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Screen generic lightlike submanifolds of indefinite cosymplectic
manifolds
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Abstract. We introduce screen generic lightlike submanifolds of indefinite cosymplectic manifolds. We
investigate the integrability of various distributions and prove a characterization theorem of such lightlike
submanifolds in a cosymplectic space form. We study contact totally umbilical screen generic lightlike
submanifolds and minimal screen generic lightlike submanifolds. We also give examples.

1. Introduction

It is well known that the intersection of the normal bundle and the tangent bundle of a submanifold of
a semi-Riemannian manifold may be not trivial, it is more difficult and interesting to study the geometry
of lightlike submanifolds than non-degenerate submanifolds. The two standard methods to deal with the
above difficulties were developed by Kupeli [17], Duggal-Bejancu and Duggal-Şahin [4, 8] respectively.

Duggal and Şahin [6] introduced contact CR-lightlike submanifolds of indefinite Sasakian manifolds.
But CR-lightlike submanifolds exclude the complex and totally real submanifolds as subcases. Then,
Duggal and Şahin introduced contact SCR-lightlike submanifolds of indefinite Sasakian manifolds [6]. But
there is no inclusion relation between screen Cauchy-Riemann and CR submanifolds, so Duggal and Şahin
introduced a new class called GCR-lightlike submanifolds of indefinite Sasakian manifolds [7] which is
an umbrella for all these types of submanifolds. Gupta, Upadhyay and Sharfuddin studied generalised
Cauchy-Riemann (GCR) lightlike submanifold of an indefinite cosymplectic manifold [13]. These types of
submanifolds have been studied in various manifolds by many authors [5, 10, 16, 19].

Since CR-lightlike, screen CR-lightlike and generalized CR-lightlike do not contain real lightlike curves,
then Şahin introduced screen transversal lightlike submanifolds of indefinite Kaehler manifolds and show
that such submanifolds contain lightlike real curves [20]. Yıldırım and Şahin introduced screen transversal
lightlike submanifolds of indefinite Sasakian manifold [21] and Gupta and Sharfuddin introduced screen
transversal lightlike submanifolds of indefinite cosymplectic manifold [11]. Doğan, Şahin and Yaşar intro-
duced a new class of lightlike submanifolds for indefinite Kaehler manifolds which particularly contain
invariant lightlike, screen real lightlike and generic lightlike submanifolds and they called this submanifolds
as screen generic lightlike submanifolds [3]. After, Gupta introduced screen generic lightlike submanifolds
of indefinite Sasakian manifolds [9].
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In this paper, we introduce screen generic lightlike submanifolds of indefinite cosymplectic manifolds.
We investigate the integrability of various distributions and prove a characterization theorem of such
lightlike submanifolds in a cosymplectic space form. We study contact totally umbilical screen generic
lightlike submanifolds and minimal screen generic lightlike submanifolds. We also give examples.

2. Preliminaries

An odd-dimensional semi-Riemannian manifold M̄ is said to be an indefinite almost contact metric
manifold if there exist structure tensors (ϕ,V, η, 1̄), where ϕ is a (1, 1) tensor field, V is a vector field called
structure vector field, η is a 1-form and 1̄ is the semi-Riemannian metric on M̄ satisfying

ϕ2X = −X + η(X)V, η(X) = 1̄(X,V), (1)

and

1̄(ϕX, ϕY) = 1̄(X,Y) − η(X)η(Y), η ◦ ϕ = 0, ϕV = 0, η(V) = 1, (2)

for any X,Y ∈ Γ(TM̄), where TM̄ denotes the Lie algebra of vector fields on M̄.
An indefinite almost contact metric manifold M̄ is called an indefinite cosymplectic manifold if [2]

∇̄Xϕ = 0, (3)
∇̄XV = 0, (4)

for any X,Y ∈ Γ(TM̄), where ∇̄ denote the Levi-Civita connection on M̄.
A plane section Π in TxM̄ of an indefinite cosympletic manifold M̄ is called a ϕ−section if it is spanned

by a unit vector X orthogonal to V and ϕX, where X is non-null vector field on M̄. The sectional curvature
K(Π) with respect toΠ determined by X is called a ϕ−sectional curvature. If M̄ has a ϕ−sectional curvature
c which does not depend on the ϕ−section at each point, then c is constant in M̄. Then, M̄ is called an
indefinite cosympletic space form and is denoted by M̄(c). The curvature tensor R̄ of M̄(c) is given by [18]

R̄(X,Y)Z =
c
4
{1̃(Y,Z)X − 1̃(X,Z)Y + η(X)η(Z)Y

− η(Y)η(Z)X + η(Y)1̃(X,Z)V − η(X)1̃(Y,Z)V
+ 1̃(ϕX,Z)ϕY + 1̃(ϕY,Z)ϕX + 21̃(X, ϕY)ϕZ} (5)

for any X, Y and Z vector fields on M̄.
Let consider an m-dimensional submanifold (M, 1) of a (m+n)-dimensional semi-Riemannian manifold

(M̄, 1̄). If the induced metric 1 on M is degenerate and the rank of the radical distribution Rad(TM) of TM
is r, 1 ≤ r ≤ m, then (M, 1) is called a lightlike submanifold of (M̄, 1̄).While the normal bundle TM⊥ of the
tangent bundle TM is defined as

TM⊥ = ∪x∈M{u ∈ Tx M̄ | 1̄(u,W) = 0, ∀W ∈ Tx M}, (6)

the radical distribution Rad(TM) of TM is defined as

Rad(TM) = ∪x∈M{ξ ∈ Tx M | 1(u, ξ) = 0, ∀u ∈ Tx M, ξ , 0}. (7)

It is clear that Rad(TM) = TM ∩ TM⊥. On the other hand we know that both TM and TM⊥ are degenerate
vector subbundles. So, there exist complementary non-degenerate screen distribution S(TM) and co-screen
distribution (or screen transversal bundle) S(TM⊥) of Rad(TM) in TM and TM⊥, respectively. Then we can
write the following decompositions:

TM = S(TM) ⊥ Rad(TM) , (8)
TM⊥ = S(TM⊥) ⊥ Rad(TM). (9)
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Similarly, S(TM) has an orthogonal complementary bundle S(TM)⊥ in TM̄ such that

S(TM)⊥ = S(TM⊥)⊥S(TM⊥)⊥, (10)

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥.

Theorem 2.1. Let (M, 1,S(TM),S(TM⊥)) be a r-lightlike submanifold of a semi-Riemannian manifold (M̄, 1̄). Then,
there exists a complementary vector bundle ltr(TM) called a lightlike transversal bundle of Rad(TM) in S(TM⊥)⊥

and a basis of Γ(ltr(TM) |U) consists of smooth sections {N1, ...,Nr} of S(TM⊥)⊥ |U such that

1̄(ξi,NT) = δiT , 1̄(Ni,NT) = 0 , i,T = 1, .., r,

where {ξ1, ..., ξr} is a basis of Γ(Rad(TM)) [4, page 144].

This result implies that there exists a complementary (but not orthogonal) vector bundle tr(TM) to TM
in TM̄|M,which called transversal vector bundle, such that the following decompositions hold:

tr(TM) = ltr(TM) ⊥ S(TM⊥) (11)

and

S(TM⊥)⊥ = Rad(TM) ⊕ ltr(TM). (12)

Using the above equations we can write

TM̃ |M= TM ⊕ tr (TM) = {Rad(TM) ⊕ ltr (TM)} ⊥S (TM)⊥S(TM⊥). (13)

There exist four cases for a lightlike submanifold (M, 1,S(TM),S(TM⊥) :
Case 1: M is called r - lightlike if r < min{m, n}.
Case 2: M is called co - isotropic if r = n < m, i.e., S(TM⊥) = {0}.
Case 3: M is called isotropic if r = m < n, i.e., S(TM) = {0}.
Case 4: M is called totally lightlike if r = m = n, i.e., S(TM) = {0} = S(TM⊥).

The Gauss and Weingarten equations of M are given by

∇̄XY = ∇XY + h(X,Y) (14)

and

∇̄XU = −AUX + ∇t
XU, (15)

for any X,Y ∈ Γ(TM) and U ∈ Γ(tr(TM)), where {∇XY,AUX} and {h(X,Y),∇t
XU} are belong to Γ(TM) and

Γ(tr(TM)), respectively. ∇ and ∇t are linear connections on M and on the vector bundle tr(TM), respectively.
The second fundamental form h is a symmetric F (M)-bilinear form on Γ(TM) with values in Γ(tr(TM)) and
the shape operator AU is a linear endomorphism of Γ(TM).

According to (13), considering the projection morphisms L and S of tr (TM) on ltr (TM) and S (TM⊥),
respectively, (14) and (15) become

∇̃XY = ∇XY + hl(X,Y) + hs(X,Y), (16)
∇̃XN = −ANX + ∇l

XN +Ds(X,N), (17)

∇̃XW = −AWX + ∇s
XW +Dl(X,W), (18)
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for any X,Y ∈ Γ(TM), N ∈ Γ(ltr (TM)) and W ∈ Γ(S (TM⊥)), where hl(X,Y) = Lh(X,Y), hs(X,Y) = Sh(X,Y),
∇XY,ANX,AWX ∈ Γ(TM), ∇s

XW,Ds(X,N) ∈ Γ(S (TM⊥)) and ∇l
XN,Dl(X,W) ∈ Γ(ltr (TM)). Then, by using

(16)-(18) and taking into account that ∇̃ is a metric connection we obtain

1(hs(X,Y),W) + 1(Y,Dl(X,W)) = 1(AWX,Y), (19)
1(Ds(X,N),W) = 1(AWX,N), (20)

1(hl(X,Y), ξ) + 1(Y, hl(X, ξ)) + 1(Y,∇Xξ) = 0. (21)

Let P̄ be a projection of TM on S(TM). Thus, using (8) we can obtain

∇XP̄Y = ∇
∗

XP̄Y + h∗(X, P̄Y)ξ, (22)
∇Xξ = −A∗ξX − ∇

∗t
Xξ, (23)

for any X,Y ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)), where {∇∗XP̄Y,A∗ξX} and
{
h∗(X, P̄Y),∇∗tXξ

}
belong to Γ(S (TM)) and

Γ(Rad (TM)), respectively.
Considering above equations, we derive

1̄(hl(X, P̄Y), ξ) = 1(A∗ξX, P̄Y), (24)

1̄(h∗(X, P̄Y),N) = 1(ANX, P̄Y), (25)

1̄(hl(X, ξ), ξ) = 0, A∗ξξ = 0. (26)

We know that the induced connection ∇ on M, generally is not metric connection. If we consider that ∇̄ is a
metric connection and use (16), we get

(∇X1)(Y,Z) = 1̄(hl(X,Y),Z) + 1̄(hl(X,Z),Y), (27)

i.e., ∇ is not a metric connection. However, it is important to note that ∇⋆ is a metric connection on S(TM).

Theorem 2.2. Let M be an r-lightlike submanifold of a semi-Riemannian manifold M̄. Then the induced connection
∇ is a metric connection iff Rad(TM) is a parallel distribution with respect to ∇ [4].

The curvature tensor R̄ of M̄(c) is given

R̄(X,Y)Z = R(X,Y)Z + Ahl(X,Z)Y − Ahl(Y,Z) + Ahs(X,Z)Y − Ahs(Y,Z)X

+ (∇Xhl)(Y,Z) − (∇Yhl)(X,Z) +Dl(X, hs(Y,Z)) −Dl(Y, hs(X,Z))
+ (∇Xhs)(Y,Z) − (∇Yhs)(X,Z) +Ds(X, hl(Y,Z)) −Ds(Y, hl(X,Z)) (28)

for any X,Y,Z ∈ Γ(TM).

3. Screen Generic Lightlike Submanifolds

Definition 3.1. Let M be a real r-lightlike submanifold of an indefinite cosymplectic manifold M̄ such that V is
tangent to M. Then we say that M is a screen generic lightlike submanifold if the following conditions are satisfied:

(A) Rad(TM) is invariant respect to ϕ, that is,

ϕ(Rad(TM)) = Rad(TM). (29)

(B) There exists a subbundle D0 of S(TM) such that

D0 = ϕ(S(TM)) ∩ S(TM), (30)

where D0 is a non-degenerate distribution on M.
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From definition of a screen generic lightlike submanifold, we obtain that there exists a complementary
non-degenerate distribution D′

to D0 in S(TM) such that,

S(TM) = D0 ⊕D
′

,

where

ϕ(D
′

) ⊈ S(TM) and ϕ(D
′

) ⊈ S(TM⊥).

Let P0, P1 and Q be the projection morphisms on D0, Rad(TM) and D′

, respectively. Then we have, for
any X ∈ Γ(TM),

X = P0X + P1X +QX + η(X)V (31)
= PX +QX + η(X)V, (32)

where D = D0⊥Rad(TM), D is invariant and PX ∈ Γ(D) , QX ∈ Γ(D′

).
From (31) we get

ϕX = TX + ωX, (33)

where TX andωX are tangential and transversal parts ofϕX, respectively. Besides, it is clear thatϕ(D′

) , D′

.
On the other hand, for a vector field Y ∈ Γ(D′

),we have

ϕY = TY + ωY

such that, TY ∈ Γ(D′

) and ωY ∈ Γ(S(TM⊥)).
Similarly, for any W ∈ Γ(tr(TM)),we get following decomposition

ϕW = BW + CW (34)

where BW is tangential part and CW is transversal part of ϕW, respectively.
We say that M is a proper screen generic lightlike submanifold of an indefinite cosymplectic manifold M̄ if
D0 , {0} and D′

, {0}. For proper screen generic lightlike submanifold we note that the following features:

1. The condition (A) implies that dim(Rad(TM)) = 2s ≥ 2.
2. The condition (B) implies dim(D0) = 2r ≥ 2.
3. dim(D′) = 2p ≥ 2. Thus dim(M) ≥ 7 and dim(M̄) ≥ 11.
4. Any proper 7− dimensional screen generic lightlike submanifold must be 2−lightlike.
5. (A) and cosymplectic manifold M̄ imply that index(M̄) ≥ 2.

Proposition 3.2. A SCR-lightlike submanifold is a screen generic lightlike submanifold such that distribution D′ is
totally anti-invariant, that is,

S(TM⊥) = ωD
′

⊕ µ

where µ is a non-degenerate invariant distribution.

Similar to Definition of generic lightlike submanifolds given by Jin-Lee [14], we have:

Definition 3.3. Let M be a r-lightlike submanifold of an indefinite cosymplectic manifold M̄. If there exists a screen
distribution S(TM) of M, such that

ϕ(S(TM⊥)) ⊂ S(TM)

then, M is a generic r-lightlike submanifold.

Proposition 3.4. A generic r-lightlike submanifold is a screen generic lightlike submanifold with µ = {0}.



N. (Önen) Poyraz / Filomat 37:24 (2023), 8261–8277 8266

The tangent bundle TM of M have following decomposition:

TM = D ⊕D
′

⊥ Span{V}.

Proposition 3.5. Any screen generic lightlike submanifold M of an indefinite cosymplectic manifold M̄ is an invariant
lightlike submanifold if D′

= {0}.

The following construction will help in understanding the two examples of this paper. Consider
(R2m+1

q , ϕ0,V, η, 1̄) with its usual cosymplectic structure given by

η = dz,V = ∂z,

1̄ = η ⊗ η −

q
2∑

i=1
dxi
⊗ dxi + dyi

⊗ dyi +
m∑

i=q+1
dxi
⊗ dxi + dyi

⊗ dyi),

ϕ0(
m∑

i=1
(Xi∂xi + Yi∂yi) + Z∂z) =

m∑
i=1

(Yi∂xi
− Xi∂yi),

where (xi, yi, z) are the Cartesian coordinates and q is considered an even number.

Example 3.6. Let M̄ = (R11
2 , 1̄) be a semi-Euclidean space, where 1̄ is of signature (−,+,+,+,+,−,+,+,+,+,+)

with respect to the canonical basis

(x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, z).

Consider a submanifold M of R11
2 defined by

x1 = u1 cosα , x2 = u1 − u2 sinα , x3 = u5 , x4 = cos u3 cosh u4,

x5 = u5 cosα + u6sinα, y1 = u2 cosα , y2 = u1sinα + u2,

y3 = 0 , y4 = sinu3 sinh u4, y5 = u5sinα, z = u7.

Then, TM is spanned by {Z1,Z2,Z3,Z4,Z5,Z6,Z7}, where

Z1 = cosα∂ x1 + ∂ x2 + sinα∂ y2, Z2 = −sinα∂ x2 + cosα∂ y1 + ∂ y2,

Z3 = − sin u3 cosh u4∂ x4 + cos u3 sinh u4∂ y4,

Z4 = cos u3 sinh u4∂ x4 + sin u3 cosh u4∂ y4,

Z5 = ∂ x3 + cosα∂ x5 + sinα∂ y5 , Z6 = sinα∂x5, Z7 = V = ∂z.

Hence M is a 2− lightlike submanifold of R11
2 with Rad(TM) = Span{Z1,Z2}, D0 = Span{Z3,Z4} and D′

=
Span{Z5,Z6}. It is easy to see that ϕ0Z1 = −Z2 and ϕ0Z3 = Z4. By direct calculations, we get the lightlike transversal
bundle spanned by

N1 =
1
2

(− cosα∂ x1 + ∂ x2 + sinα∂ y2),

N2 =
1
2

(−sinα∂ x2 − cosα∂ y1 + ∂ y2)

and the screen transversal bundle spanned by

W1 = −∂ y3− cosα∂ y5 , W2 = −∂ x3− cosα∂ x5,

W3 = cosα∂ x6 + sinα∂ y6 , W4 = sinα∂ x6− cosα∂ y6,

where µ = Sp{W3,W4}, ϕ0W3 =W4 and ϕ0N1 = −N2. Since

ϕ0Z5 = Z6 +W1,

ϕ0Z6 = − sinα∂ y5 = −(Z5 +W2),

then M is a screen generic lightlike submanifold.
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Theorem 3.7. There exist no coisotropic, isotropic or totally lightlike proper screen generic lightlike submanifold M
of an indefinite cosymplectic manifold M̄. Any screen generic isotropic, coisotropic or totally lightlike submanifold M
is an invariant submanifold.

Proof. Let M be a screen generic lightlike submanifold of an indefinite cosymplectic manifold M̄. If M is
isotropic, then S(TM) = {0}which implies that D0 = {0} and D′

= {0}. Therefore we derive TM = Rad(TM) =
ϕ(Rad(TM)),which is invariant respect to ϕ.
If M is coisotropic, then S(TM⊥) = {0} implies µ = {0} and the ω(D′

) = {0}. Thus, TM = D0⊕ϕ(D′

)⊕Rad(TM)
and M is invariant.
Finally, if M is totally lightlike, then S(TM) = {0} and S(TM⊥) = {0}. Hence, TM = Rad(TM), which implies
M is invariant.
So, it is clear that there exist no coisotropic, isotropic or totally lightlike proper screen generic lightlike
submanifolds and the proof is completed.

Theorem 3.8. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). If ∇ is a metric connection, then hs(X, ϕY) has no components in ωD′

. Conversely, the induced
connection ∇ is a metric connection if

1̄(hl(X,TU), ϕY) = −1̄(hs(X, ϕY), ωU) (35)

for any X,Y ∈ Γ(Rad(TM)) and U ∈ Γ(S(TM)).

Proof. Suppose that ∇ is a metric connection. From (1) and (3) we have

∇̄XY = −ϕ(∇̄XϕY) (36)

for any X ∈ Γ(TM) and Y ∈ Γ(Rad(TM)). Using (16) and (23) we get

∇̄XY = −ϕ(−A∗ϕYX + ∇∗
t

XϕY + hl(X, ϕY) + hs(X, ϕY)). (37)

Considering (33) and (34) in (37) and taking the tangential parts of this equation, we obtain

∇XY = TA∗ϕYX − ∇∗
t

XϕY − Bhs(X, ϕY). (38)

From Theorem 2.2 we know that induced connection ∇ is a metric connection if and only if Rad(TM) is a
parallel distribution. Suppose that Rad(TM) is parallel, then 1(∇XY,U) = 0. From the above equation, we
derive

1(∇XY,U) = 1̄(hs(X, ϕY), ωU) (39)

for any X,Y ∈ Γ(Rad(TM)) and U ∈ Γ(S(TM)). Therefore hs(X, ϕY) has no components in ωD′

.
Conversely, we assume that

1̄(hl(X,TU), ϕY) = −1̄(hs(X, ϕY), ωU) (40)

for any X,Y ∈ Γ(Rad(TM)) and U ∈ Γ(S(TM)). On the other hand, from (2) and (3) we have

1̄(∇̄XϕY, ϕU) = 1̄(∇̄XY,U). (41)

Using (16), (23), (33) and (34), we obtain

1̄(∇̄XϕY, ϕU) = 1̄(−A∗ϕYX + ∇∗
t

XϕY + hl(X, ϕY) + hs(X, ϕY), ϕU)

= −1̄(A∗ϕYX,TU) + 1̄(hs(X, ϕY), ωU) (42)

for any X,Y ∈ Γ(Rad(TM)) and U ∈ Γ(S(TM)).
Using (2), (3), (40), (41) and (42), we get

1(∇XY,U) = 0

i.e., ∇XY ∈ Γ(Rad(TM)) which completes the proof.
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Theorem 3.9. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then D0 ⊥ {V} is integrable if and only if the following conditions hold:

1(∇∗XϕY − ∇∗YϕX,TZ) = 1(B(hs(X, ϕY) − hs(Y, ϕX)),Z), (43)
h∗(X, ϕY) = h∗(Y, ϕX), (44)

for any X,Y ∈ Γ(D0 ⊥ {V}), Z ∈ Γ(D′

). Also, D ⊥ {V} is integrable if and only if (43) holds.

Proof. From the definition of screen generic lightlike submanifold, D0 ⊥ {V} is integrable iff for any X,Y ∈
Γ(D0 ⊥ {V}), [X,Y] ∈ Γ(D0 ⊥ {V}), that is,

1([X,Y],Z) = 1̄([X,Y],N) = 0

Z ∈ Γ(D′

) and N ∈ Γ(ltr(TM)).
Using that ∇̄ is a metric connection and (2), (3), (4), (16), (22), (33) and (34), we derive

1([X,Y],Z) = 1̄(∇∗XϕY − ∇∗YϕX,TZ) − 1(B(hs(X, ϕY) − hs(Y, ϕX)),Z),

1([X,Y],N) = 1̄(h∗(X, ϕY) − h∗(Y, ϕX), ϕN),

which hold (43) and (44). Hence, proof is completed.

Theorem 3.10. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then, the distribution D′ is integrable iff

∇ZTW − ∇WTZ − AωWZ + AωZW ∈ Γ(D
′

) (45)

for any Z,W ∈ Γ(D′

).

Proof. From the definition of screen generic lightlike submanifold, D′

is integrable iff for any Z,W ∈ Γ(D′

),
X ∈ Γ(D0) and N ∈ Γ(ltr(TM)),

1([Z,W],X) = 1̄([Z,W],N) = 1([Z,W],V) = 0.

Considering (2), (16), (18) and (33), we get

1([Z,W],X) = 1(∇ZTW − ∇WTZ − AωWZ + AωZW, ϕX).

From last equation it is easy to see that

∇ZTW − ∇WTZ − AωWZ + AωZW has no components on Γ(D0) (46)

and using (2), (16), (18) and (33) we have

1([Z,W],N) = 1̄(∇ZTW − ∇WTZ − AωWZ + AωZW, ϕN).

Thus,

∇ZTW − ∇WTZ − AωWZ + AωZW has no components on Γ(Rad(TM)). (47)

Moreover,

1([Z,W],V) = −1(W, ∇̄ZV) + 1(Z, ∇̄WV) = 0 (48)

is obtained and from (46), (47) and (48), it is clear that D′

is integrable iff ∇ZTW−∇WTZ − AωWZ + AωZW ∈
Γ(D′

).
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Theorem 3.11. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then the distribution D ⊥ {V} is parallel iff

∇
∗

XTZ − AωZX has no components on Γ(D0), (49)

hl(X,TZ) = −Dl(X, ωZ), (50)

for any X ∈ Γ(D ⊥ {V}) , Z ∈ Γ(D′

).

Proof. From the definition of screen generic lightlike submanifold, D ⊥ {V} is parallel iff for any X,Y ∈
Γ(D ⊥ {V}) and Z ∈ Γ(D′

),

1(∇XY,Z) = 0.

Using that ∇̄ is a metric connection and (2), (4), (16), (18) and (33), we derive

1(∇XY,Z) = −1̄(∇XTZ + hl(X,TZ) − AωZX +Dl(X, ωZ), ϕY).

From this, the proof is completed.

Theorem 3.12. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then D′ is parallel if and only if for any Z,W ∈ Γ(D′

),

∇
∗

ZTW − AωWZ ∈ Γ(D
′

). (51)

Proof. We assume that D′

is a parallel distribution. Then, for any Z,W ∈ Γ(D′

), ∇ZW ∈ Γ(D′

). In the other
words, for any X ∈ Γ(D0) and N ∈ Γ(ltr(TM)),

1(∇ZW,X) = 1̄(∇ZW,N) = 1(∇ZW,V) = 0.

Using (1), (16), (18) and (33), we obtain

1(∇ZW,X) = 1̄(∇ZTW − AωWZ, ϕX)

and then

∇ZTW − AωWZ has no components on Γ(D0). (52)

Similary, we get

1̄(∇ZW,N) = 1̄(∇ZTW − AωWZ, ϕN)

and from this equation, it is clear that

∇ZTW − AωWZ has no components on Γ(Rad(TM)). (53)

Moreover, we obtain

1(∇ZW,V) = −1(W, ∇̄ZV) = 0. (54)

Hence, from (52), (53) and (54), we have that D′

is a parallel iff ∇∗ZTW − AωWZ ∈ Γ(D′

).

Theorem 3.13. Let M be a lightlike submanifold of an indefinite cosymplectic space form M̄(c). Then, M is a screen
generic lightlike submanifold of M̄(c), with c , 0 iff the following conditions are satisfied:

(i) D = D0 ⊥ Rad(TM) is the maximal complex distribution on M, where D0 is a non-degenerate invariant
distribution.
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(ii) There exists a non-degenerate distribution D′ on M such that

1̄(R̄(X,Y)Z,W) , 0, ∀X,Y ∈ Γ(D0), Z,W ∈ Γ(D
′

).

(iii) There exists a non-degenerate distribution µ on S(TM⊥) such that

1̄(R̄(X,Y)Z,W) , 0,

where for all X,Y ∈ Γ(D0), Z ∈ Γ(D′

), W ∈ Γ(TM⊥), but W < Γ(µ).

Proof. Supoose that M is a screen generic lightlike submanifold of M̄(c), c , 0. Then

D = D0 ⊥ Rad(TM)

is a maximal subspace and (i) is satisfied. If we use (5) for any X,Y ∈ Γ(D0) and Z,W ∈ Γ(D′

),we obtain

1̄(R̄(X,Y)Z,W) = −
c
2
1̄(ϕX,Y)1̄(ϕZ,W) , 0

then (ii) holds.
Similarly, for any X,Y ∈ Γ(D0), Z ∈ Γ(D′

, W ∈ Γ(TM⊥),we have

1̄(R̄(X,Y)Z,W) =
c
2
1̄(ϕX,Y)1̄(ϕZ,W) , 0

then (iii) holds.
Conversely, we suppose that (i), (ii) and (iii) are holded. Then from (i), we see that Rad(TM) is invariant on
M. Thus, (A) of the Definition 3.1. is satisfied. Therefore, from (ii) we see that there exists a non-degenerate
anti-invariant distribution D′

on S(TM) such that since 1̄(ϕZ,W) , 0, for any Z, W ∈ Γ(D′

), then

Γ(ϕ(D
′

)) ⊂ Γ(D
′

) ⊂ Γ(S(TM)). (55)

On the other hand, from (iii), we have 1̄(ϕZ,W) = −1̄(Z, ϕW) , for any X,Y ∈ Γ(D0), Z ∈ Γ(D′

), W ∈

Γ(TM⊥), but W < Γ(µ). So, it is clear that

Γ(ϕ(D
′

)) ⊂ Γ(S(TM⊥)). (56)

Thus, from (55) and (56), we obtain neither Γ(ϕ(D′

)) is in Γ(D′

) totally, nor Γ(ϕ(D′

)) is in Γ(S(TM⊥)) totally,
which satisfies (B) of the Definition 3.1. This completes the proof.

Definition 3.14. We say that M is a D ⊥ {V}-geodesic screen generic lightlike submanifold if its second fundamental
form h satisfies

h(X,Y) = 0 , ∀X,Y ∈ Γ(D ⊥ {V}). (57)

It is easy to see that M is a D ⊥ {V}-geodesic screen generic lightlike submanifold if

hl(X,Y) = hs(X,Y) = 0 (58)

for any X,Y ∈ Γ(D ⊥ {V}). On the other hand, if h satisfies

h(X,Y) = 0, (59)

for any X ∈ Γ(D), Y ∈ Γ(D′

⊥ {V}), then M is called a mixed geodesic screen generic lightlike submanifold.

Proposition 3.15. The distribution D ⊥ {V} of a screen generic lightlike submanifold M of M̄ is a totally geodesic
foliation in M̄ iffM is D ⊥ {V}-geodesic and D ⊥ {V} is parallel respect to ∇ on M.
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Proof. Suppose that D ⊥ {V} defines a totally geodesic foliation in M̄, that is, ∇̄XY ∈ Γ(D ⊥ {V}), for any
X,Y ∈ Γ(D ⊥ {V}). Then,

1̄(∇̄XY, ξ) = 1̄(∇̄XY,W) = 1̄(∇̄XY,Z) = 0

for any ξ ∈ Γ(Rad(TM)), Z ∈ Γ(D′

) and W ∈ Γ(S(TM⊥)). Using (16), we obtain

1̄(∇̄XY, ξ) = 1̄(hl(X,Y), ξ),
1̄(∇̄XY,W) = 1̄(hs(X,Y),W)

then, it is clear that, for any X,Y ∈ Γ(D ⊥ {V}), hl(X,Y) = hs(X,Y) = 0. In other words, M is D ⊥ {V}-geodesic
and D ⊥ {V} is parallel respect to ∇ on M.
Conversely, we assume that M is D ⊥ {V}-geodesic and D ⊥ {V} is parallel respect to ∇ on M. Since
hl(X,Y) = hs(X,Y) = 0, for any X,Y ∈ Γ(D ⊥ {V}), then ∇̄XY ∈ Γ(TM). On the other hand, since D ⊥ {V} is
parallel on M, using (16), we have ∇̄XY ∈ Γ(D ⊥ {V}) which completes the proof.

Theorem 3.16. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then M is mixed geodesic iff the following conditions hold:

(i) Dl(X, ωZ) = −hl(X,TZ),
(ii) 1(AωZX − ∇XTZ,BW) = 1̄(hs(X,TZ) + ∇s

XωZ,CW),

for any X ∈ Γ(D), Z ∈ Γ(D′

⊥ {V}) and W ∈ Γ(S(TM⊥)).

Proof. If M is mixed geodesic, then from (59), 1̄(hl(X,Z), ξ) = 0 and 1̄(hs(X,Z),W) = 0 for any X ∈ Γ(D),
Z ∈ Γ(D′

⊥ {V}), ξ ∈ Γ(Rad(TM)) and W ∈ Γ(S(TM⊥)). Therefore from (16), we obtain

1̄(∇̄XZ, ξ) = 0.

Since distribution Rad(TM) is invariant, we can replace ϕξwith ξ. Then we obtain

1̄(∇̄XZ, ϕξ) = 0.

Using (16), (18) and (33) in the last equation

1̄(hl(X,TZ) +Dl(X, ωZ), ξ) = 0

is obtained. Similarly, it is easy to get

1̄(∇̄XϕZ, ϕW) = 0

and from this, we have

1(∇XTZ − AωZX,BW) + 1̄(hs(X,TZ) + ∇s
X ωZ,CW) = 0

which completes the proof.

For any Y ∈ Γ(TM), differentiating (33) and using (3), (16), (18), (33) and (34), we derive

∇XTY + hl(X,TY) + hs(X,TY) − AωYX + ∇s
X ωY +Dl(X, ωY)

= T∇XY + ω∇XY + Chl(X,Y) + Bhs(X,Y) + Chs(X,Y).

Taking tangential, lightlike transversal and screen transversal parts of this equation, we obtain

∇XTY − AωYX = T∇XY + Bhs(X,Y), (60)

hl(X,TY) +Dl(X, ωY) = Chl(X,Y), (61)
hs(X,TY) + ∇s

XωY = ω∇XY + Chs(X,Y). (62)
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Lemma 3.17. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then M is mixed geodesic iff

(i) Dl(X, ωZ) = −hl(X,TZ),
(ii) ωQ(AωZX − ∇XTZ) = C(hs(X,TZ) + ∇s

XωZ),

for any X ∈ Γ(D) , Z ∈ Γ(D′

⊥ {V}).

Proof. Using (1), (16), (18) and (33), we obtain for any X ∈ Γ(D) , Z ∈ Γ(D′

⊥ {V}),

h(X,Z) = −ϕ(∇XTZ + hl(X,TZ) + hs(X,TZ)

−AωZX + ∇s
XωZ +Dl(X, ωZ)) − ∇XZ.

Considering (31)-(34) and taking transversal part of this equation, we have

h(X,Z) = ωQ(AωZX − ∇XTZ) − C(hl(X,TZ) +Dl(X, ωZ))
−C(hs(X,TZ) + ∇s

XωZ)

Hence, h(X,Z) = 0⇔ (i) and (ii) hold.

Lemma 3.18. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then for any X ∈ Γ(D0), Z ∈ Γ(D′

) we have

∇XZ = TAωZX − T∇XTZ − Bhs(X,TZ) − B∇s
X ωZ − Bhs(X,Z).

Proof. Using (1), (16), (18), (33) and (34), we can write for any X ∈ Γ(D0), Z ∈ Γ(D′

),

∇̄XZ = −T∇XTZ − Bhs(X,TZ) + TAωZX − B∇s
XωZ

−ω∇XTZ − Chs(X,TZ) + ωAωZX − C∇s
X ωZ

−Chl(X,TZ) − CDl(X, ωZ).

If we take tangential parts of last equation, then we obtain

∇XZ = TAωZX − T∇XTZ − Bhs(X,TZ) − B∇s
X ωZ − Bhs(X,Z)

which proves our assertion.

4. Contact Totally Umbilical Screen Generic Lightlike Submanifolds

In this section we study contact totally umbilical screen generic lightlike submanifolds.

Definition 4.1. [12] A lightlike submanifold (M, 1) of a semi-Riemannian manifold (M̄, 1̄). If the second fundamental
form h of a submanifold M, tangent to the structure vector field V of an indefinite cosymplectic manifold M̄ is of the
form

h(X,Y) = [1(X,Y) − η(X)η(Y)]α (63)

for any X,Y ∈ Γ(TM), where α is a vector field transversal to M, then M is called contact totally umbilical submanifold
and totally geodesic if α = 0.

The above definition also holds for a lightlike submanifold M. For a contact totally umbilical M, we
have

hl(X,Y) = [1(X,Y) − η(X)η(Y)]αl, (64)
hs(X,Y) = [1(X,Y) − η(X)η(Y)]αs, (65)

where αl ∈ Γ(ltr(TM)) and αs ∈ Γ(S(TM⊥)).
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Lemma 4.2. Let (M, 1,S(TM),S(TM⊥)) be a contact totally umbilical proper screen generic lightlike submanifold of
an indefinite cosymplectic manifold (M̄, 1̄). Then αs < Γ(µ).

Proof. Let (M, 1,S(TM),S(TM⊥)) be a contact totally umbilical proper screen generic lightlike submanifold
of an indefinite cosymplectic manifold (M̄, 1̄). Then considering (62) we get

1(X, ϕY)αs = 1(X,Y)Cαs + ω∇XY − ∇s
XωY ,

for any X,Y ∈ Γ(D0) . If we get X = ϕY, then we obtain

1(X,X)αs = ω∇ϕYY.

Next from, we have αs < Γ(µ) and this completes the proof.

Theorem 4.3. Let (M, 1,S(TM),S(TM⊥)) be a contact totally umbilical proper screen generic lightlike submanifold
of an indefinite cosymplectic manifold (M̄, 1̄). Then the induced connection ∇ is a metric connection.

Proof. Let M be a contact totally umbilical proper screen generic lightlike submanifold of an indefinite
cosymplectic manifold M̄. Then using (61) and (64) we obtain

1(X, ϕY)αl = 1(X,Y)Cαl

for any X,Y ∈ Γ(D0). From the last equation,

21(X, ϕY)αl = 0

is obtained. If we take X = ϕY, then we have αl = 0 that is, from (64) hl = 0. Hence from (27) the proof is
completed.

Theorem 4.4. There exist no contact totally umbilical proper screen generic lightlike submanifold of an indefinite
complex space form M̄(c), c , 0.

Proof. Suppose that M is a contact totally umbilical proper screen generic lightlike submanifold of M̄(c),
c , 0. Then, from (5) and (28) we get

R̄(X, ϕX)Z = −
c
2
1(X,X)ϕZ (66)

and

R̄(X, ϕX)Z = (∇Xhs)(ϕX,Z) − (∇ϕXhs)(X,Z), (67)

for any X ∈ Γ(D0), Z ∈ Γ(D′

). Since M is contact totally umbilical, from (65) we have

(∇Xhs)(ϕX,Z) = −1(∇XϕX,Z)αs − 1(ϕX,∇XZ)αs. (68)

We know that

1(ϕX,Z) = 0.

From the last equation, we derive

(∇̄X1)(ϕX,Z) = 1(∇XϕX,Z) + 1(ϕX,∇XZ) = 0. (69)

Thus, from (68) and (69) we get

(∇Xhs)(ϕX,Z) = 0. (70)

Similarly, we have

(∇ϕXhs)(X,Z) = 0. (71)

Hence, from (66), (67), (70) and (71)
c
2
1(X,X)ϕZ = 0,

that is, c = 0 is obtained. This is a contradiction which completes the proof.
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5. Minimal Screen Generic Lightlike Submanifolds

Definition 5.1. We say that a lightlike submanifold (M, 1,S(TM)) isometrically immersed in a semi-Riemannian
manifold (M̄, 1̄) is minimal if:

(i) hs = 0 on Rad(TM) and
(ii) traceh = 0, where trace is written with respect to 1 restricted to S(TM).

In Case 2, condition (i) is trivial. It has been shown in [1] that the above definition is independent of
S(TM) and S(TM⊥), but it depends on tr(TM).
Minimal lightlike submanifolds are investigated in detail in [8].

Theorem 5.2. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then, the distribution D0 ⊥ {V} is minimal.

Proof. From the definition, it is clear that D0 ⊥ {V} is minimal if and only if

∇XX + ∇ϕXϕX ∈ Γ(D0 ⊥ {V}) , ∀X ∈ Γ(D0 ⊥ {V}).

Hence, from (2) and (18), we derive

1(∇XX, ϕW) = −1(ϕX,AWX)

and

1(∇ϕXϕX, ϕW) = 1(X,AWϕX)

for any X ∈ Γ(D0 ⊥ {V}) and W ∈ Γ(S(TM⊥)). On the other hand, since the shape operator is symmetric on
S(TM),we get

1(∇XX + ∇ϕXϕX, ϕW) = 0.

The proof comes last equation.

Example 5.3. Let M̄ = (R11
4 , 1̄) be a semi-Euclidean space, where 1̄ is signature (−,−,+,+,+,−,−,+,+,+,+) with

respect to the canonical basis

(∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂z)

and M be a submanifold of R11
4 given by

x1 = u1 sinh β, x2 = u1 cosh β − u2, x3 = cos u3 cosh u4, x4 = sin u3 sinh u4,

x5 = sin u5 sinh u6, y1 = u2 sinhβ, y2 = u1 + u2 cosh β,
y3 = sin u3 cosh u4, y4 = − cos u3 sinh u4, y5 = − cos u5 cosh u6, z = u7.

Then, TM is spanned by

Z1 = sinh β∂x1 + cosh β∂x2 + ∂y2,

Z2 = −∂x2 + sinh β∂y1 + cosh β∂y2,

Z3 = − sin u3 cosh u4∂x3 + cos u3 sinh u4∂x4 + cos u3 cosh u4∂y3 + sin u3 sinh u4∂y4,

Z4 = cos u3 sinh u4∂x3 + sin u3 cosh u4∂x4 + sin u3 sinh u4∂y3 − cos u3 cosh u4∂y4,

Z5 = cos u5 sinh u6 ∂x5 + sin u5 cosh u6∂y5,

Z6 = sin u5 cosh u6∂x5 − cos u5 sinh u6 ∂y5,Z7 = V = ∂z,



N. (Önen) Poyraz / Filomat 37:24 (2023), 8261–8277 8275

where Rad(TM) = {Z1,Z2} and D0 = {Z5,Z6}. By direct calculation, we derive that ltr(TM) is spanned by

N1 =
1
2

(sinh β∂x1 − cosh β∂x2 − ∂y2),

N2 =
1
2

(∂x2 + sinh β∂y1 − cosh β∂y2).

Also, the screen transversal bundle is spanned by

W1 = cos u3 cosh u4∂x3 − sin u3 sinh u4∂x4 + sin u3 cosh u4∂y3 + cos u3 sinh u4∂y4,

W2 = sin u3 sinh u4∂x3 + cos u3 cosh u4∂x4 − cos u3 sinh u4∂y3 + sin u3 cosh u4∂y4.

Since ϕ0W1 ,W2, then it is easy to see that µ = {0} and

ϕ0Z3 =
2 sinh u4 cosh u4

sinh2 u4 + cosh2 u4
Z4 +

1

sinh2 u4 + cosh2 u4
W1 ,

ϕ0Z4 = −
2 sinh u4 cosh u4

sinh2 u4 + cosh2 u4
Z3 −

1

sinh2 u4 + cosh2 u4
W2.

Then, D′

= Sp{Z3,Z4} and M is a screen generic lightlike submanifold of R11
4 . Hence, M is a proper screen generic

lightlike submanifold of R11
4 , with a quasi-orthonormal basis of (M̄, 1̄) along M is

ξ1 = Z1, ξ2 = Z2,

e1 =
1√

sinh2 u4 + cosh2 u4

Z3, e2 =
1√

sinh2 u4 + cosh2 u4

Z4,

e3 =
1√

sin2 u5 + sinh2 u6

Z5, e4 =
1√

sin2 u5 + sinh2 u6

Z6, V = Z7,

e5 =
1√

sinh2 u4 + cosh2 u4

W1 , e6 =
1√

sinh2 u4 + cosh2 u4

W2 ,

N1, N2.

On the other hand, by direct computations and using Gauss and Weingarten formulas, we obtain

hs(X, ξ1) = hs(X, ξ2) = hs(X, e3) = hs(X, e4) = 0, hl = 0, ∀X ∈ Γ(TM)
hl(e1, e1) = hl(e2, e2) = 0,

hs(e1, e1) = −
1(

sinh2 u4 + cosh2 u4
) 3

2

W1,

hs(e2, e2) =
1(

sinh2 u4 + cosh2 u4
) 3

2

W1.

Thus hs = 0 on Rad(TM) and

trace |S(TM) h = 0.

Then, it is clear that M is not totally geodesic and, but it is a minimal screen generic lightlike submanifold of R11
4 .

Theorem 5.4. Let (M, 1,S(TM),S(TM⊥)) be a screen generic lightlike submanifold of an indefinite cosymplectic
manifold (M̄, 1̄). Then M is minimal iff

traceA∗ξk
|S(TM)= traceAWT |S(TM)= 0

where dim(TM) = m, dim(tr(TM)) = n, dim(Rad(TM)) = r and WT ∈ Γ(S(TM⊥)).
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Proof. Since ∇̄VV = 0, from (4), we get hl(V,V) = hs(V,V) = 0.
Now, take an quasi orthonormal frame {ξ1, ..., ξ2r, e1, ..., em,V,W1, ...,Wn,N1, ...,N2r} such that {e1, ..., e2a}

are tangent to D0 and {e2a+1, ..., em} are tangent to D′

. First from (cf. [1], page 140), we know that hl = 0 on
RadTM.

From definition of minimal submanifold, we know that

traceh |S(TM) = traceh |D0 +traceh |D′

=

a∑
i=1

h(Zi,Zi) +
b∑

T=1

h(U j,U j)

= 0

and hs
|Rad(TM)= 0. If we choose an orthonormal basis of S(TM) as {ei}

m−r
i=1 , then we derive

traceh |S(TM) =

2a∑
i=1

εi

[
hl(ei, ei) + hs(ei, ei)

]
+

m∑
j=2a+1

ε j

[
hl(e j, e j) + hs(e j, e j)

]
=

2a∑
i=1

εi[
1
2r

r∑
k=1

1̄(hl(ei, ei), ξk)Nk +
1

n − 2r

n−2r∑
T=1

1̄(hs(ei, ei),WT)WT]

+

b∑
J=1

εT[
1
2r

r∑
k=1

1̄(hl(e j, e j), ξk)Nk +
1

n − 2r

n−2r∑
T=1

1̄(hs(e j, e j),WT)WT].

On the other hand, since

1̄(hl(ei, ei), ξk)Nk = 1(A∗ξk
ei, ei)Nk and

1̄(hs(ei, ei),WT)WT = 1(AWT ei, ei)WT,

we obtain

traceh |S(TM)= traceA∗ξk
|D0⊕D′ +traceAWT |D0⊕D′ .

Hence, we get

traceA∗ξk
|D0⊕D′= 0 and traceAWT |D0⊕D′= 0.

This completes the proof.
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