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Continuity of pseudodifferential operators with nonsmooth
symbols on mixed-norm Lebesgue spaces
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Abstract. Mixed-norm Lebesgue spaces found their place in the study of some questions in the theory
of partial differential equations, as can be seen from recent interest in the continuity of certain classes of
pseudodifferential operators on these spaces. In this paper, we use some recent advances in the pseudodif-
ferential calculus for nonsmooth symbols to prove the boundedness of pseudodifferential operators with
such symbols on mixed-norm Lebesgue spaces.

1. Introduction

Continuity of pseudodifferential operators with symbols in the nonsmooth Hörmander class Sm
ρ,δ,N,N′

(the definition is recalled at the beginning of Section 3) on mixed-norm Lebesgue spaces is our main interest
in this paper. Regarding the continuity on classical Lebesgue spaces, there is a famous result by Coifman
and Meyer [7, Theorem 7], namely that for 0 ≤ δ ≤ ρ ≤ 1, δ < 1 and m = 0 it is enough to have N,N′ > d

2
to obtain the continuity on L2(Rd). Moreover, in Hörmander [10] it was shown that we have the following
necessary condition for continuity on Lp(Rd) spaces:

m ≤ −d(1 − ρ)
∣∣∣∣12 − 1

p

∣∣∣∣ . (1)

From this condition, it is clear that for the zeroth-order operators (m = 0) and p , 2 we can obtain the
continuity result only in the case ρ = 1. An interesting result for nonsmooth symbols in the Lp setting
is obtained in [1, Theorem 2], where the norm of an operator is estimated in terms of the norm of its
symbol. That was useful for the construction of certain variants of H-distributions (introduced in [4]), both
in [1] and [12]. The condition (1) proved to be relevant also for continuity on Lebesgue spaces on compact
and graded Lie groups [6, 9]. We investigate this further for an arbitrary mixed-norm Lebesgue space
Lp(Rd), p ∈ ⟨1,∞⟩d. Mixed-norm spaces are suitable to describe properties of functions that have different
growth with respect to different variables. They are naturally connected with problems for estimating
solutions of partial differential equations modeling physical processes depending both on space and time.
For instance, they were used in the famous Strichartz estimates for solutions of the Schrödinger equation
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[8]. The definition and some properties of mixed-norm Lebesgue spaces are given in [5] and recalled in the
Appendix of [3]. They are also partially recalled under the notation below.

In [2, 3] the boundedness of pseudodifferential operators on mixed-norm Lebesgue spaces have already
been obtained, but these results cover only the case of infinitely smooth symbols together with m = 0. Also,
a detailed discussion on similar results from the literature was given there.

In the next section we recall some already known results that we need as ingredients in our proof:
sufficient conditions for boundedness of a linear operator A : L∞c (Rd)→ L1

loc(R
d) on mixed-norm Lebesgue

spaces, obtained in [3], and pseudodifferential calculus for the adjoint of the pseudodifferential operator
with a nonsmooth symbol, obtained in [11]. In the last section, we use these results, together with an
extension of [13, VI.4, Proposition 1], to obtain the continuity of pseudodifferential operators with symbols
in Sm

ρ,δ,N,N′ on mixed-norm Lebesgue spaces.

Notation. We use the following notation and definition for the Fourier transform of the function u ∈ L1(Rd):

û(ξ) = F u(ξ) =
∫
Rd

e−ix·ξu(x)dx .

When the area of integration is not specified, the whole space is assumed. We denote by S(Rd) the
Schwartz space of smooth rapidly decreasing functions onRd and by S′(Rd) its dual, the space of tempered
distributions. For N,N′ ∈N0 we use the following family of semi-norms on S(Rd):

|φ|N,N′ = sup
|α|≤N,|β|≤N′

sup
x∈Rd

|xα∂βφ(x)|,

and by SN,N′ (Rd) we denote the Banach space of all functions φ ∈ CN′ (Rd) for which |φ|N,N′ < ∞. We denote
Lebesgue spaces by Lp(Rd), locally Lebesgue spaces by Lp

loc(R
d) and Lebesgue spaces with compact support

by Lp
c (Rd). By C we always denote a constant, even if it changes during calculation, while Cp is a constant

depending on parameter p. By ⌊x⌋we denote the largest integer not greater than x, while ⌊x⌋2 is the largest
even integer not greater than x. We also use the standard notation m+ = max{m, 0} and write m+ as (m)+

when m is a larger expression, while | · |p is the standard p-norm on Rd:

|x|p =
p
√
|x1|

p + · · · + |xd|
p, |x|∞ = max{|x1|, . . . , |xd|} ,

and we denote |x|2 simply by |x|.
Finally, we recall the definition and some basic properties of mixed-norm Lebesgue spaces. For any

p ∈ ⟨0,∞⟩d, Lp(Rd) denotes (with identification of almost everywhere equal functions) the space of all
measurable complex functions f on Rd for which we have

∥ f ∥p =
( ∫
R

· · ·

( ∫
R

( ∫
R

| f (x1, . . . , xd)|p1 dx1

)p2/p1

dx2

)p3/p2

· · · dxd

)1/pd

< ∞ .

In other words, for i = 1, . . . , d we compute (in that order) the (quasi)norms ∥ ·∥Lpi in variable xi. This extends
analogously in the case when some pi = ∞, with obvious changes.

For p ∈ [1,∞]d thus defined ∥ · ∥p is a norm on Lp(Rd), which becomes a Banach space. Furthermore, if
we define the conjugate exponent p′ = (p′1, · · · , p

′

d) to p = (p1, · · · , pd) as the one satisfying 1
pi
+ 1

p′i
= 1, for

i ∈ {1, 2, . . . , d}, which we shall conveniently write as 1/p + 1/p′ = 1, then Lp′ (Rd) is the dual of Lp(Rd), for
p ∈ [1,∞⟩d, and one has the Hölder inequality:

Lemma 1.1. For any p ∈ [1,∞]d, f ∈ Lp(Rd) and 1 ∈ Lp′ (Rd) one has∣∣∣∣ ∫
Rd

f (x)1(x) dx
∣∣∣∣ ≤ ∥ f ∥p∥1∥p′ .

In the proof of Theorem 3.2 we also need the generalized Minkowski inequality:
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Lemma 1.2. For any p ∈ [1,∞]d1 and a function f ∈ L(p,1,...,1)(Rd1+d2 ) one has∥∥∥∥∫
Rd2

f (·, y) dy
∥∥∥∥

p
≤

∫
Rd2

∥ f (·, y)∥p dy.

An important fact in proving many results are the inclusions S(Rd) ⊆ Lp(Rd) ⊆ S′(Rd), where for
p ∈ [1,∞⟩d, they are dense and continuous [2].

2. The general framework

Our main tool is the following theorem, proved in [3, Theorem 1]. To state the theorem the following
notation is convenient: Take l ∈ {0, ... , (d−1)} and split x = (x̄, x′) = (x1, . . . , xl; xl+1, . . . , xd). Next define (with
a slight abuse of notation, for simplicity) for p̄ = (p1, . . . , pl)

Lp̄, p(Rd) = L(p̄,p,...,p)(Rd) and ∥ f ∥p̄, p = ∥ f ∥(p̄, p,..., p) .

Of course, for l = 0 we take ∥ f (·, x′)∥p̄ = | f (x′)| and ∥ f ∥p̄, p = ∥ f ∥Lp .We also define (for each l ∈ {0, ... , (d−1)}, t >
0 and y′ ∈ Rd−l):

F
y′

l,t :=
{

f ∈ L1
loc(R

d) : supp f ⊆ Rl
× {x′ : |x′ − y′|∞ ≤ t} &

∫
Rd−l

f (x̄, x′) dx′ = 0 (ae x̄ ∈ Rl)
}
.

Theorem 2.1. Assume that A,A∗ : L∞c (Rd)→ L1
loc(R

d) are formally adjoint linear operators, i.e. such that

(∀φ,ψ ∈ C∞c (Rd))
∫
Rd

(Aφ)ψ =
∫
Rd
φA∗ψ.

Furthermore, let us assume that (both for T = A and T = A∗) there exist constants N > 1 and c1 > 0 satisfying

(∀ l ∈ {0, ... , (d − 1)})(∀ x′0 ∈ R
d−l)(∀ t > 0)

∫
|x′−x′0 |∞>Nt

∥T f (·, x′)∥p̄ dx′ ≤ c1∥ f ∥p̄,1 , (2)

for any function f ∈ L∞c (Rd) ∩ F
x′0

l,t and any p̄ ∈ ⟨1,∞⟩l.
If for some q ∈ ⟨1,∞⟩ operator A has a continuous extension to an operator from Lq(Rd) to itself with norm cq,

then A can be extended by the continuity to an operator from Lp(Rd) to itself for any p ∈ ⟨1,∞⟩d, with the norm

∥A∥Lp→Lp ≤

d∑
k=1

ck
k−1∏
j=0

max(pd− j, (pd− j − 1)−1/pd− j )(c1 + cq)

≤ c′
d−1∏
j=0

max(pd− j, (pd− j − 1)−1/pd− j )(c1 + cq),

where c and c′ are constants depending only on N and d.

We also use [11, Theorem 5.5] to conclude that for a pseudodifferential operator with symbol σ ∈ Sm
ρ,δ,N,N′ ,

where δ ≤ ρ, m ∈ [−d, 0] and N,N′ ∈ 2N0 are such that

N >
(3 − δ)d + (5 − δ)(1 − δ)

(1 − δ)2 , N′ > 6d + 12 , (3)

its formally adjoint operator exists and has symbol σ∗ ∈ Sm
ρ,δ,M,M′ , where M,M′

∈ 2N0 satisfy

N −M >
d + (⌊d⌋2 + 2)δ

1 − δ
, N −M ≥

−m + (1 − δ)d + (⌊d⌋2 + 2)δ
1 − δ

, N′ −M′
≥ ⌊d⌋2 + 2 . (4)

The claim is valid for all m ≤ 0 because it can easily be checked that the condition m ≥ −d used in [11,
Theorem 5.5] could be omitted.
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3. Boundedness ofΨDO

Sm
ρ,δ,N,N′ is a nonsmooth variant of Hörmander class Sm

ρ,δ, m ∈ R, 0 ≤ ρ ≤ 1, 0 ≤ δ < 1. It consists of all

σ : Rd
×Rd

→ C such that for all multi-indices |α| ≤ N, |β| ≤ N′ it holds

(∀x ∈ Rd)(∀ξ ∈ Rd) |∂αx∂
β
ξσ(x, ξ)| ≤ Cα,β⟨ξ⟩m−ρ|β|+δ|α| , (5)

where ⟨ξ⟩ = (1 + |ξ|2)
1
2 , Cα,β is a constant depending only on α and β and where all partial derivatives are

understood to be continuous.
For such symbols we denote the corresponding pseudodifferential operator Tσ by

Tσφ(x) =
∫
Rd

eix·ξσ(x, ξ)φ̂(ξ) d̄ξ, φ ∈ S(Rd), (6)

where d̄ξ = (2π)−ddξ. As Tσ doesn’t mapS(Rd) toS(Rd) when symbols are not infinitely smooth, we cannot
extend this definition to the space of tempered distributions, but we can extend it to mixed-norm Lebesgue
spaces Lp(Rd), p ∈ ⟨1,∞⟩d using a formula ⟨Tσu, φ⟩ = ⟨u,Tσ∗φ⟩, where ⟨·, ·⟩ is the dual product, u ∈ Lp(Rd),
φ ∈ S(Rd). The only requirement for this to work is Tσ∗φ ∈ Lp′ (Rd). This requirement also guarantees that
the continuous extension of Tσ on Lp(Rd), if it exists, should be given by the above duality formula. As Tσ∗
actually maps S(Rd) to SM′,M(Rd) [11, Theorem 2.2], a sufficient condition for the above requirement to be
fulfilled is M′

≥ d. This can be seen easily by writing

∥Tσ∗φ∥Lp′ =
( ∫
⟨xd⟩

−1−ϵ . . .
( ∫
⟨x1⟩

−1−ϵ
(
⟨x1⟩

1+ϵ
p′1 ⟨x2⟩

1+ϵ
p′2 · · · ⟨xd⟩

1+ϵ
p′d |Tσ∗φ|

)p′1 dx1

) p′2
p′1 . . . dxd

) 1
p′d

and by noticing that we can take ϵ > 0 so small that 1+ϵ
p′i
≤ 1 for every i ∈ {1, 2, . . . , d}. This condition will be

satisfied in our main result – Theorem 3.2.
In this paper we prove that the continuous extension of Tσ on Lp(Rd) exists for ρ > 0, δ ≤ ρ,

m ≤ −(1 − ρ)(d + 1 + ρ) , (7)

and for sufficiently smooth symbols. As the estimate (7) is more crude than (1) we expect that even better
results are possible.

From the estimate (5), it follows easily that for a fixed x ∈ Rd we have σ(x, ·) ∈ S′(Rd) and so there is a
k(x, ·) ∈ S′(Rd) such that k̂(x, ·) = σ(x, ·). We call the tempered distribution k(x, ·) a kernel of the operator Tσ
and using properties of the convolution and Fourier transform we can write (6) in the form

Tσφ(x) = k(x, ·) ∗ φ . (8)

The kernel k(x, ·) is a function away from the origin with the following estimates on its derivatives.

Lemma 3.1. Let σ ∈ Sm
ρ,δ,N,N′ , ρ > 0. Then the kernel k(x, z) satisfies

|∂αx∂
β
zk(x, z)| ≤ Cα,β,L · |z|−d−m−δ|α|−|β|−L , z , 0 , (9)

for all |α| ≤ N, |β| ≥ 0 and

L ≥ (1 − ρ)
(⌊d +m + δ|α| + |β|

ρ

⌋
+ 1

)+
(10)

such that N′ ≥ d+m+ δ|α|+ |β|+ L > 0 and N′ > d+m+δ|α|+|β|
ρ , and where Cα,β,L is a constant depending only on α, β

and L.
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Proof. We take a fixed nonnegative η ∈ C∞c (Rd) such that η(ξ) = 1 for |ξ| ≤ 1 and η(ξ) = 0 for |ξ| ≤ 2. We also
define ζ(ξ) = η(ξ)− η(2ξ). Then we have the following decomposition (pointwise convergence in the sense
of tempered distributions):

Tσ =
∞∑
j=0

Tσ j ,

where σ0(x, ξ) = σ(x, ξ)η(ξ) and σ j(x, ξ) = σ(x, ξ)ζ(2− jξ) for j ≥ 1. Details of this so-called dyadic decom-
position are described in [13, 4.1–4.2]. We denote kernels of the operators Tσ j ( j ≥ 0) by k j(x, ξ) and these
are all smooth functions. Namely, as σ j(x, ξ) are functions with compact support they actually belong to
S∞,N′ (Rd) and thus, by [11, Lemma 2.1], we have k j(x, ξ) ∈ SN′,∞(Rd) ⊆ C∞(Rd).

Obviously, σ(x, ξ) =
∑
∞

j=0 σ j(x, ξ) pointwise and so, using (5) and Lebesgue dominated convergence
theorem, we easily obtain that k(x, ·) =

∑
∞

j=0 k j(x, ·), with the sum converging for each fixed x in the sense of
tempered distributions. This, continuity of derivatives on the space of distributions and the uniqueness of
the limit in the space of distributions ensures that it is enough to prove that

∞∑
j=0

|∂αx∂
β
zk j(x, z)| (11)

satisfies the estimate given by the right-hand side of (9).
So, we first find certain estimates on |∂αx∂

β
zk j(x, z)|. As σ j(x, ξ) have compact supports, we have

k j(x, z) =
∫
Rd
σ j(x, ξ)eiξ·z d̄ξ ,

and now for all multi-indices |α| ≤ N, |β| ≥ 0 and |γ| ≤ N′ it follows

(−iz)γ∂αx∂
β
zk j(x, z) =

∫
Rd
∂γξ

(
(iξ)β∂αxσ j(x, ξ)

)
eiξ·z d̄ξ , (12)

and, using the fact that σ j is supported in |ξ| ≤ 2 j+1 and for j , 0 also in |ξ| ≥ 2 j−1, we can estimate the
integrand above:∣∣∣∣∂γξ((iξ)β∂αxσ j(x, ξ)

)∣∣∣∣ = ∣∣∣∣∣ ∑
γ′≤γ

(
γ
γ′

)
∂γ
′

ξ (iξ)β∂αx∂
γ−γ′

ξ σ j(x, ξ)
∣∣∣∣∣

≤ Cγ
∑
γ′≤γ

|ξ|(|β|−|γ
′
|)+

∣∣∣∣∣ ∑
γ′′≤γ−γ′

(
γ − γ′

γ′′

)
∂αx∂

γ′′

ξ σ(x, ξ)∂γ−γ
′
−γ′′

ξ

(
ζ(2− jξ)

)∣∣∣∣∣
≤ Cα,γ

∑
γ′≤γ

∑
γ′′≤γ−γ′

|ξ|(|β|−|γ
′
|)+ · ⟨ξ⟩m−ρ|γ

′′
|+δ|α|
· 2− j|γ−γ′−γ′′ |

≤ Cα,β,γ
∑
γ′≤γ

∑
γ′′≤γ−γ′

2 j(|β|−|γ′ |)
· 2 j(m−ρ|γ′′ |+δ|α|)

· 2− j|γ−γ′−γ′′ |

= Cα,β,γ
∑
γ′≤γ

∑
γ′′≤γ−γ′

2 j(m+δ|α|+|β|−ρ|γ|+(ρ−1)(|γ|−|γ′′ |)

≤ Cα,β,γ · 2 j(m+δ|α|+|β|−ρ|γ| ,

where we have used ρ ≤ 1 in the last estimate. From (12) we now obtain

|zγ∂αx∂
β
zk j(x, z)| ≤ Cα,β,γ · 2 j(m+δ|α|+|β|−ρ|γ|

· 2 jd

= Cα,β,γ · 2 j(d+m+δ|α|+|β|−ρ|γ| ,
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and by taking supremum over |γ| =M (for instance, we can take γ such that |zγ| = (max1≤i≤d |zi|)M) we finally
get (for |α| ≤ N, |β| ≥ 0 andN0 ∋M ≤ N′)

|∂αx∂
β
zk j(x, z)| ≤ Cα,β,M · |z|−M

· 2 j(d+m+δ|α|+|β|−ρM) . (13)

In order to estimate (11) we first consider the case 0 < |z| ≤ 1. We split (11) into two parts:

S1 =
∑

2 j≤|z|−1

|∂αx∂
β
zk j(x, z)| and S2 =

∑
2 j>|z|−1

|∂αx∂
β
zk j(x, z)| .

Because of (13) (for M = 0) and j ≤ log2 |z|
−1 we have

S1 ≤ Cα,β
∑

2 j≤|z|−1

2 j(d+m+δ|α|+|β|
≤ Cα,β ·

|z|−d−m−δ|α|−|β|, if d +m + δ|α| + |β| > 0
1 + ln(|z|−1), if d +m + δ|α| + |β| ≤ 0 .

Using an elementary inequality ln(1 + x) ≤ 1
αxα, valid for α ∈ ⟨0, 1] and x ≥ 0, we finally obtain

S1 ≤ Cα,β,L · |z|−d−m−δ|α|−|β|−L ,

for all L ≥ 0 such that d +m + δ|α| + |β| + L > 0. To estimate S2 we use (13) with M >
d+m+δ|α|+|β|

ρ :

S2 ≤ Cα,β,M · |z|−M
·

∑
2 j>|z|−1

2 j(d+m+δ|α|+|β|−ρM)

≤ Cα,β,M · |z|−M−d−m−δ|α|−|β|+ρM

≤ Cα,β,L · |z|−d−m−δ|α|−|β|−L ,

for L ≥ (1 − ρ)M, which is exactly the requirement (10) and the proof is complete in the case |z| ≤ 1.
To estimate (11) in the case |z| > 1 we again use (13) with M >

d+m+δ|α|+|β|
ρ to get (if we also take

M ≥ d +m + δ|α| + |β| + L, which is possible under requirements of the lemma)

∞∑
j=0

|∂αx∂
β
zk j(x, z)| ≤ Cα,β,M · |z|−M

≤ Cα,β,L · |z|−d−m−δ|α|−|β|−L .

If N′ >
(

d+m
ρ

)+
, the bound from the previous lemma provides us with the following integral representa-

tion

Tσ f (x) =
∫
Rd

k(x, x − y) f (y) dy , (14)

for any f ∈ C∞c (Rd) and x < supp f . Obviously, we can also take f ∈ L∞c (Rd) and the representation is then
valid for a.e. x < supp f .

Moreover, because of the L2 continuity result by Coifman and Meyer mentioned in the Introduction and
density of C∞c (Rd) in L2(Rd), we can easily show that, for operators of order zero and sufficiently large N′,
this representation remains valid for any f ∈ L2(Rd) and a.e. x < supp f .

We are now in a position to prove the main theorem of this paper.

Theorem 3.2. Let σ ∈ Sm
ρ,δ,N,N′ , [0, 1⟩ ∋ δ ≤ ρ ∈ ⟨0, 1] and m ≤ −(1 − ρ)(d + 1 + ρ). If

N >
(3 − δ)d + (5 − δ)(1 − δ)

(1 − δ)2 , N′ > 6d + 12 ,

then Tσ is bounded on Lp(Rd), p ∈ ⟨1,∞⟩d.
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Proof. Because of Theorem 2.1 and known L2 continuity result, we only need to show that Tσ and Tσ∗ satisfy
the estimate (2). Moreover, because of (3)-(4) it is enough to show that Tσ satisfies the estimate (2) – the
result for Tσ∗ is then an easy consequence.

We now follow the proof of [3, Lemma 3]. For an arbitrary N > 1, using (14), two linear changes of
variables, and the Minkowski inequality, we get

∫
|x′−x′0 |∞>Nt

∥Tσ f (·, x′)∥p̄ dx′

=

∫
|x′−x′0 |∞>Nt

∥∥∥∥∫ ∫
k(·, x′, · − ȳ, x′ − y′) f (ȳ, y′) dȳ dy′

∥∥∥∥
p̄

dx′

=

∫
|x′ |∞>Nt

∥∥∥∥∫ ∫ (
k(·, x′+x′0, · − ȳ, x′−y′) − k(·, x′+x′0, · − ȳ, x′)

)
f (ȳ, y′+x′0) dȳ dy′

∥∥∥∥
p̄

dx′

=

∫
|x′ |∞>Nt

∥∥∥∥∫ ∫ (
k(·, x′+x′0, ȳ, x

′
−y′) − k(·, x′+x′0, ȳ, x

′)
)

f (· − ȳ, y′+x′0) dȳ dy′
∥∥∥∥

p̄
dx′

≤

∫
|x′ |∞>Nt

∫ ∫ ∥∥∥∥(k(·, x′+x′0, ȳ, x
′
−y′) − k(·, x′+x′0, ȳ, x

′)
)

f (· − ȳ, y′+x′0)
∥∥∥∥

p̄
dȳ dy′dx′ = I.

Furthermore, using (9) and the Mean value theorem, for |x′|∞ > Nt and |y′|∞ ≤ t we have an estimate

|k(x̄, x′ + x′0, ȳ, x
′
− y′) − k(x̄, x′ + x′0, ȳ, x

′)| = |∇y′k(x̄, x′ + x′0, ȳ, x
′
− ϑy′) · y′|

≤ C|(ȳ, x′ − ϑy′)|−d−m−1−L
|y′|∞

≤ C|(ȳ, x′ − ϑy′)|−d−m−1−L t,

for some constants ϑ ∈ ⟨0, 1⟩, C > 0 and L satisfying assumptions of Lemma 3.1 (the optimal value of L will
be determined later). Now, using the assumption on the support of function f we continue the estimate

I ≤ Ct
∫

|x′ |∞>Nt

∫
|y′ |∞≤t

∫
|(ȳ, x′ − ϑy′)|−d−m−1−L

∥ f (· − ȳ, y′ + x′0)∥p̄ dȳ dy′dx′

= Ct
∫

|x′ |∞>Nt

∫
|y′ |∞≤t

∫
|(ȳ, x′ − ϑy′)|−d−m−1−L

∥ f (·, y′ + x′0)∥p̄ dȳ dy′dx′

= Ct
∫

|y′ |∞≤t

∥ f (·, y′ + x′0)∥p̄

∫
|x′ |∞>Nt

∫
|(ȳ, x′ − ϑy′)|−d−m−1−L dȳ dx′dy′.

To conclude the proof we need to check that

II = t
∫

|x′ |∞>Nt

∫
|(ȳ, x′ − ϑy′)|−d−m−1−L dȳ dx′



I. Ivec / Filomat 37:24 (2023), 8205–8212 8212

is bounded on |y′|∞ ≤ t, for arbitrary N > d. Indeed, we have

d−d−1II ≤ t
∫

|x′ |>Nt

∫
(|ȳ|1 + |x′ − ϑy′|1)−d−m−1−L dȳ dx′

≤ t
∫

|x′ |>Nt

∫
(|ȳ|1 + |x′|1 − |y′|1)−d−m−1−L dȳ dx′

≤ t
∫

|x′ |>Nt

∫
(|ȳ|1 + |x′|1 − dt)−d−m−1−L dȳ dx′

= t−m−L
∫
|x′ |>N

∫
(|ȳ|1 + |x′|1 − d)−d−m−1−L dȳ dx′ ,

where in the last step we used a linear change of variables. It is now obvious that this can be bounded
(uniformly for t > 0) only in the case L = −m and in that case, the above integral is indeed finite.

Thus, according to Lemma 3.1 we need N′ ≥ d + 1, N′ > d+m+1
ρ and

−m ≥ (1 − ρ)
(⌊d +m + 1

ρ

⌋
+ 1

)+
.

The last requirement is obviously valid in the case m < −d − 1. Otherwise, it is sufficient to have

−m ≥ (1 − ρ)
(d +m + 1

ρ
+ 1

)
,

which is equivalent to m ≤ −(1 − ρ)(d + 1 + ρ) – the assumption stated in the theorem.
Of course, the same estimate should be valid also for Tσ∗ . Because of (3)-(4) this means that we also need

M′
≥ d + 1 and M′ > d+m+1

ρ , where M,M′ are defined there. In the end, we notice that it is enough to take
M = 0 and that the assumptions of this theorem are sufficient in that case.
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[11] I. Ivec, I. Vojnović, Basic calculus of pseudodifferential operators with nonsmooth symbols, J. Pseudo-Differ. Oper. Appl. 13 (2022),

https://doi.org/10.1007/s11868-022-00443-0
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