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Abstract. Let f be a normalized primitive holomorphic cusp form of even integral weight for the full
modular group Γ = SL(2,Z), and let λ f (n), σ(n) and φ(n) be the nth normalized Fourier coefficient of the
cusp form f , the sum-of-divisors function and the Euler totient function, respectively. In this paper, we
investigate the asymptotic behaviour of the following summatory function

S j,b,c(x) :=
∑

n=a2
1+a2

2+a2
3+a2

4≤x

(a1 ,a2 ,a3 ,a4)∈Z4

λ j
f (n)σb(n)φc(n),

where j ≥ 2 is any given integer. In a similar manner, we also establish other similar results related to
normalized coefficients of the symmetric power L-functions associated to holomorphic cusp form f .

1. Introduction

The Fourier coefficients of automorphic forms are interesting and important research objects in modern
number theory. Let H∗k be the set of normalized primitive holomorphic cusp forms of even integral weight
k for the full modular group Γ = SL(2,Z), which consists of the eigenfunctions for the all Hecke operators
Tn. The cusp form f ∈ H∗k at the cusp infinity admits the Fourier expansion

f (z) =
∞∑

n=1

λ f (n)n
k−1

2 e2πinz,

where we normalize λ f (1) = 1 and λ f (n) ∈ R is the nth normalized Fourier coefficient (Hecke eigenvalue)
of f . It is well-known that the Hecke eigenvalue λ f (n) satisfies the Hecke relation

λ f (n)λ f (m) =
∑

d|(m,n)

λ f

(mn
d2

)
(1)
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for all integers m,n ≥ 1. In 1974, Deligne [6] proved the celebrated Ramanujan-Petersson conjecture which
asserts that

|λ f (n)| ≤ d(n), (2)

where d(n) is the classical divisor function.
Then the result (2) implies that for any prime number p, there exist two complex numbers α f (p), β f (p)

such that

λ f (p) = α f (p) + β f (p), |α f (p)| = |β f (p)| = α f (p)β f (p) = 1. (3)

The average behaviour of Hecke eigenvalues of normalized cuspidal Hecke eigenforms is an important
topic in modern number theory. In 1927, Hecke [11] proved that∑

n≤x

λ f (n)≪ x
1
2 . (4)

Later, the upper bound in (4) was improved by several authors (see e.g. [6, 13, 36]). In particular, Wu [44]
has shown that∑

n≤x

λ f (n)≪ x
1
3 logρ x,

where

ρ =
102 + 7

√
21

210

(6 − √21
5

) 1
2

+
102 − 7

√
21

210

(6 + √21
5

) 1
2

−
33
35
= −0.118 · · · .

In 1930s, Rankin [35] and Selberg [37] independently proved the following asymptotic formula∑
n≤x

λ2
f (n) = c f x +O(x3/5) (5)

for any ε > 0, where c f > 0 is a constant depending on f . Very recently, the exponent in (5) has been
improved to 3

5 −δ in place of 3
5 by Huang [16], where δ ≤ 1/560. This remain the best possible result to date.

In 2015, Manski, Mayle and Zbacnik [31] considered the average behaviour of a hybrid arithmetic
function and proved that∑

n≤x

da(n)σb(n)φc(n) = xb+c+1P∗2a−1(log x) +O
(
xb+c+ra+ε

)
where a, b, c ∈ R and 1

2 ≤ ra < 1, here P∗l (t) denote the polynomial in t with degree l. Later, Li [29], Cui [5]
investigated the average behaviour of the sum

S̃ j,b,c(x) :=
∑
n≤x

λ j
f (n)σb(n)φc(n) (6)

for 1 ≤ j ≤ 6. Very recently, Wei and Lao [45] refined the results of S̃ j,b,c(x) for j = 2, 4, 6 and gave the
asymptotic behaviour of S̃ j,b,c(x) for j = 7, 8.

Let λsym j f (n) denote the nth normalized coefficient of the Dirichlet expansion of the jth symmetric power
L-function L(sym j f , s). Fomenko [8] proved that∑

n≤x

λsym2 f (n)≪ x
1
2 (log x)2.

Later, this sum has been studied by many authors (see e.g. [20, 25, 38]). The analogous cases for symmetric
power lifting sym jπ f for large j were considered by Lau and Lü [27], and Tang and Wu [43]. On the other
hand, Fomenko [9] studied the sum of λ2

sym2 f (n). Later, this result was improved and generalized by some
authors (see e.g. [14, 28, 39, 42]).
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In [40], Sharma and Sankaranarayanan considered the asymptotic behaviour of the sum

U f , j(x) :=
∑

n=a2
1+a2

2+a2
3+a2

4≤x
(a1,a2,a3,a4)∈Z4

λ j
sym2 f (n) (7)

for j = 2 for x ≥ x0, where x0 is sufficiently large. In fact, the authors established the following formula

U f ,2(x) = c f x2 +O f

(
x

9
5+ε
)

for any ε > 0, where c f > 0 is some suitable constant depending on f . Later, Sharma and Sankaranarayanan
[41] established the asymptotic formulae for U f , j(x) with j = 3, 4. In fact, they proved that

U f ,3(x) = c1x2 +O f

(
x

27
14+ε
)
,

U f ,4(x) = c2x2 log x +O f

(
x

160
81 +ε
)
,

where c1, c2 are suitable effective constants depending on f . Very recently, the author [17] improved and
generalized the above results by showing that

U f , j(x) = c jx2 +O f

(
x2− 60

30( j+1)2−13
+ε)

for j ≥ 2, where c j is some suitable constant which can be determined explicitly, and the author in the same
paper also established some other similar results.

Inspired by the above results, in this paper the author firstly consider the summatory function

S j,b,c(x) :=
∑

n=a2
1+a2

2+a2
3+a2

4≤x
(a1,a2,a3,a4)∈Z4

λ j
f (n)σb(n)φc(n), (8)

where j ≥ 2 is any given integer. More precisely, we establish the following result.

Theorem 1.1. Let b, c ∈ R and f ∈ H∗k, then for any ε > 0,
(i) For j = 2, we have

S2,b,c(x) = c̃ f xb+c+2 +O
(
xb+c+ 1264

737 +ε
)
,

where c̃ f is an effective constant given by

c̃ f =
(
−

4
b + c + 2

)
ζ(2)L(sym2 f , 2)L(sym2 f ⊗ χ̃0, 1)Ũ(b + c + 2),

here Ũ(b + c + 2) , 0 and χ̃0 is a nonprincipal Dirichlet character modulo 4.

(ii) Let j = 2m ≥ 4 be an even integer, we have

S j,b,c(x) = xb+c+2PAm−1(log x) +O
(
xb+c+2−2− j+1+ε

)
,

where PAm−1(t) is a polynomial of t which takes the form

PAm−1(t) =
( 8

a + b + 2

) (−1/2)Am

(Am − 1)!
ζ(2)Am L(sym2m f , 2)L(sym2m f ⊗ χ̃0, 1)

×

∏
1≤r≤m−1

L(sym2r f , 2)Cm(r)L(sym2r f ⊗ χ̃0, 1)Cm(r)U j,b,c(2)tAm−1 + . . . + c∗f ,

and c∗f is some suitable constant depending on f , and the constants Am,Cm(r) are given by (15), and U j,b,c(b+c+2) , 0
and χ̃0 is a nonprincipal Dirichlet character modulo 4.
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(iii) Let j = 2m + 1 ≥ 3 be an odd integer, we have

S j,b,c(x)≪ xb+c+2−2− j+1+ε.

By using the similar argument, we also investigate the asymptotic behaviour of the following sum

S∗j,b,c(x) :=
∑

n=a2
1+a2

2+a2
3+a2

4≤x
(a1,a2,a3,a4)∈Z4

λ2
sym j (n)σb(n)φc(n), (9)

where j ≥ 2 is any given integer. We have the following theorem.

Theorem 1.2. Let b, c ∈ R and f ∈ H∗k, then for any ε > 0,

S∗j,b,c(x) = c f , jxb+c+2 +O
(
xb+c+2− 60

30( j+1)2−13
+ε)
,

where c f , j is the constant given by

c f , j =
(
−4

b + c + 2

)
ζ(2)

j∏
n=1

L(sym2n f , 2)L(sym2n f ⊗ χ̃0, 1)H j,b,c(b + c + 2),

H j,b,c(b + c + 2) , 0 and χ̃0 is a nonprincipal Dirichlet character modulo 4.

The proofs are mainly based on the recent breakthrough of Newton and Thorne [32, 33] that sym j f
corresponds to a cuspidal automorphic representation of GL j+1(AQ) for all j ≥ 1, along with some nice
analytic properties of the associated L-functions, via classical Perron’s formula applying for the generating
L-functions.

Throughout the paper, for the sake of simplicity, we always work on the finite dimensional vector space
H∗k. And we also assume that f ∈ H∗k be a normalized cuspidal Hecke eigenform. Let ε > 0 denotes an
arbitrarily small constant which may vary in different occurrence. The constant in O terms and ≪ terms
depend at most on f , ε.

2. Auxiliary results

In this section, we review some relevant facts about the automorphic L-functions, and also collect some
important lemmas which play an important role in the proof of the main results in this paper.

Let f ∈ H∗k be a Hecke eigenform. The jth symmetric power L-function attached to f is given by

L(sym j f , s) :=
∏

p

j∏
m=0

(
1 −
α f (p) j−mβ f (p)m

ps

)−1

(10)

forℜ(s) > 1. We can rewrite it as a Dirichlet series

L(sym j f , s) =
∏

p

(
1 +
λsym j f (p)

ps + . . . +
λsym j f (pk)

pks
+ . . .

)
:=

∞∑
n=1

λsym j f (n)

ns , ℜ(s) > 1. (11)

It is well-known that λsym j f (n) is a real multiplicative function. In particular, for j = 1, we have L(sym1 f , s) =
L( f , s). And from (3), (10), (11) and the Hecke operator theory, we have

λ f (p j) =
j∑

m=0

α f (p) j−2m = λsym j f (p), j ≥ 1. (12)
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It is not hard to find that

|λsym j f (n)| ≤ d j+1(n)

for all j ≥ 1, where dν(n) denotes the ν-dimensional divisor function, which is defined as the number of
ordered representations n = n1 . . . nν with integers n1, . . . ,nν ≥ 1.

Letχ be a Dirichlet character modulo q. In a similar manner, we can also define the twisted jth symmetric
power L-function by the Euler product representation with degree j + 1

L(sym j f ⊗ χ, s) =
∏

p

j∏
m=0

(1 − α f (p) j−mβ f (p)mχ(p)p−s)−1 =

∞∑
n=1

λsym j f (n)χ(n)

ns

forℜ(s) > 1.
Let π f be a automorphic cuspidal automorphic representations of GL2(AQ). It is well-known that

an automorphic cuspidal representation π of GL2(AQ) is associated to a primitive form f , and hence an
automorphic function L(π f , s) coincides with L( f , s). Denote by sym jπ f the jth symmetric power lift of
π f . For 2 ≤ j ≤ 8, the automorphy of sym jπ f , was proved by a series of important works of Gelbart and
Jacquet [10], Kim and Shahidi [22–24], Dieulefait [7], and Clozel and Thorne [2–4]. Very recently, Newton
and Thorne [32, 33] showed that there exists a cuspidal automorphy representation of GL j+1(AQ) whose
L-function equals L(sym j f , s) for all j ≥ 1. Hence for j ≥ 1, the L-function L(sym j f , s) is an entire function
and satisfies a functional equation of certain Riemann-type with degree j + 1.

We firstly state some basic definitions and analytic properties of general L-functions. Let L(ϕ, s) be a
Dirichlet series (associated with the object ϕ) that admits an Euler product of degree m ≥ 1, namely

L(ϕ, s) =
∞∑

n=1

λϕ(n)
ns =

∏
p<∞

m∏
j=1

(
1 −
αϕ(p, j)

ps

)−1

,

where αϕ(p, j), j = 1, 2, · · · ,m are the local parameters of L(ϕ, s) at a finite prime p. Suppose that this series
and its Euler product are absolutely convergent forℜ(s) > 1. We denote the gamma factor by

L∞(ϕ, s) =
m∏

j=1

π−
s+µϕ ( j)

2 Γ
( s + µϕ( j)

2

)
with local parameters µϕ( j), j = 1, 2, · · · ,m of L(ϕ, s) at∞. The complete L-function Λ(ϕ, s) is defined as

Λ(ϕ, s) = q(ϕ)
s
2 L∞(ϕ, s)L(ϕ, s),

where q(ϕ) is the conductor of L(ϕ, s). We assume that Λ(ϕ, s) admits an analytic continuation to the
whole complex plane C and is holomorphic everywhere except for possible poles of finite order at s = 0, 1.
Furthermore, we assume that it satisfies a functional equation of the Riemann-type

Λ(ϕ, s) = ϵϕΛ(ϕ̃, 1 − s),

where ϵϕ is the root number with |ϵϕ| = 1 and ϕ̃ is the dual of ϕ such that λϕ̃(n) = λϕ(n),L∞(ϕ̃, s) = L∞(ϕ, s)
and q(ϕ̃) = q(ϕ). We write ϕ ∈ S#

e if it is endowed with the above conditions. We say the L-function L(ϕ, s)
satisfies the Ramanujan conjecture if λϕ(n)≪ nε for any ε.

Here we state a very general theorem due to Lau and Lü [27].

Lemma 2.1. ([27, Lemma 2.4]) Let L( f , s) be a product of two L-functions L1,L2 ∈ S#
e with deg Li ≥ 2, i = 1, 2

and suppose that L( f , s) satisfies the Ramanujan conjecture. Then for any ε > 0, we have∑
n≤x

λ f (n) =M(x) +O
(
x1− 2

m+ε
)
,
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where M(x) = Ress=1{L( f , s)xs/s} and m = deg L.

Now we introduce the truncated Perron’s formula, which is given in Karatsuba and Voronin [21], pp.
334-336.

Lemma 2.2. Suppose that the series f (s) =
∑

n≥1 ann−s converges absolutely in ℜ(s) > 1, and |a(n)| ≤ A(n),
where A(n) is a positive monotonously increasing function and∑

n≥1

|an|n−σ = O
(
(σ − 1)−α

)
for some α > 1 as σ→ 1+. Then∑

n≤x

an =
1

2πi

∫ b+iT

b−iT
f (s)

xs

s
ds +O

( xb

T(b − 1)α

)
+O
(xA(2x) log x

T

)
holds for any 1 < b ≤ b0,T ≥ 2, x = N + 1

2 (the constants in O-terms depend on b0).

Let

r4(n) := #
{
(n1,n2,n3,n4) ∈ Z4 : n2

1 + n2
2 + n2

3 + n2
4 = n

}
.

We learn from [40, Sec.2] that r4(n) = 8r(n), where r(n) =
∑

d|n χ̃0(d)d is multiplicative, and χ̃0 is a character
modulo 4 given by

χ̃0(pν) =
{
χ0(pν), if p > 2,
3, if p = 2,

and χ0 is the principal character modulo 4. In particular, for any prime p, we have

r(p) =
∑
d|p

χ̃0(d)d = 1 + pχ̃0(p)

and

r(p2) =
∑
d|p2

χ̃0(d)d = 1 + pχ̃0(p) + p2χ̃0(p2).

It is well-known that r(n)≪ n1+ε for any ε > 0 (cf. [15, (1.1)]).
Let j ≥ 2 be any fixed positive integer. Note that

S j,b,c(x) =
∑
n≤x

λ j
f (n)σb(n)φc(n)

∑
n=a2

1+a2
2+a2

3+a2
4

(a1,a2,a3,a4)∈Z4

1

=
∑
n≤x

λ j
f (n)σb(n)φc(n)r4(n) = 8

∑
n≤x

λ j
f (n)σb(n)φc(n)r(n),

where S j,b,c(x) is defined as (8). In the similar manner, we also have

S∗j,b,c(x) = 8
∑
n≤x

λ2
sym j f (n)σb(n)φc(n)r(n),

where S∗j,b,c(x) is given by (9).

In order to give the asymptotic behaviour of sums via Perron’s formula considered in this paper, we
need the decompositions of the associated generating L-functions, which are illustrated as follows.
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Lemma 2.3. Let b, c ∈ R and j ≥ 2 be any fixed integer, and let f ∈ H∗k be a Hecke eigenform. Define

L j,b,c(s) =
∞∑

n=1

λ2
sym j f

(n)σb(n)φc(n)r(n)

ns .

Then

L j,b,c(s) = G j,b,c(s)H j,b,c(s),

where

G j,b,c(s) := ζ(s − b − c)L(s − b − c − 1, χ̃0)

×

j∏
n=1

L(sym2n f , s − b − c)L(sym2n f ⊗ χ̃0, s − b − c − 1),

and χ̃0 is a Dirichlet character modulo 4. The function H j,b,c(s) admits a Dirichlet series which converges absolutely
and uniformly in the half-planeℜ(s) ≥ b + c + 3

2 + ε and H j,b,c(s) , 0 forℜ(s) = b + c + 2.

Proof The result follows from the similar argument as that of [45, Lemma 2.4] with some modifications.
Since λ2

sym j f
(n)σb(n)φc(n)r(n) is a multiplicative function, then forℜ(s)≫ 1, we have the Euler product

L j,b,c(s) =
∏

p

f1,p(s) =
∏

p

(
1 +
∑
k≥1

λ2
sym j f

(pk)σb(pk)φc(pk)r(pk)

pks

)

=
∏

p

(
1 +
λ2

sym j f
(p)σb(p)φc(p)r(p)

ps +
λ2

sym j f
(p2)σb(p2)φc(p2)r(p2)

p2s + . . .
)
.

In the half-planeℜ(s) > b + c + 2, the p-th coefficient of the L-function determine the analytic properties of
L j,b,c(s).

On taking m = n = p j in the Hecke relation (1),

λ2
f (p

j) =
∑
d|p j

λ f

(p2 j

d2

)
= 1 +

j∑
l=1

λ f (p2l).

Therefore,

λ2
sym j f (p)r(p) = λ2

f (p
j)r(p) =

(
1 +

j∑
l=1

λ f (p2l)
)
(1 + pχ̃0(p))

=
(
1 +

j∑
l=1

λsym2l f (p)
)
(1 + pχ̃0(p)).

Let s = σ + it. Therefore,

f1,p(s) = 1 +

(
1 +
∑ j

l=1 λsym2l f (p)
)
(p + 1)b(p − 1)c(1 + pχ̃0(p))

ps

+
λ2

sym j f
(p2)(p2 + p + 1)b(p2

− p)c(1 + pχ̃0(p) + p2χ̃0(p2))

p2s + · · ·

= 1 +

(
1 +
∑ j

l=1 λsym2l f (p)
)

ps−b−c
+

(
1 +
∑ j

l=1 λsym2l f (p)
)
χ̃0(p)

ps−b−c−1

+O
(
p2(b+c+1−σ) + p(b+c−σ)

)
.
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Hence,

L j,b,c(s) =
∏

p

f1,p(s) =
∏

p

(
1 +

(
1 +
∑ j

l=1 λsym2l f (p)
)

ps−b−c
+

(
1 +
∑ j

l=1 λsym2l f (p)
)
χ̃0(p)

ps−b−c−1

+O
(
p2(b+c+1−σ) + p(b+c−σ)

))
=
∏

p

(
1 +

1
ps−b−c

+

j∑
l=1

λsym2l f (p)

ps−b−c
+
χ̃0(p)

ps−b−c−1
+

j∑
l=1

λsym2l f (p)χ̃0(p)

ps−b−c−1

+O
(
p2(b+c+1−σ) + p(b+c−σ)

))
:= ζ(s − b − c)L(s − b − c − 1, χ̃0)

×

j∏
n=1

L(sym2n f , s − b − c)L(sym2n f ⊗ χ̃0, s − b − c − 1)H j,b,c(s),

where the Dirichlet series H j,b,c(s) converges absolutely and uniformly in the half-planeℜ(s) ≥ b+ c+ 3
2 + ε

and H j,b,c(s) , 0 withℜ(s) = b + c + 2. □

Lemma 2.4. Let b, c ∈ R and j ≥ 2 be any fixed integer, and let f ∈ H∗k be a Hecke eigenform. Define

L∗2,b,c(s) =
∞∑

n=1

λ2
f (n)σb(n)φc(n)r(n)

ns .

Then

L∗2,b,c(s) = ζ(s − b − c)L(s − b − c − 1, χ̃0)L(sym2 f , s − b − c)

×L(sym2 f ⊗ χ̃0, s − b − c − 1)Ũ(s),

where χ̃0 is a Dirichlet character modulo 4. The function Ũ(s) admits a Dirichlet series which converges absolutely
and uniformly in the half-planeℜ(s) ≥ b + c + 3

2 + ε and Ũ(s) , 0 forℜ(s) = b + c + 2.

Proof This can be proved by following the similar argument as that of Lemma 2.3, since

λ f (p)2r(p) = (1 + λ f (p2))(1 + χ̃0(p)p)
= (1 + λsym2 f (p))(1 + χ̃0(p)p). □

Lemma 2.5. Let b, c ∈ R and j ≥ 3 be any fixed integer, and let f ∈ H∗k be a Hecke eigenform. Define

L∗j,b,c(s) =
∞∑

n=1

λ j
f (n)σb(n)φc(n)r(n)

ns .

Then

L∗j,b,c(s) = G∗j,b,c(s)U j,b,c(s),

where

G∗2m,b,c(s) = ζ(s − b − c)Am L(sym2m f , s − b − c)L(s − b − c − 1, χ̃0)Am

×L(sym2m f ⊗ χ̃0, s − b − c − 1)

×

∏
1≤r≤m−1

L(sym2r f , s − b − c)Cm(r)L(sym2r f ⊗ χ̃0, s − b − c − 1)Cm(r)

(13)
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for j = 2m, and

G∗2m+1,b,c(s) = L( f , s − b − c)Bm L(sym2m+1 f , s − b − c)L( f ⊗ χ̃0, s − b − c − 1)Bm

×L(sym2m+1 f ⊗ χ̃0, s − b − c − 1)

×

∏
1≤r≤m−1

L(sym2r+1 f , s − b − c)Dm(r)L(sym2r+1 f ⊗ χ̃0, s − b − c − 1)Dm(r)

(14)

for j = 2m + 1, and Am,Bm,Cm(r),Dm(r) are suitable constants, and

Am =
(2m)!

m!(m + 1)!
, Cm(r) =

(2m)!(2r + 1)
(m − r)!(m + r + 1)!

, m ≥ 1. (15)

and χ̃0 is a Dirichlet character modulo 4. The function U j,b,c(s) admits a Dirichlet series which converges absolutely
and uniformly in the half-planeℜ(s) ≥ b + c + 3

2 + ε and U j,b,c(s) , 0 forℜ(s) = b + c + 2.

Proof Since λ j
f (n)σb(n)φc(n)r(n) is a multiplicative function, then forℜ(s)≫ 1 we have the Euler product

L∗j,b,c(s) =
∏

p

f2,p(s) =
∏

p

(
1 +
∑
k≥1

λ j
f (p

k)σb(pk)φc(pk)r(pk)

pks

)
.

We only give the proof for the case j = 2m, since the other case can be handled in the similar approach.
From the result of Lau-Lü [27, Lemma 7.1], one has

λ j
f (p)r(p) =

(
Am +

∑
1≤r≤m−1

Cm(r)λsym2r f (p) + λsym2m f (p)
)
(1 + χ̃0(p)p).

where Am,Cm(r) are defined by (15).
Let s = σ + it. Therefore,

f2,p(s) = 1 +
λ j

f (p)(p + 1)b(p − 1)c(1 + pχ̃0(p))

ps

+
λ j

f (p
2)(p2 + p + 1)b(p2

− p)c(1 + pχ̃0(p) + p2χ̃0(p2))

p2s + · · ·

= 1 +
λ j

f (p)

ps−b−c
+
λ j

f (p)χ̃0(p)

ps−b−c−1
+O
(
p2(b+c+1−σ) + p(b+c−σ)

)
.

Then,

L∗j,b,c(s) =
∏

p

(
1 +
λ j

f (p)

ps−b−c
+
λ j

f (p)χ̃0(p)

ps−b−c−1
+O
(
p2(b+c+1−σ) + p(b+c−σ)

))

=
∏

p

(
1 +

(
Am +

∑
1≤r≤m−1 Cm(r)λsym2r f (p) + λsym2m f (p)

)
(1 + χ̃0(p)p)

ps−b−c

+O
(
p2(b+c+1−σ) + p(b+c−σ)

))
:= ζ(s − b − c)Am L(sym2m f , s − b − c)L(s − b − c − 1, χ̃0)Am

×L(sym2m f ⊗ χ̃0, s − b − c − 1)

×

∏
1≤r≤m−1

L(sym2r f , s − b − c)Cm(r)L(sym2r f ⊗ χ̃0, s − b − c − 1)Cm(r)U j,b,c(s),
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where the Dirichlet series U j,b,c(s) converges absolutely and uniformly in the half-planeℜ(s) ≥ b+ c+ 3
2 + ε

and U j,b,c(s) , 0 withℜ(s) = b + c + 2. □

Lemma 2.6. For ε > 0, one has∫ T

1

∣∣∣∣∣ζ(12 + it
)∣∣∣∣∣12

dt≪ T2+ε (16)

uniformly for T ≥ 1.

Proof This result follows from [12]. □

Lemma 2.7. For any ε > 0, we have

ζ(σ + it) ≪

(
1 + |t|

)max{ 13
42 (1−σ),0}+ε

,

L(sym2 f , σ + it) ≪

(
1 + |t|

)max { 6
5 (1−σ),0}+ε

,

uniformly for 1
2 ≤ σ ≤ 2 and |t| ≥ 1.

Proof The first result is the new breakthrough of Bourgain [1], and the second result follows from the
recent work of Lin, Nunes and Qi [30, Corollary 1.2]. □

From above we observe that the symmetric power L-functions L(sym j f , s), j ≥ 1 and its twisted L-
functions are general L-functions in the sense of Perelli [34]. For the general L-functions, we have the
following averaged or individual convexity bounds.

Lemma 2.8. Assume that L(s) is a general L-function of degree m. Then∫ 2T

T

∣∣∣L(σ + it)
∣∣∣2dt≪ Tm(1−σ)+ε, (17)

uniformly for 1
2 ≤ σ ≤ 1 and T ≥ 1, and

L(σ + it)≪
(
1 + |t|

)max{ m
2 (1−σ),0}+ε

(18)

uniformly for 1
2 ≤ σ ≤ 1 + ε and |t| ≥ 1.

Proof This follows the results of Perelli’s mean value theorem and convexity bounds for general L-functions
in [34]. □

3. Proof of Theorem 1.1

We firstly consider the case j = 2. By applying Lemma 2.2, we obtain∑
n≤x

λ2
f (n)σb(n)φc(n)r4(n) =

8
2πi

∫ b+c+2+ε+iT

b+c+2+ε−iT
L∗2,b,c(s)

xs

s
ds +O

(xb+c+2+ε

T

)
,

where s = σ + it and 1 ≤ T ≤ x is some parameter to be chosen later.
By shifting the line of integration to the parallel segment withℜ(s) = b+ c+ 3

2 +ε and invoking Cauchy’s
residue theorem, by Lemma 2.4 we have∑

n≤x

λ2
f (n)σb(n)φc(n)r4(n) = 8Ress=b+c+2

{
L∗2,b,c(s)

xs

s

}
+

8
2πi

{∫ b+c+ 3
2+ε+iT

b+c+ 3
2+ε−iT

+

∫ b+c+ 3
2+ε−iT

b+c+2+ε−iT
+

∫ b+c+1+ε+iT

b+c+ 3
2+ε+iT

}
L∗2,b,c(s)

xs

s
ds +O

(xb+c+1+ε

T

)
:= c̃ f xb+c+2 + I∗1 + I∗2 + I∗3 +O

(xb+c+2+ε

T

)
, (19)
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where c̃ f is some suitable constant depending on f and various associated L-function. The function L∗2,b,c(s)
has only simple pole at s = b+ c+ 2 coming from the factor ζ(s− b− c− 1). This contributes a residue, which
is c̃ f xb+c+2 that can be determined by the following calculations.

From [40, Sec.3], we learn that

L(s − b − c − 1, χ̃0) =
(
1 −

3
2s−b−c−1

)−1(
1 −

1
2s−b−c−1

)2
ζ(s − b − c − 1).

Similarly, using the similar argument, for i ≥ 1 we have

L(symi f ⊗ χ̃0, s − b − c − 1) =
∞∑

n=1

λsymi f (n)χ̃0(n)

ns−b−c−1

=
(
1 −
λsymi f (2)χ̃0(2)

2s−b−c−1

)∏
p>2

(
1 −
λsymi f (p)χ̃0(p)

ps−b−c−1

)−1

=
(
1 −

3λsymi f (2)

2s−b−c−1

)−1(
1 −
λsymi f (2)

2s−b−c−1

)∏
p

(
1 −
λsymi f (p)χ0(p)

ps−b−c−1

)−1

=
(
1 −

3λsymi f (2)

2s−b−c−1

)−1(
1 −
λsymi f (2)

2s−b−c−1

)
L(symi f ⊗ χ0, s − b − c − 1)

=
(
1 −

3λsymi f (2)

2s−b−c−1

)−1(
1 −
λsymi f (2)

2s−b−c−1

)2
L(symi f , s − b − c − 1), (20)

since

L(symi f ⊗ χ0, s − b − c − 1) =

∞∑
n=1

λsymi f (n)χ0(n)

ns−b−c−1

=
∏

p
(p,4)=1

(
1 −
λsymi f (p)

ps−b−c−1

)−1

=
(
1 −
λsymi f (2)

2s−b−c−1

)∏
p

(
1 −
λsymi f (p)

ps−b−c−1

)−1

=
(
1 −
λsymi f (2)

2s−b−c−1

)
L(symi f , s − b − c − 1).

More precisely,

c̃ f = 8 lim
s→(b+c+2)

{
(s − (b + c + 2))

L∗2,b,c(s)

s

}
=
(
−

4
b + c + 2

)
ζ(2)L(sym2 f , 2)L(sym2 f ⊗ χ̃0, 1)Ũ(b + c + 2).

Now we need to handle these three terms I∗1, I
∗

2 and I∗3. For the integrals over the horizontal segments I∗2
and I∗3, by Lemma 2.7 and (20), we have

I∗2 + I∗3 ≪

∫ 1+ε

1
2+ε

∣∣∣ζ(σ + iT)L(sym2 f , σ + iT)
∣∣∣xb+c+1+σT−1dσ

≪ xb+c+1
∫ 1+ε

1
2+ε

∣∣∣ζ(σ + iT)L(sym2 f , σ + iT)
∣∣∣xσT−1dσ.

≪ xb+c+1 max
1
2+ε≤σ≤1+ε

xσT( 13
42+

6
5 )(1−σ)+εT−1

≪
xb+c+2+ε

T
+ xb+c+ 3

2+εT−
103
420+ε. (21)
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For I∗1, by Lemma 2.7, we have

I∗1 ≪ xb+c+ 3
2+ε

∫ T

1

∣∣∣∣∣ζ(12 + it
)
L
(
sym2 f ,

1
2
+ it
)∣∣∣∣∣t−1dt + xb+c+ 3

2+ε

≪ xb+c+ 3
2+ε log T max

1≤T1≤T

{ 1
T1

max
T1/2≤t≤T1

T1

∣∣∣∣∣ζ(12 + it
)
L
(
sym2 f ,

1
2
+ it
)∣∣∣∣∣} + xb+c+ 3

2+ε

≪ xb+c+ 3
2+εT

13
42×

1
2+

6
5×

1
2+ε

≪ xb+c+ 3
2+εT

317
420+ε. (22)

Therefore, from (19), (21) and (22), we have∑
n≤x

λ2
f (n)σb(n)φc(n)r4(n) = c̃ f xb+c+2 +O

(xb+c+2+ε

T

)
+O
(
xb+c+ 3

2+εT
317
420+ε
)
. (23)

On taking xb+c+2

T = xb+c+ 3
2 T

317
420 , i.e., T = x

210
737 , we get∑

n≤x

λ2
f (n)σb(n)φc(n)r4(n) = c̃ f xb+c+2 +O

(
xb+c+ 1264

737 +ε
)
.

This proves the case j = 2 in Theorem 1.1.

Now we consider the case for j ≥ 3 by applying Lemma 2.1. For j = 2m, by (13) in Lemma 2.5, we see
that

G∗j,b,c(s) :=
∞∑

n=1

b(n)
ns

is an L-function of degree 2 j+1 which can be analytically extended to the whole complex plane except for
poles at s = b + c + 1 and s = b + c + 2 of order Am.

By combining a modification of Lemma 2.1 and the proof in [40, Sect. 3], i.e., by shifting the line of
integration fromℜ(s) = b + c + 2 + ε to the parallel line withℜ(s) = b + c + 3

2 + ε, we get∑
n≤x

b(n) = xb+c+2P′′Am−1(log x) +O
(
xb+c+2−2− j+1+ε

)
,

where the main term xb+c+2P′′Am−1(log x) is given by

xb+c+2P′′Am−1(log x) = Ress=b+c+2

{
G∗2m,b,c(s)

xs

s

}
.

Here P′′ω(t) denotes a polynomial in t of degree ω, and Am is defined as (15).
By Lemma 2.5 we know that

λ j
f (n)σb(n)φc(n)r(n) =

∑
n=uv

c(v)b(u)

satisfying the relations∑
v≥1

|c(v)|v−σ ≪σ 1 for any σ > b + c +
3
2
. (24)
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Hence, we can obtain∑
n≤x

λ j
f (n)σb(n)φc(n)r4(n)

= 8
∑
n≤x

λ j
f (n)σb(n)φc(n)r(n)

= 8
∑
v≤x

c(v)
∑

u≤x/v

b(u)

= 8
∑
v≤x

c(v)
((x

v

)b+c+2

P′′Am−1

(
log
(
x/v
))
+O
(
(x/v)b+c+2−2− j+1+ε

))
= xb+c+2PAm−1(log x) +O

(
xb+c+2−2− j+1+ε

)
by noting the relation (24). Here Pω(t) is another polynomial in t of degree ω.

Now we compute the explicit form of the coefficients of the polynomial PAm−1(log x). From (13), we have

G∗2m,b,c(s) = ζ(s − b − c)Am L(sym2m f , s − b − c)

×

((
1 −

3
2s−b−c−1

)−1(
1 −

1
2s−b−c−1

)2
ζ(s − b − c − 1)

)Am

×L(sym2m f ⊗ χ̃0, s − b − c − 1)

×

∏
1≤r≤m−1

L(sym2r f , s − b − c)Cm(r)L(sym2r f ⊗ χ̃0, s − b − c − 1)Cm(r).

From [19, (1.11)], we learn that ζ(s) has the Laurent expansion at the simple pole s = 1:

ζ(s) =
1

s − 1
+ γ0 +

∞∑
n=1

γ j(s − 1) j,

where γ j, j = 0, 1, . . . are suitable constants. In particular, γ := γ0 is Euler’s constant.
By the Leibniz’s rule and the method for the computation of residue at the pole s = b+c+2 for integrand

function, we have

xb+c+2PAm−1(log x) = 8Ress=b+c+2

{
L∗j,b,c(s)

xs

s

}
=
( 8

a + b + 2

) (−1/2)Am

(Am − 1)!
ζ(2)Am L(sym2m f , 2)L(sym2m f ⊗ χ̃0, 1)

×

∏
1≤r≤m−1

L(sym2r f , 2)Cm(r)L(sym2r f ⊗ χ̃0, 1)Cm(r)U j,b,c(b + c + 2)xb+c+22(log x)Am−1

+ . . . + c∗f x
b+c+2,

where c∗f is some suitable constant depending on f and various associated L-functions.
For j = 2m + 1, by (14) in Lemma 2.5, we know that the L-function G∗2m+1,b,c(s) can be extended to the

whole complex plane as an entire function and satisfies certain Riemann type functional equation. By
Lemma 2.1 and arguing as above, we can derive the desired conclusion.

We complete the proof of Theorem 1.1.

4. Proof of Theorem 1.2

We can argue similarly as that of Theorem 1.1 with some modifications. Let j ≥ 2 be any fixed integer.
By applying Lemma 2.2, we obtain∑

n≤x

λ2
sym j (n)σb(n)φc(n)r4(n) =

8
2πi

∫ b+c+2+ε+iT

b+c+2+ε−iT
L j,b,c(s)

xs

s
ds +O

(xb+c+2+ε

T

)
,
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where s = σ + it and 1 ≤ T ≤ x is some parameter to be specified later.
By shifting the line of integration to the parallel segment withℜ(s) = b+ c+ 3

2 +ε and invoking Cauchy’s
residue theorem, by Lemma 2.3 we have∑

n≤x

λ2
sym j (n)σb(n)φc(n)r4(n)

= 8Ress=b+c+2

{
L j,b,c(s)

xs

s

}
+

8
2πi

{∫ b+c+ 3
2+ε+iT

b+c+ 3
2+ε−iT

+

∫ b+c+ 3
2+ε−iT

b+c+2+ε−iT
+

∫ b+c+2+ε+iT

b+c+ 3
2+ε+iT

}
L∗j,b,c(s)

xs

s
ds +O

(xb+c+2+ε

T

)
:= c f , jxb+c+2 + J1 + J2 + J3 +O

(xb+c+2+ε

T

)
, (25)

here c f , j is some suitable constant depending on f and various associated L-functions. In fact,

c f , j = 8 lim
s→(b+c+2)

{
(s − (b + c + 2))

L j,b,c(s)
s

}
=
(
−4

b + c + 2

)
ζ(2)

j∏
n=1

L(sym2n f , 2)L(sym2n f ⊗ χ̃0, 1)H j(b + c + 2).

Next, we evaluate these three integrals J1, J2 and J3. Let

G̃ j(s) = ζ(s)L(sym2 f , s)L3, j(s),

where

L3, j(s) :=
j∏

n=2

L(sym2n f , s)

be an L-function of degree ( j + 1)2
− 4.

For J1, by Lemmas 2.6-2.7, (17) and (20), along with Hölder’s inequality, we have

J1 ≪ xb+c+ 3
2+ε log T max

1≤T1≤T

{
T−1

1

∫ T1

T1/2

∣∣∣∣∣G̃ j

(1
2
+ it
)∣∣∣∣∣dt
}
+ xb+c+ 3

2+ε

≪ xb+c+ 3
2+ε log T max

1≤T1≤T

{ 1
T1

( ∫ T1

T1/2

∣∣∣∣∣ζ(12 + it
)∣∣∣∣∣12

dt
) 1

12

×

( ∫ T1

T1/2

∣∣∣∣∣L(sym2 f ,
1
2
+ it
)∣∣∣∣∣2dt
) 1

2
( ∫ T1

T1/2

∣∣∣∣∣L3, j

(1
2
+ it
)∣∣∣∣∣ 12

5

dt
) 5

12
}
+ xb+c+ 3

2+ε

≪ xb+c+ 3
2+ε log T max

1≤T1≤T

{ 1
T1

( ∫ T1

T1/2

∣∣∣∣∣ζ(12 + it
)∣∣∣∣∣12

dt
) 1

12
( ∫ T1

T1/2

∣∣∣∣∣L3, j

(1
2
+ it
)∣∣∣∣∣2dt
) 1

2

×

(
max

T1/2≤t≤T1

∣∣∣∣∣L(sym2 f ,
1
2
+ it
)∣∣∣∣∣2/5 · ∫ T1

T1/2

∣∣∣∣∣L(sym2 f ,
1
2
+ it
)∣∣∣∣∣2dt
) 5

12
}
+ xb+c+ 3

2+ε

≪ xb+c+ 3
2+εT−1+2× 1

12+(( j+1)2
−4)× 1

2×
1
2+( 2

5×
6
5×

1
2+3× 1

2 )× 5
12+ε

≪ xb+c+ 3
2+εT

1
4 ( j+1)2

−
133
120+ε. (26)
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For the integrals over the horizontal segments J2 and J3, by Lemma 2.7 and (18), along with (20), we have

J2 + J3 ≪

∫ 1+ε

1
2+ε

xσ+b+c+1
∣∣∣∣∣ζ(σ + it)

j∏
n=1

L(sym2n f , σ + it)
∣∣∣∣∣T−1dσ

≪ max
1
2+ε≤σ≤1+ε

xσ+b+c+1T( 13
42+

6
5+

1
2 (( j+1)2

−4))(1−σ)+εT−1

≪
xb+c+2+ε

T
+ xb+c+ 3

2+εT
1
4 ( j+1)2

−
523
420+ε. (27)

Combining (25)-(27), we obtain∑
n≤x

λ2
sym j (n)σb(n)φc(n)r4(n) = c f , jxb+c+2 +O

(xb+c+2+ε

T

)
+O
(
xb+c+ 3

2+εT
1
4 ( j+1)2

−
133
120+ε
)
.

On taking xb+c+2

T = xb+c+ 3
2 T

1
4 ( j+1)2

−
133
120 , i.e., T = x

60
30( j+1)2−13 , we get∑

n≤x

λ2
sym j (n)σb(n)φc(n)r4(n) = c f , jxb+c+2 +O

(
xb+c+2− 60

30( j+1)2−13
+ε)
.

This completes the proof of Theorem 1.2.
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