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Available at: http://www.pmf.ni.ac.rs/filomat

Solution of an integral equation in G -metric spaces

Arul Joseph Gnanaprakasama, Gunasekaran Nallasellia, Gunaseelan Manib, Ozgur Egec

aDepartment of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology,
SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Kanchipuram, Chennai, Tamil Nadu, India.

bDepartment of Mathematics, Saveetha School of Engineering,
Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, Tamil Nadu, India.

cDepartment of Mathematics, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.

Abstract. In this paper, we prove a fixed point result in G -metric spaces satisfying generalized contractive
condition with new auxiliary functions, which generalize the result of Bhardwaj and Kumar. The motivation
of this paper is to observe the solution of an integral equation using the fixed point technique in G -metric
space.

1. Introduction

Many areas of pure and applied science, such as biology, medicine, physics, and computer science use
metric spaces a lot. Mustafa and Sims [16] came up with G-metric spaces as an extension of the idea of
metric spaces. They showed up with some fixed point theorems for mappings that fit different contractive
conditions. See references [15, 17–19] for more fixed-point results on G-metric space.

Alghamdi and Karapinar [3] identified fixed point theorems for G − β − ψ−contractive type mappings.
Ansari [4] showed that fixed point results could be noticed for φ-ψ mappings for contractive types. Ag-
garwal et al. [2] showed Suzuki-type fixed point results in G-metric spaces. Mustafa et al. [20] came up
with two new ideas for complete G-metric spaces, such as (g-F) contractions and generalized Mizoguchi-
Takahashi contractions. They also found some new coincidence points and fixed point theorems that are
used often. Many mathematicians have taken the Banach contraction principle in different directions over
the years (see [1, 5, 8–14, 21–23]). In 2019, the C-class function were used by Aydi et al.[6] to add the Q
property to G-metric spaces. Bhardwaj and Kumar [7] solved the fixed point theorem for auxiliary functions
in G-metric space.

In this paper, we were inspired and motivated by the work of Bhardwaj and Kumar [7]. We build on
their main result by adding new auxiliary functions in G -metric spaces through a generalized contractive
condition.
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2. Preliminaries

Throughout this paper, R represents (−∞,+∞), R+ is (0,+∞) and R0
+ represents [0,+∞), respectively.

Mustafa and Sims [16] initiated the G -metric space in 2006.

Definition 2.1. ([16]) Let ℑ be a non-void set and a function G : ℑ3
→ R+ satisfying the following hypothesis:

1. If ϱ = ϑ = ø, then G (ϱ, ϑ,ø) = 0,
2. 0 < G (ϱ, ϱ, ϑ), ∀ϱ, ϑ ∈ ℑ, with ϱ , ϑ,
3. G (ϱ, ϱ, ϑ) ≤ G (ϱ, ϑ,ø), ∀ϱ, ϑ,ø ∈ ℑ, with ϱ , ϑ,
4. G (ϱ, ϑ,ø) = G (ϱ,ø, ϑ) = G (ϑ,ø, ϱ) = . . . (symmetry in all three variables),
5. G (ϱ, ϑ,ø) ≤ G (ϱ, κ, κ) + G (κ, ϑ,ø), for all ϱ = ϑ = ø ∈ ℑ, (rectangular inequality).

Then (ℑ,G ) is said to be a G -metric space.

Definition 2.2. ([16]) Let (ℑ,G ) be a G -metric space, and a sequence {τø} of ℑ. Then, the sequence (τø) is called G -
convergent to τ ∈ ℑ if lim

ø,ϑ→∞
G (τ, τø, τϑ) = 0, i.e., for ε > 0, there exists N ∈ N such that G (τ, τø, τϑ) < ε, ∀ø, ϑ > N.

τ is called the limit of the sequence, then τø → τ. Symbolically, lim
ø→∞

τø = τ.

Definition 2.3. ([16]) Let (ℑ,G ) be a G -metric space. A sequence {τø} is said to be a G -Cauchy sequence if ε > 0,
there is N ∈ N such that G (τø, τϑ, τϱ) < ε, ∀ ø, ϑ, ϱ > N, that is G (τø, τϑ, τϱ)→ 0 as ø, ϑ, ϱ→ +∞.

Definition 2.4. ([16]) We say that every G -metric space is complete if every G -Cauchy sequence is G -convergent in
(ℑ,G ).

Mustafa and Sims [15] introduced the notion of contraction on G -metric space.

Definition 2.5. ([15]) Let (ℑ,G ) be a G -metric space and a self-map Υ on ℑ is called a contraction on ℑ if for each
∧ ∈ [0, 1], the following condition is true:

G (Υϱ,Υϑ,Υø) ≤ ∧G (ϱ, ϑ,ø), ∀ ϱ, ϑ,ø ∈ ℑ.

Example 2.6. Let ℑ = R3. Define a mapping G : ℑ3
→ R+ by

G (ϱ, ϑ,ø) = |ϱ1 − ϱ2| + |ϱ2 − ϱ3| + |ϑ1 − ϑ2| + |ϑ2 − ϑ3| + |ø1 − ø2| + |ø2 − ø3|, ∀ϱ, ϑ,ø ∈ ℑ

and define a function Υ : R3
→ R3 by Υϱ = 5

8ϱ, ∀ϱ ∈ R
3. Then Υ is a contraction on ℑ as

G (ϱ, ϑ,ø) = |ϱ1 − ϑ1 − ø1| + |ϱ2 − ϑ2 − ø2| + |ϱ3 − ϑ3 − ø3| =
5
8
G (ϱ, ϑ,ø).

In 2008, Mustafa and Sims [17] proved the below contraction theorem on G -metric space.

Theorem 2.7. ([17]) Let (ℑ,G ) be a complete G -metric space and let Υ : ℑ → ℑ be a self-map satisfy the following

G (Υϱ,Υϑ,Υø) ≤ µG (ϱ,Υϱ,Υϱ) + νG (ϑ,Υϑ,Υϑ) + ηG (ø,Υø,Υø) + ωG (ϱ, ϑ,ø),

∀ϱ, ϑ,ø ∈ ℑ and µ, ν, η, ω non-negative with µ + ν + η + ω < 1. Then Υ has a unique fixed point in ℑ.

Definition 2.8. ([3]) LetΨ be the class of all mappings Ξ : R0
+ → R

0
+ satisfying the following hypothesis:

1.
∑+∞

£=1 Ξ
£(⋎) < +∞, ⋎ > 0, where Ξ£ is the £th iterate of Ξ,

2. Ξ is nondecreasing.

Definition 2.9. ([4]) A continuous function C : (R0
+)2
→ R is called D-class function if it satisfies the following

hypothesis:
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1. C(τ, ρ) ≤ τ for all τ, ρ ∈ R0
+;

2. If C(τ, ρ) = τ, then either τ = 0 or ρ = 0;

Let us consider:
Φ1 : {φ1 : R0

+ → R
0
+ is a non-decreasing continuous function such that ϕ1(ϑ) = 0 iff ϑ = 0},

Φ2 : {φ2 : R0
+ → R

0
+ is a continuous such that ϕ2(0) = 0 and φ1(ϑ) > 0 f or ϑ > 0},

Φ3 :
{
φ3 : R0

+ → R
0
+ is a non-negative Lebesgue-integrable function, summable on each compact subset of R+,

and for each ε > 0 such that
∫ ε

0 φ(⋎)∂⋎ > 0
}
.

The aim of this paper is to introduce a new generalized contraction, in the context of G -metric space.
Consequently, we shall examine the integral equation of the fixed point for such mapping in the mentioned
setting. In order to indicate the validity, an illustrative example is considered.

3. Main Results

We now prove the following main theorem of G -metric space, as inspired by Bhardwaj and Kumar [7]:

Theorem 3.1. Let (ℑ,G ) be a G -metric space and a mapping ℏ : ℑ → ℑ satisfying

φ1

[ ∫ G (ℏτ,ℏρ,ℏϖ)

0
φ(⋎)

]
∂⋎ ≤ C

[
φ1

( ∫ Q(τ,ρ,ϖ)

0
φ(⋎)∂⋎

)
, φ2

( ∫ Q(τ,ρ,ϖ)

0
φ(⋎)∂⋎

)]
, (1)

where C is aD-class function φ1 ∈ Φ1, φ2 ∈ Φ2, φ ∈ Φ3 and

Q(τ, ρ, ϖ) = max{G (τ, ρ, ϖ),G (τ, ℏτ, ℏτ),G (ρ, ℏρ, ℏρ),G (ϖ, ℏϖ, ℏϖ),
G (ℏτ, ρ, ϖ) + G (τ, ℏρ, ℏϖ)

4
}. (2)

Then ℏ has a unique fixed point.

Proof. Let τ0 ∈ ℑ. Choose a point τ1 ∈ ℑ such that τ1 = ℏτ0. In this way, we construct τø+1 such that
τø+1 = ℏτø for ø = 0, 1, 2, ... Assume that τø , τø+1 for each integer ø > 1, then by equation (1)

φ1

[ ∫ G (τø,τø+1,τø+1))

0
φ(⋎)

]
∂⋎ ≤ C

[
φ1

( ∫ Q(τø−1,τø,τø)

0
φ(⋎)∂⋎

)
, φ2

( ∫ Q(τø−1,τø,τø)

0
φ(⋎)∂⋎

)]
, (3)

From (2), we get

Q(τø−1, τø, τø)
= max{G (τø−1, τø, τø),G (τø−1, ℏτø−1, ℏτø−1),G (τø, ℏτø, ℏτø),G (τø, ℏτø, ℏτø),

G (ℏτø−1, τø, τø) + G (τø−1, ℏτø, ℏτø)
4

}

= max{G (τø−1, τø, τø),G (τø−1, τø, τø),G (τø, τø+1, τø+1),G (τø, τø+1, τø+1),
G (τø, τø, τø) + G (τø−1, τø+1, τø+1)

4
}

= max{G (τø−1, τø, τø),G (τø, τø+1, τø+1),
G (τø−1, τø+1, τø+1)

2
}

= max{G (τø−1, τø, τø),G (τø, τø+1, τø+1),
G (τø−1, τø, τø) + G (τø, τø+1, τø+1)

2
}. (4)
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If max{G (τø−1, τø, τø),G (τø, τø+1, τø+1)} = G (τø, τø+1, τø+1), from (3) and (4), we have

φ1

[ ∫ G (τø,τø+1,τø+1)

0
φ(⋎)

]
∂⋎ ≤ C

[
φ1

( ∫ G (τø,τø+1,τø+1)

0
φ(⋎)∂⋎

)
, φ2

( ∫ G (τø,τø+1,τø+1)

0
φ(⋎)∂⋎

)]
. (5)

By definition of C ∈ D, then either

φ1

( ∫ G (τø,τø+1,τø+1)

0
φ(⋎)∂⋎

)
= 0 or φ2

( ∫ G (τø,τø+1,τø+1)

0
φ(⋎)∂⋎

)
= 0.

Only possible if
∫ G (τø,τø+1,τø+1)

0 φ(⋎)∂⋎ = 0. This is a contraction from definitions of φ1 and φ2. Thus,
Q(τø−1, τø, τø) = G (τø−1, τø, τø) and we have

φ1

( ∫ G (τø,τø+1,τø+1)

0
φ(⋎)

)
∂⋎ ≤ C

(
φ1

( ∫ G (τø−1,τø,τø)

0
φ(⋎)∂⋎

)
, φ2

( ∫ G (τø−1,τø,τø)

0
φ(⋎)∂⋎

))
≤ φ1

( ∫ G (τø−1,τø,τø)

0
φ(⋎)∂⋎

)
.

Since φ1 is continuous and nondecreasing, therefore∫ G (τø,τø+1,τø+1)

0
φ(⋎)∂⋎ ≤

∫ G (τø−1,τø,τø)

0
φ(⋎)∂⋎,

thus the sequence {
∫ G (τø,τø+1,τø+1)

0 φ(⋎)∂⋎} is lower bounded monotone decreasing. Therefore, there exists
π ≥ 0 such that

lim
ø→∞

∫ G (τø,τø+1,τø+1)

0
φ(⋎)∂⋎ = π. (6)

Assume that π ≥ 0. In equation (5), letting lim
ø→∞

on both sides and by (6), we have

φ1(π) ≤ C(φ1(π), φ2(π)).

It can be seen that from definition of C ∈ D, then either

φ1(π) = 0 or φ2(π) = 0.

From the above φ1 and φ2, we have π = 0. Hence by (6), we get

lim
ø→∞

∫ G (τø,τø+1,τø+1)

0
φ(⋎)∂⋎ = 0, (7)

implies

lim
ø→∞

G (τø, τø+1, τø+1) = 0. (8)

Now, we show that the sequence {τø} is Cauchy. On contrary, for an ε > 0, there exists two subsequences
{τϑ£ }, {τø£ } ∈ {τø}with ϑ(£) < ø(£) < ϑ(£ + 1) such that

G (τϑ(£), τø(£), τø(£)) ≥ ε,G (τϑ(£), τø(£)−1, τø(£)−1) < ε. (9)

Consider

φ1

∫ ε

0
φ(⋎)∂⋎ ≤ φ1

( ∫ G (τϑ(£),τø(£),τø(£))

0
φ(⋎)∂⋎

)
≤ C

{
φ1

( ∫ Q(τϑ(£)−1,τø(£)−1,τø(£)−1)

0
φ(⋎)∂⋎

)
, φ2

( ∫ Q(τϑ(£)−1,τø(£)−1,τø(£)−1)

0
φ(⋎)∂⋎

)}
. (10)
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Using (2),

Q(τϑ(£)−1, τø(£)−1, τø(£)−1)

= max
{
G (τϑ(£)−1, τø(£)−1, τø(£)−1),G (τϑ(£)−1, ℏτϑ(£)−1, ℏτϑ(£)−1),G (τø(£)−1, ℏτø(£)−1, ℏτø(£)−1),

G (τø(£)−1, ℏτø(£)−1, ℏτø(£)−1),
G (ℏτϑ(£)−1, τø(£)−1, τø(£)−1) + G (τϑ(£)−1, ℏτø(£)−1, ℏτø(£)−1)

4

}
= max

{
G (τϑ(£)−1, τø(£)−1, τø(£)−1),G (τϑ(£)−1, τϑ(£), τϑ(£)),G (τø(£)−1, τø(£), τø(£)),

G (τø(£)−1, τø(£), τø(£)),
G (τϑ(£), τø(£)−1, τø(£)−1) + G (τϑ(£)−1, τø(£), τø(£))

4

}
= max

{
G (τϑ(£)−1, τø(£)−1, τø(£)−1),G (τϑ(£)−1, τϑ(£), τϑ(£)),G (τø(£)−1, τø(£), τø(£)),

G (τϑ(£)−1, τϑ(£), τϑ(£)) + G (τϑ(£), τø(£)−1, τø(£)−1) + G (τø(£)−1, τø(£), τø(£))
4

}
= max

{
G (τϑ(£)−1, τø(£)−1, τø(£)−1),G (τϑ(£)−1, τϑ(£), τϑ(£)),G (τø(£)−1, τø(£), τø(£))

}
. (11)

Thus ∫
Q(τϑ(£)−1,τø(£)−1,τø(£)−1)

0
φ(⋎)∂⋎

=

∫ max{G (τϑ(£)−1,τø(£)−1,τø(£)−1),G (τϑ(£)−1,τϑ(£),τϑ(£)),G (τø(£)−1,τø(£),τø(£))}

0
φ(⋎)∂⋎

= max
{∫ G (τϑ(£)−1,τø(£)−1,τø(£)−1)

0
φ(⋎)∂⋎,

∫ G (τϑ(£)−1,τϑ(£),τϑ(£))

0
φ(⋎)∂⋎,

∫ G (τø(£)−1,τø(£),τø(£))

0
φ(⋎)∂⋎

}
. (12)

Using (9) and triangle inequality, we get

G (τϑ(£)−1, τø(£)−1, τø(£)−1) ≤ G (τϑ(£)−1, τϑ(£), τϑ(£)) + G (τϑ(£), τø(£)−1, τø(£)−1)
< G (τϑ(£)−1, τϑ(£), τϑ(£)) + ε.

Therefore,

lim
£→∞

∫ G (τϑ(£)−1,τø(£)−1,τø(£)−1)

0
φ(⋎)∂⋎ ≤

∫ ε

0
φ(⋎)∂ ⋎ . (13)

Taking lim
£→∞

on both sides of (10) and by (11), (12), (13), we have

φ1

∫ ε

0
φ(⋎)∂⋎ ≤ C

{
φ1

( ∫ ε

0
φ(⋎)∂⋎

)
, φ2

( ∫ ε

0
φ(⋎)∂⋎

)}
.

Again from definition of C ∈ D, we get either

φ1

( ∫ ε

0
φ(⋎)∂⋎

)
= 0 or φ2

( ∫ ε

0
φ(⋎)∂⋎

)
= 0.

It is possible only if
∫ ε

0 φ(⋎)∂⋎ = 0. This is a contraction by our assumption, therefore, ℵ be the limit of the
Cauchy sequence {τø} such that

lim
ø→∞
ℏτø−1 = ℵ. (14)
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Next, we show that the fixed point of map ℏ is ℵ. That is ℏℵ = ℵ, on contrary. Then G (ℏℵ,ℵ,ℵ) > 0. Let
λ = G (ℏℵ,ℵ,ℵ). Now,

φ1

∫ λ

0
φ(⋎)∂⋎ = φ1

( ∫ G (ℏℵ,ℵ,ℵ)

0
φ(⋎)∂⋎

)
≤ C

{
φ1

( ∫ Q(ε,τø,τø)

0
φ(⋎)∂⋎

)
, ϕ2

( ∫ Q(ε,τø,τø)

0
φ(⋎)∂⋎

)}
. (15)

where

Q(ε, τø, τø) = max{G (ε, τø, τø),G (ε, ℏε, ℏε),G (τø, ℏτø, ℏτø),G (τø, ℏτø, ℏτø),
G (ℏε, τø, τø) + G (ε, ℏτø, ℏτø)

4
}. (16)

Since,

lim
ø→∞

G (ε, τø, τø) = lim
ø→∞

G (τø, τø+1, τø+1) = 0. (17)

Taking lim
ø→∞

in (15) and by (14), (16), (17), we have

φ1

∫ λ

0
φ(⋎)∂⋎ ≤ C

{
φ1

( ∫ max G (ε,ℏε,ℏε)

0
φ(⋎)∂⋎

)
, φ2

( ∫ max G (ε,ℏε,ℏε)

0
φ(⋎)∂⋎

)}
≤ C

{
φ1

( ∫ λ

0
φ(⋎)∂⋎

)
, φ2

( ∫ λ

0
φ(⋎)∂⋎

)}
. (18)

Thus, we obtain either

φ1

( ∫ λ

0
φ(⋎)∂⋎

)
= 0 or φ2

( ∫ λ

0
φ(⋎)∂⋎

)
= 0

that is
∫ λ

0 φ(⋎)∂⋎ = 0. Hence the fact that λ = 0 means that P(ℏℵ,ℵ,ℵ) = 0. So, the fixed point of map ℏ is
ℵ.

For application purposes, from our main results have been derived some useful corollaries. If we let
φ(⋎) = ⋎ in Theorem 3.1, we get a corollary.

Corollary 3.2. Let (ℑ,G ) be a complete G -metric space and a mapping ℏ : ℑ → ℑ such that ∀ τ, ρ, ϖ ∈ ℑ,

φ1

( ∫ G (ℏτ,ℏρ,ℏϖ)

0
φ(⋎))∂⋎

)
≤ C

(( ∫ Q(τ,ρ,ϖ)

0
φ(⋎)∂⋎

)
, φ2

( ∫ Q(τ,ρ,ϖ)

0
φ(⋎)∂⋎

))
,

where

Q(τ, ρ, ϖ) = max{G (τ, ρ, ϖ),G (τ, ℏτ, ℏτ),G (ρ, ℏρ, ℏρ),G (ϖ, ℏϖ, ℏϖ),
G (ℏτ, ρ, ϖ) + G (τ, ℏρ, ℏϖ)

4
},

C is aD-class function, φ2 ∈ Φ2, φ ∈ Φ3.

Corollary 3.3. Let (ℑ,G ) be a complete G -metric space and a mapping ℏ : ℑ → ℑ such that ∀ τ, ρ, ϖ ∈ ℑ,

φ1

( ∫ G (ℏτ,ℏρ,ℏϖ)

0
φ(⋎)∂⋎

)
≤ ∧φ1

( ∫ Q(τ,ρ,ϖ)

0
φ(⋎)∂⋎

)
, (19)

where Q(τ, ρ, ϖ) is given in (2), ∧ ∈ (0, 1), φ1 ∈ Φ1, φ ∈ Φ3. Then ℏ has a unique fixed point.

Corollary 3.4. Let (ℑ,G ) be a complete G -metric space and a mapping ℏ : ℑ → ℑ such that ∀ τ, ρ, ϖ ∈ ℑ,

φ1

( ∫ G (ℏτ,ℏρ,ℏϖ)

0
φ(⋎)∂⋎

)
≤ φ1

( ∫ Q(τ,ρ,ϖ)

0
φ(⋎)∂⋎

)
− φ2

( ∫ Q(τ,ρ,ϖ)

0
φ(⋎)∂⋎

)
, (20)

where Q(τ, ρ, ϖ) is given in (2), φ1 ∈ Φ1, φ2 ∈ Φ2, φ ∈ Φ3. Then ℏ has a unique fixed point.
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4. Application

In this section, we will use Corollary 3.3 to show that there is a solution to the integral equation:

τ(⋎) =
∫ j

i

U(⋎, f)V(f, τ(f))∂f,⋎ ∈ [i, j]. (21)

Let ℑ = (D[i, j],R) stand for the set of all functions that are continuous from [i, j] to R. Define a mapping
ℏ : ℑ → ℑ by

ℏτ(⋎) =
∫ j

i

U(⋎, f)V(f, τ(f))∂f,⋎ ∈ [i, j]. (22)

Theorem 4.1. Consider equation (21) and assume

1. U : [i, j] × [i, j]→ [0, 1) is continuous mapping,
2. V : [i, j] ×R→ R, whereV is a continuous function,

3. max⋎∈[i,j]

∫ j
i
U(⋎, f)∂f < ∧ for some ∧ ∈ (0, 1),

4. For all τ(f), ρ(f) ∈ ℑ, f ∈ [i, j], we have |V(f, τ(f)) −V(f, ρ(f))| ≤ |τ(f) − ρ(f)|.

Then, equation (21) has a solution.

Proof. Define the G -metric on ℑ by

G (τ, ρ, ϖ) = ∂(τ, ρ) + ∂(ρ,ϖ) + ∂(τ, ϖ),∀ τ, ρ, ϖ ∈ ℑ,

where
∂(τ, ρ) = sup⋎∈[i,j]|τ(⋎) − ρ(⋎)|.

Since (ℑ, ∂) is a complete metric space, it is easy to see that (ℑ,G ) is also a complete G -metric space. Let
τ(⋎), ρ(⋎) ∈ ℑ. From (22), (3) and (4), we know that

|ℏτ(⋎) − ℏρ(⋎)| = |
∫ j

i

U(⋎, f)V(f, τ(f)) −V(f, ρ(f))∂f|

≤

∫ j

i

U(⋎, f)|V(f, τ(f)) −V(f, ρ(f))|∂f

≤

∫ j

i

U(⋎, f)|τ(f) − ρ(f)|∂f

≤

∫ j

i

U(⋎, f)|τ(f) − ρ(f)|∂f

= |τ(⋎) − ρ(⋎)|
∫ j

i

U(⋎, f)∂f

≤ ∧|τ(⋎) − ρ(⋎)|.

Hence,

sup⋎∈[i,j]|ℏτ(⋎) − ℏρ(⋎)| ≤ ∧sup⋎∈[i,j]|τ(⋎) − ρ(⋎)|. (23)

Similarly, we have

sup⋎∈[i,j]|ℏρ(⋎) − ℏϖ(⋎)| ≤ ∧sup⋎∈[i,j]|ρ(⋎) − ϖ(⋎)| (24)



A.J. Gnanaprakasam et al. / Filomat 37:24 (2023), 8279–8287 8286

and

sup⋎∈[i,j]|ℏτ(⋎) − ℏϖ(⋎)| ≤ ∧sup⋎∈[i,j]|τ(⋎) − ϖ(⋎)|. (25)

Therefore, from (23), (24), and (25), we have

sup⋎∈[i,j]|ℏτ(⋎) − ℏρ(⋎)| + sup⋎∈[i,j]|ℏρ(⋎) − ℏϖ(⋎)| + sup⋎∈[i,j]|ℏτ(⋎) − ℏϖ(⋎)|
≤ ∧[sup⋎∈[i,j]|τ(⋎) − ρ(⋎)| + sup⋎∈[i,j]|ρ(⋎) − ϖ(⋎)| + sup⋎∈[i,j]|τ(⋎) − ϖ(⋎)|], (26)

which implies
G (ℏτ, ℏρ, ℏϖ) ≤ ∧G (τ, ρ, ϖ).

Therefore, Corollary 3.3 is true. So, ℏ has a fixed point in ℑwhich is a solution of (21).

Below example shows that the condition of Theorem 4.1 is true.

Example 4.2. The integral equation

τ(⋎) =
∫ In(3)

In(2)
cosh(f⋎)τ(f)∂f,⋎ ∈ [In(2), In(3)] (27)

has a solution in ℑ = (D[In(2), In(3)],R).

Proof. Let ℏ : ℑ → ℑ be defined as

ℏτ(⋎) =
∫ In(3)

In(2)
cosh(f⋎)τ(f)∂f,⋎ ∈ [In(2), In(3)].

SpecificallyU(⋎, f) = cosh(f⋎), V(f,⋎) = ⋎, and ∧ ∈ (0, 1) in Theorem 4.1, we get

1. U(⋎, f) is continuous on [In(2), In(3)] × [In(2), In(3)],
2. V(f,⋎) is continuous on [In(2), In(3)] ×R,∀f ∈ [In(2), In(3)],
3.

max
⋎∈[In(2),In(3)]

∫ In(3)

In(2)
cosh(f⋎)∂f = max⋎∈[In(2),In(3)]

sinh(In(3⋎)) − sinh(In(2⋎))
⋎

= max⋎∈[In(2),In(3)]
3⋎ − 3−⋎ − 2⋎ + 2−⋎

2⋎
< 0.7 ≤ ∧,

4. Clearly, ∀τ(f), ρ(f) ∈ ℑ, condition 4 of Theorem 4.1 is satisfied. Hence ℏ has a fixed point in ℑ, which
is a solution to equation (27).

5. Conclusion

In this paper, we prove a fixed point results with the aid of new auxiliary functions for generalized
contractive conditions in the setting of G -metric spaces. An example and application are presented to
strengthen our main results.
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