}^{-1} p$, we have $x a=(a p)_{p^{2} \mathcal{A} p^{2}}^{-1} a p=p^{2}$ and $a x=a p(a p)_{p^{2} \mathcal{A} p^{2}}^{-1}=p^{2}$. Thus, $a x=x a, x a x=p^{2} x=x$ and $a^{n}-a x=a^{n}-p^{2} \in \mathcal{A}^{d}$, i.e. $x$ is an egns-Drazin inverse of $a$.
(i) $\Rightarrow$ (iii): This implication follows similarly as (i) $\Rightarrow$ (ii) by Theorem 2.5(v).
(iii) $\Rightarrow$ (ii): Suppose that there exists $p^{3}=p \in \mathcal{A}, p a=a p, a p+1-p^{2} \in \mathcal{A}^{-1}$ and $a^{n}-p^{2} \in \mathcal{A}^{d}$. Since $\left(a p+1-p^{2}\right) p^{2}=a p$, we obtain $p^{2}=\left(a p+1-p^{2}\right)^{-1} a p=a p\left(a p+1-p^{2}\right)^{-1}$, which implies $a p \in\left(p^{2} \mathcal{A} p^{2}\right)^{-1}$ and $(a p)_{p \mathcal{A} p}^{-1}=\left(a p+1-p^{2}\right)^{-1}$.

According to Theorem 2.7, we characterize ens-Drazin invertible elements by tripotents.
Corollary 2.8. Let $a \in \mathcal{A}$ and $n \in \mathbb{N}$. The following statements are equivalent:
(i) $a$ is ens-Drazin invertible;
(ii) there exists a tripotent $p \in \mathcal{A}$ commuting with a such that ap $\in\left(p^{2} \mathcal{A} p^{2}\right)^{-1}$ and $a^{n}-p^{2} \in \mathcal{A}^{D}$;
(iii) there exists a tripotent $p \in \mathcal{A}$ commuting with a such that $a p+1-p^{2} \in \mathcal{A}^{-1}$ and $a^{n}-p^{2} \in \mathcal{A}^{D}$.

In this case, we have that $(a p)_{p \neq p}^{-1} p=\left(a p+1-p^{2}\right)^{-1} p$ is the ens-Drazin inverse of a.
Applying Theorem 2.5 , notice that statements (ii) and (iii) of Theorem 2.7 present new characterizations of $e g$-Drazin and $g$-Drazin invertible elements. Also, for $n=1$ in Theorem 2.7, we recover [16, Theorem 2.2] for egs-Drazin invertible elements.

Basic properties of egns-Drazin invertible elements are developed too.
Lemma 2.9. If $a \in \mathcal{A}^{n, e s d}$, then, for arbitrary $a^{n, e s d} \in a\{n, e s d\}$,
(i) $a^{n, e s d} \in \mathcal{A}^{\#}$ and $\left(a^{n, e s d}\right)^{\#}=a^{2} a^{n, e s d}$;
(ii) $a^{n, e s d} \in \mathcal{A}^{n, e s d}$ and $a^{2} a^{n, e s d} \in a^{n, e s d}\{n, e s d\}$.

Proof. (i) It is clear that $a^{n, e s d}$ commutes with $a^{2} a^{n, e s d}$. Further, from $\left(a^{2} a^{n, e s d}\right) a^{n, e s d}\left(a^{2} a^{n, \text { esd }}\right)=a^{2} a^{n, e s d}$ and $a^{n, \text { esd }}\left(a^{2} a^{n, e s d}\right) a^{n, \text { esd }}=a^{n, \text { esd }}$, we observe that $a^{n, \text { esd }} \in \mathcal{A}^{\#}$ and $\left(a^{n, \text { esd }}\right)^{\#}=a^{2} a^{n, \text {,esd }}$.
(ii) We know that $a^{n}-a a^{n, e s d} \in \mathcal{A}^{d}$ and $a^{n, e s d}$ commutes with $a^{n}-a a^{n, e s d}$. Since $a^{n, e s d} \in \mathcal{A}^{\#}$ by part (i), then $\left(a^{n, \text { esd }}\right)^{n} \in \mathcal{A}^{\#}$. Applying [9, Theorem 5.5], we have that

$$
\begin{aligned}
\left(a^{n, e s d}\right)^{n}-a^{n, \text { esd }}\left(a^{2} a^{n, e s d}\right) & =\left(a^{n, e s d}\right)^{n}-a a^{n, e s d} \\
& =-\left(a^{n, e s d}\right)^{n}\left(a^{n}-a a^{n, e s d}\right) \in \mathcal{A}^{d} .
\end{aligned}
$$

Lemma 2.9 yields the next properties of a ens-Drazin inverse.
Corollary 2.10. If $a \in \mathcal{A}^{n, e s D}$, then, for arbitrary $a^{n, e s D} \in a\{n, e s D\}$,
(i) $a^{n, e s D} \in \mathcal{A}^{\#}$ and $\left(a^{n, e s D}\right)^{\#}=a^{2} a^{n, e s D}$;
(ii) $a^{n, e s D} \in \mathcal{A}^{n, e s D}$ and $a^{2} a^{n, e s D} \in a^{n, e s D}\{n, e s D\}$.

Recall that an arbitrary element $a \in \mathcal{A}$ can be represented by the following matrix form relative to an idempotent $p \in \mathcal{A}$ :

$$
a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{p},
$$

where $a_{11}=$ pap, $a_{12}=p a(1-p), a_{21}=(1-p) a p, a_{22}=(1-p) a(1-p)$. The matrix form of an egns-Drazin inverse of $a \in \mathcal{A}^{d}$ can be developed relative to idempotent $a a^{d}$.

Lemma 2.11. If $a \in \mathcal{A}^{d}$, then

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{a a^{d}} \text { and } a^{n, e s d}=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]_{a a^{d}}
$$



Proof. We have the next representation of $a \in \mathcal{A}^{d}$ :

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{p}
$$

where $p=a a^{d}, a_{1} \in(p \mathcal{A} p)^{-1}$ and $a_{2} \in((1-p) \mathcal{A}(1-p))^{q n i l}$. Also,

$$
a^{d}=\left[\begin{array}{cc}
a_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]_{p}
$$

Let $x \in a\{n, e s d\}$. Since $a^{d}$ double commutes with $a$, then $x$ commutes with $p$ and so

$$
x=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]_{p} .
$$

The equalities $a x=x a$ and $x a x=x$ imply $a_{i} x_{i}=x_{i} a_{i}$ and $x_{i} a_{i} x_{i}=x_{i}$, for $i=1,2$. Because

$$
a^{n}-a x=\left[\begin{array}{cc}
a_{1}^{n}-a_{1} x_{1} & 0 \\
0 & a_{2}^{n}-a_{2} x_{2}
\end{array}\right]_{p} \in \mathcal{A}^{d}
$$

and $\sigma\left(a^{n}-a x\right)=\sigma_{p \mathcal{A} p}\left(a_{1}^{n}-a_{1} x_{1}\right) \cup \sigma_{(1-p) \mathcal{A}(1-p)}\left(a_{2}^{n}-a_{2} x_{2}\right)$, we deduce that $a_{1}^{n}-a_{1} x_{1} \in(p \mathcal{A} p)^{d}$ and $a_{2}^{n}-a_{2} x_{2} \in$ $((1-p) \mathcal{A}(1-p))^{d}$. Therefore, $x_{i} \in a_{i}\{n, e s d\}$, for $i=1,2$.

Lemma 2.11 gives the next matrix form of an ens-Drazin inverse of $a \in \mathcal{A}^{D}$.
Corollary 2.12. If $a \in \mathcal{A}^{D}$, then

$$
a=\left[\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right]_{a a^{D}} \quad \text { and } \quad a^{n, e s D}=\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right]_{a a^{D}}
$$

where $a_{1} \in\left(a a^{D} \mathcal{A} a a^{D}\right)^{-1}, a_{2} \in\left(a^{\pi} \mathcal{A} a^{\pi}\right)^{n i l}$ and $x_{i} \in a_{i}\{n, e s D\}$ for $i=1,2$.
New equivalent conditions for an element to be egns-Drazin invertible are proposed now.
Theorem 2.13. Let $a \in \mathcal{A}$ and $n, k \in \mathbb{N}$. The following statements are equivalent:
(i) a is egns-Drazin invertible;
(ii) there exists an element $y \in \mathcal{A}$ such that $y a^{k} y=y, y a=a y$ and $a^{n}-a^{k} y \in \mathcal{A}^{d}$;
(iii) $a^{k}$ is egns-Drazin invertible;

In this case, $a^{k-1} y \in a\{n, e s d\}$.
Proof. (i) $\Rightarrow$ (ii): For $x \in a\{n, e s d\}$, set $y=x^{k}$. Then $y a=x^{k} a=a x^{k}=a y, y a^{k} y=x^{k} a^{k} x^{k}=(x a x)^{k}=x^{k}=y$ and $a^{n}-a^{k} y=a^{n}-a^{k} x^{k}=a^{n}-a x \in \mathcal{A}^{d}$.
(ii) $\Rightarrow$ (i): Assume that there exists an element $y \in \mathcal{A}$ such that $y a^{k} y=y, y a=a y$ and $a^{n}-a^{k} y \in \mathcal{A}^{d}$. Set $x=a^{k-1} y$. Because $a x=a^{k} y=a^{k-1} y a=x a, x a x=a^{k-1}\left(y a^{k} y\right)=a^{k-1} y=x$ and $a^{n}-a x=a^{n}-a^{k} y \in \mathcal{A}^{d}$, we deduce that $x \in a\{n, e s d\}$.
(i) $\Leftrightarrow$ (iii): Using Theorem 2.5 and [10, Corollary 2.2], $a \in \mathcal{A}^{n, e s d}$ if and only if $a \in \mathcal{A}^{d}$ if and only if $a^{k} \in \mathcal{A}^{d}$ if and only if $a^{k} \in \mathcal{A}^{n, e s d}$.

Using Theorem 2.13, we obtain the next result.
Corollary 2.14. Let $a \in \mathcal{A}$ and $n, k \in \mathbb{N}$. The following statements are equivalent:
(i) $a$ is ens-Drazin invertible;
(ii) there exists an element $y \in \mathcal{A}$ such that $y a^{k} y=y, y a=a y$ and $a^{n}-a^{k} y \in \mathcal{A}^{D}$;
(iii) $a^{k}$ is ens-Drazin invertible;

In this case, $a^{k-1} y \in a\{n, e s D\}$.

## 3. Cline's formula for the egns-Drazin inverse

In this section, a generalization of Cline's formula is considered for the egns-Drazin inverse. The next useful result for elements of an associative ring $\mathcal{R}$ with the unit 1, was proposed in [20].

Lemma 3.1. [20, Theorem 2.7] Let $a, b, c, d \in \mathcal{R}$ satisfy $a c d=d b d$ and $d b a=a c a$. Then $b d \in \mathcal{R}^{d} \Leftrightarrow a c \in \mathcal{R}^{d}$. In this case, $(b d)^{d}=b\left((a c)^{d}\right)^{2} d$ and $(a c)^{d}=d\left((b d)^{d}\right)^{3} b a c$.

Under the restrictions $a c d=d b d$ and $d b a=a c a$, an extension of Cline's formula is proved for egns-Drazin inverse.

Theorem 3.2. Let $a, b, c, d \in \mathcal{A}$ satisfy $a c d=d b d$ and $d b a=a c a$. Then

$$
b d \in \mathcal{A}^{n, e s d} \quad \Leftrightarrow \quad a c \in \mathcal{A}^{n, \text {,esd }} .
$$

In this case, for arbitrary $(b d)^{n, e s d}$ and $(a c)^{n, e s d}$, we have $b\left((a c)^{n, e s d}\right)^{2} d \in(b d)\{n, e s d\}$ and $d\left((b d)^{n, e s d}\right)^{3} b a c \in(a c)\{n$, esd $\}$.
Proof. $\Rightarrow$ : Let $b d \in \mathcal{A}^{n, e s d}$. For arbitrary $(b d)^{n, e s d} \in(b d)\{n, e s d\}, x=d\left((b d)^{n, e s d}\right)^{3} b a c$ satisfies

$$
\begin{aligned}
a c x & =a c d\left((b d)^{n, e s d}\right)^{3} b a c=d b d\left((b d)^{n, e s d}\right)^{3} b a c=d\left((b d)^{n, e s d}\right)^{3} b d b a c \\
& =d\left((b d)^{n, e s d}\right)^{3} b a c a c=x a c
\end{aligned}
$$

and

$$
\begin{aligned}
x a c x & =d\left((b d)^{n, e s d}\right)^{2} b a c x=d\left((b d)^{n, e s d}\right)^{2} b a c d\left((b d)^{n, e s d}\right)^{3} b a c \\
& =d\left((b d)^{n, e s d}\right)^{2} b d b d\left((b d)^{n, e s d}\right)^{3} b a c=d\left((b d)^{n, e s d}\right)^{3} b a c=x .
\end{aligned}
$$

In order to check that

$$
(a c)^{n}-a c x=(a c)^{n}-d\left((b d)^{n, e s d}\right)^{2} b a c=\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) a c \in \mathcal{A}^{d}
$$

set $u=\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) a$ and $v=\left((b d)^{n-1}-(b d)^{n, e s d}\right) b$. We observe that $v d=(b d)^{n}-(b d)^{n, e s d} b d \in \mathcal{A}^{d}$,

$$
\begin{aligned}
u c d & =\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) a c d=\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) d b d \\
& =d\left((b d)^{n-1}-(b d)^{n, e s d}\right) b d=d v d
\end{aligned}
$$

and

$$
\begin{aligned}
d v u & =d\left((b d)^{n-1}-(b d)^{n, e s d}\right) b\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) a \\
& =\left(d(b d)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b d\right)\left(b(d b)^{n-1}-b d\left((b d)^{n, e s d}\right)^{2} b\right) a \\
& =\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) d\left(b(d b)^{n-1}-b d\left((b d)^{n, e s d}\right)^{2} b\right) a \\
& =\left((d b)^{n-1}-d\left(\left((b d)^{n, e s d}\right)^{2} b\right)\left(d b(d b)^{n-1} a-d b d\left((b d)^{n, e s d}\right)^{2} b a\right)\right. \\
& =\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) a c\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) a \\
& =u c u .
\end{aligned}
$$

Applying Lemma 3.1, we deduce that $\left((d b)^{n-1}-d\left((b d)^{n, e s d}\right)^{2} b\right) a c=u c \in \mathcal{A}^{d}$. So, $a c \in \mathcal{A}^{n, e s d}$ and $d\left((b d)^{n, e s d}\right)^{3} b a c \in$ (ac) $\{n, e s d\}$.
$\Leftarrow$ : Analogously, this implication can be verified.
Consequently, Theorem 3.2 implies the next extension of Cline's formula for the ens-Drazin inverse.
Corollary 3.3. Let $a, b, c, d \in \mathcal{A}$ satisfy $a c d=d b d$ and $d b a=a c a$. Then

$$
b d \in \mathcal{A}^{n, e s D} \quad \Leftrightarrow \quad a c \in \mathcal{A}^{n, e s D} .
$$

In this case, for arbitrary $(b d)^{n, e s D}$ and $(a c)^{n, e s D}$, we have $b\left((a c)^{n, e s D}\right)^{2} d \in(b d)\{n, e s D\}$ and $d\left((b d)^{n, e s D}\right)^{3} b a c \in$ (ac) $\{n, e s D\}$.

In the case that $d=a$ in Theorem 3.2, we obtain a generalization of Cline's formula for the egns-Drazin inverse under the assumption $a c a=a b a$.

Corollary 3.4. Let $a, b, c \in \mathcal{A}$ satisfy $a c a=a b a$. Then

$$
b a \in \mathcal{A}^{n, e s d} \quad \Leftrightarrow \quad a c \in \mathcal{A}^{n, e s d} .
$$

In this case, for arbitrary $(b a)^{n, e s d}$ and $(a c)^{n, e s d}, b\left((a c)^{n, e s d}\right)^{2} a \in(b a)\{n, e s d\}$ and $a\left((b a)^{n, e s d}\right)^{2} c \in(a c)\{n, e s d\}$.
When $c=b$ in Corollary 3.4, we get Cline's formula for the egns-Drazin inverse.
Corollary 3.5. Let $a, b \in \mathcal{A}$. Then $b a \in \mathcal{F}^{n, e s d} \Leftrightarrow a b \in \mathcal{A}^{n, e s d}$. In this case, for arbitrary $(a b)^{n, e s d}, b\left((a b)^{n, e s d}\right)^{2} a \in$ (ba) $\{n, e s d\}$.

Applying Corollary 3.4 and Corollary 3.5, we get the following Cline's formula for the ens-Drazin inverse as consequences.

Corollary 3.6. Let $a, b, c \in \mathcal{A}$ satisfy $a c a=a b a$. Then

$$
b a \in \mathcal{A}^{n, e s D} \quad \Leftrightarrow \quad a c \in \mathcal{A}^{n, e s D}
$$

In this case, for arbitrary $(b a)^{n, e s D}$ and $(a c)^{n, e s D}, b\left((a c)^{n, e s D}\right)^{2} a \in(b a)\{n, e s D\}$ and $a\left((b a)^{n, e s D}\right)^{2} c \in(a c)\{n, e s D\}$.
Corollary 3.7. Let $a, b \in \mathcal{A}$. Then $b a \in \mathcal{A}^{n, e s D} \Leftrightarrow a b \in \mathcal{A}^{n, e s D}$. In addition, for arbitrary $(a b)^{n, e s D}, b\left((a b)^{e s D}\right)^{2} a \in$ (ba) $\{n, e s D\}$.

## 4. Weighted egns-Drazin inverse

For $w \in \mathcal{A} \backslash\{0\}$, let $\mathcal{A}_{w}$ be the complex Banach algebra $\mathcal{A}$ equipped with the $w$-product $a * b=a w b$ and the $w$-norm $\|a\|_{w}=\|a\|\|w\|$, where $a, b \in \mathcal{A}$. Also, we denote by $a^{* n}=a * a * \cdots * a$ ( $n$ factors), for $n \in N$ and $a \in \mathcal{A}$.

Lemma 4.1. [3,14] Let $\mathcal{A}$ be a complex Banach algebra, and let $w \in \mathcal{A} \backslash\{0\}$. For $a \in \mathcal{A}, a \in \mathcal{A}_{w}^{d}$ if and only if $a w \in \mathcal{A}^{d}$ if and only if $w a \in \mathcal{A}^{d}$.

We define weighted extended $g n s$-Drazin invertible and weighted extended $n s$-Drazin invertible Banach algebra elements.

Definition 4.2. Let $w \in \mathcal{A} \backslash\{0\}$ and $n \in \mathbb{N}$. An element $a \in \mathcal{A}$ is called:
(i) w-weighted extended gns-Drazin invertible (or w-egns-Drazin invertible), if there exists a w-egns-Drazin inverse $a^{n, e s d, w}=x \in \mathcal{A}$ such that

$$
x * a * x=x, \quad x * a=a * x \quad \text { and } \quad a^{* n}-a * x \in \mathcal{A}_{w}^{d} .
$$

(ii) $w$-weighted extended ns-Drazin invertible (or w-ens-Drazin invertible), if there exists a w-ens-Drazin inverse $a^{n, e s D, w}=x \in \mathcal{A}$ such that

$$
x * a * x=x, \quad x * a=a * x \quad \text { and } \quad a^{* n}-a * x \in \mathcal{A}_{w}^{D} .
$$

We use $\mathcal{A}^{n, e s d, w}$ and $\mathcal{A}^{n, e s D, w}$ to denote the sets of all $w$-egns-Drazin invertible and $w$-ens-Drazin invertible elements of $\mathcal{A}$, respectively. Notice that $a \in \mathcal{A}^{n, e s d, w}$ if $a$ is generalized $n$-strongly Drazin invertible in the algebra $\mathcal{A}_{w}$. When $w=1$, a $w$-egns-Drazin inverse reduces to egns-Drazin inverse.

Some characterizations of w-egns-Drazin invertible elements are proved now.
Theorem 4.3. Let $w \in \mathcal{A} \backslash\{0\}$. Then, for $a \in \mathcal{A}$, the following statements are equivalent:
(i) $a \in \mathcal{A}^{n, e s d, w}$;
(ii) $a w \in \mathcal{A}^{n, e s d}$;
(iii) $w a \in \mathcal{A}^{n, e s d}$.

In this case, for arbitrary $(a w)^{n, e s d}$ and $(w a)^{n, e s d}$, we have that $\left((a w)^{n, e s d}\right)^{2} a$ and $a\left((w a)^{n, e s d}\right)^{2}$ are w-egns-Drazin inverses of $a$.

Proof. (i) $\Rightarrow$ (ii): For $x=a^{n, e s d, w}$, then $x * a * x=x, x * a=a * x$, and $a^{* n}-a * x \in \mathcal{A}_{w}^{d}$ which is equivalent to $x w a w x=x, x w a=a w x$ and $(a w)^{n-1} a-a w x \in \mathcal{A}_{w}^{d}$. Hence, $x w(a w) x w=x w$ and $x w(a w)=(a w) x w$. Applying Lemma 4.1, we have $(a w)^{n}-(a z) x w \in \mathcal{A}^{d}$ and so $a w \in \mathcal{A}^{n, e s d}$ with $(a w)^{n, e s d}=x w$.
(ii) $\Rightarrow$ (i): Assume that $z=(a w)^{n, e s d}$ and $x=z^{2} a$. Since $z(a w) z=z$ and $(a w) z=z(a w)$, then $a * x=a w z^{2} a=$ $z^{2} a w a=x * a$ and $x * a * x=\left(z^{2} a w\right)\left(a w z^{2}\right) a=z^{2} a=x$. From $\left((a w)^{n-1} a-z a\right) w=(a w)^{n}-z(a w) \in \mathcal{A}^{d}$ and Lemma 4.1, one can see $a^{* n}-a * x=(a w)^{n-1} a-a w z^{2} a=(a w)^{n-1} a-z a \in \mathcal{A}_{w}^{d}$. Thus, $a \in \mathcal{A}^{n, e s d, w}$ and $a^{n, e s d, w}=x=z^{2} a$.

The equivalence (i) $\Leftrightarrow$ (iii) can be verified analogously.
As a consequence of Theorem 4.3, we characterize $w$-ens-Drazin invertible elements.
Corollary 4.4. Let $w \in \mathcal{A} \backslash\{0\}$. Then, for $a \in \mathcal{A}$, the following statements are equivalent:
(i) $a \in \mathcal{A}^{n, e s D, w}$;
(ii) $a w \in \mathcal{A}^{n, e s D}$;
(iii) $w a \in \mathcal{A}^{n, e s D}$.

In this case, for arbitrary $(a w)^{n, e s D}$ and $(w a)^{n, e s D}$, we have that $\left((a w)^{n, e s D}\right)^{2} a$ and $a\left((w a)^{n, e s D}\right)^{2}$ are $w$-ens-Drazin inverses of $a$.

By Theorem 2.5, Theorem 4.3 and Lemma 4.1, we obtain the following result.
Corollary 4.5. Let $w \in \mathcal{A} \backslash\{0\}$. Then, for $a \in \mathcal{A}$, the following statements are equivalent:
(i) $a \in \mathcal{A}^{n, e s d, w}$;
(ii) $a w \in \mathcal{A}^{n, e s d}$;
(iii) $w a \in \mathcal{A}^{n, e s d}$;
(iv) $a w \in \mathcal{A}^{d}$;
(v) $w a \in \mathcal{A}^{d}$;
(v) $a \in \mathcal{A}_{w}^{d}$.

More characterizations of $w$-egns-Drazin invertible elements can be found using results proved in [15, 16].

## References

[1] H. Chen, M. Sheibani, Generalized Hirano inverses in Banach algebras, Filomat 33(19) (2019), 6239-6249.
[2] R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
[3] A. Dajić, J. J. Koliha, The weighted g-Drazin inverse for operators, J. Australian Math. Soc. 82 (2007), 163-181.
[4] D. S. Djordjević, P. S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51 (2001), 617-634.
[5] D. S. Djordjević, V. Rakočević, Lectures on generalized inverses, Faculty of Sciences and Mathematics, University of Niš, 2008.
[6] D. S. Djordjević, Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc. 73(1) (2002), 115-126.
[7] M. P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[8] O. Gürgün, Properties of generalized strongly Drazin invertible elements in general rings, Journal of Algebra and Its Applications 16(11) (2017), 1750207 (13 pages).
[9] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.
[10] D. Mosić, A note on Cline's formula for the generalized Drazin inverse, Linear Multilinear Algebra 63(6) (2015), 1106-1110.
[11] D. Mosić, Extended g-Drazin inverse in a Banach algebra, Bull. Malays. Math. Sci. Soc. 43(1) (2020), 879-892.
[12] D. Mosić, Reverse order laws for the generalized strong Drazin inverses, Appl. Math. Comput. 284 (2016), 37-46.
[13] D. Mosić, The generalized and pseudo n-strong Drazin inverses in rings, Linear Multilinear Algebra 69(2) (2021), 361-375.
[14] D. Mosić, D.S. Djordjević, Weighted generalized Drazin inverse in rings, Georgian Math. J. 23(4) (2016), 587-594.
[15] D. Mosić, L. Wang, Weighted extended g-Drazin inverse, Aequat. Math. 94 (2020), 151-161.
[16] D. Mosić, H. Zou, Extension of generalized strong Drazin inverse, Oper. Matrices 15(4) (2021), 1563-1573.
[17] Y. Ren, L. Jiang, Jacobson's lemma for the generalized n-strong Drazin inverses in rings and in operator algebras, Glasnik matematički 57(1) (2022), 1-15.
[18] M. Sheibani, H. Chen, Generalized Hirano inverses in rings, Communications in Algebra 47(7) (2019), 2967-2978.
[19] Z. Wang, A class of Drazin inverses in rings, Filomat 31(6) (2017), 1781-1789.
[20] Q. Zeng, Z. Wu, Y. Wen, New extensions of Cline's formula for generalized inverses, Filomat 31(7) (2017), 1973-1980.
[21] H. Zou, J. Chen, H. Zhu, Y. Wei, Characterizations for the n-strong Drazin invertibility in a ring, Journal of Algebra and Its Applications 20(08) (2021), 2150141.
[22] H. Zou, D. Mosić, K. Zuo, Y. Chen, On the n-strong Drazin invertibility in rings, Turk. J. Math. 43 (2019), 2659-2679.


[^0]:    2020 Mathematics Subject Classification. Primary 46H05; Secondary 46H99, 15A09.
    Keywords. generalized $n$-strong Drazin inverse, extended $g$-Drazin inverse, $g$-Drazin inverse, Cline's formula, Banach algebra.
    Received: 30 December 2022; Accepted: 07 April 2023
    Communicated by Dragan S. Djordjević
    The first author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 451-03-47/2023-01/200124, and by the project "Linear operators: invertibility, spectra and operator equations" supported by the Branch of SANU in Niš, grant no. O-30-22. The second author is supported by China Postdoctoral Science Foundation (No. 2018M632385).

    * Corresponding author: Dijana Mosić

    Email addresses: dijana@pmf.ni.ac.rs (Dijana Mosić), honglinzou@163.com (Honglin Zou), lwangmath@yzu. edu.cn (Long Wang)

