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Abstract. Combining “forcing” and “global” idea, Xu et al. proposed the concepts: complete forcing set
and complete forcing number of perfect matchings of graph. In this paper, we give explicit formulae for
the complete forcing numbers of phenylene chains and catacondensed phenylene systems, respectively.
Moreover, we present an algorithm to find the minimum complete forcing sets of these graphs.

1. Introduction

The root of the concept of “forcing set” can be traced back to the study of resonance structures in
mathematical chemistry where it was introduced under the name of the innate degree of freedom[10, 15],
and “forcing” has been applied in many research fields, such as graph theory and combinatorial mathematics
[4, 6, 13]. Harary et al. first applied the idea of “forcing” to perfect matching [8]. Subsequently, global
forcing set, global forcing number, complete forcing set and complete forcing number of perfect matchings
of graph has been proposed and studied by scholars.

Forcing edge and forcing number were first proposed by Harary et al. in 1991, they studied the
forcing number and perfect matching vector of perfect matching of polyhex (also known as the hexagonal
system) [8]. The roots of these concepts can be traced back to 1985-1987, Randić and Klein’s research, where
the forcing number was introduced under the name of “innate degree of freedom” of a Kekulé structure
(namely, a perfect matching of graph in mathematics), which plays an important role in the resonance theory
of chemistry [10, 15]. In the past two decades, more and more scholars have studied forcing set (including
forcing edges, forcing faces, etc.) and forcing numbers of graphs. The scope of graphs considered has
been expanded from hexagonal system to all kinds of bipartite graphs and non-bipartite graphs. In 1998,
Pachter and Kim studied a class of bipartite graphs with cyclic packing property and proved that the forcing
number of any perfect matching M in such graphs, it can be obtained by calculating the maximum numbers
of disjoint M-alternating cycles [14]. In 2002, Riddle used the trailing vertex method gave the lower bound of
the forcing number of bipartite graphs [16]. Zhang et al. extensively studied the plane elementary bipartite
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graph and generalized many important results in hexagonal system to plane elementary bipartite graph.
In particular, they extended the concept of forced edge of hexagonal system to connected plane bipartite
graph. Furthermore, the concept of Z-transformation graph was extended to planar bipartite graphs, which
plays an important role in studying the forcing edges and forcing faces of planar bipartite graphs including
hexagonal systems [24]. For the study of forcing numbers of perfect matchings of non-bipartite graphs,
Zhang et al. studied the forcing numbers of perfect matchings of non-bipartite fullerene graphs in 2010
[25]. On the basis of previous studies [25], in 2021, Shi et al. found a special fullerene graph F24 with a
minimum forcing number of 2. By means of construction, they described all fullerenes graphs with forcing
number 3 [17].

Forcing set and forcing number of perfect matching of graph are defined from “local”, that is, by a
particular perfect matching of graph. In 2004, Vukičecić and Sedlar introduced the concept of “global”
from the perspective of all perfect matchings of graph, proposed the concepts of total forcing set and total
forcing number of perfect matching of graph [18]. In 2007, Vukičecić and Došlić introduced equivalent
definitions of total forcing set and total forcing number: global forcing set and global forcing number of
perfect matchings of graph. Methods to calculate the global forcing numbers of perfect matchings of two
kinds of composite graph, grid graph and complete graph were given [19]. On the research of Došlić
[19], in 2012, Cai and Zhang improved some results of Došlić, and obtained the global forcing number of
catafused coronoid containing n hexagons is n or n − 1. In addition, by some properties of nice cycle and
nice subgraph, they cleverly solved some open problems proposed by Došlić [1]. In 2014, Liu and Xu et al.
studied the global forcing numbers of perfect matchings of handgun-shaped benzenoid systems and their
calculation formulae [11]. Furthermore, in 2018, Vukičecić and Zhao et al. extended the concept of global
forcing number and global forcing set to maximal matchings of graph, and obtained some results similar
to perfect matchings. The upper and lower bounds of global forcing numbers for maximal matchings of
graph were given. The global forcing numbers of maximal matchings of trees and complete graphs were
given respectively [20].

Combining “forcing” and “global forcing” ideals, in 2015, Xu et al. proposed the new concepts
complete forcing set and complete forcing number of perfect matchings of graph. Using properties of nice
cycle, they gave sufficient and necessary condition of an edge subset to be a complete forcing set. They
researched complete forcing numbers and complete forcing sets of perfect matchings of hexagonal chain
and catacondensed hexagonal system respectively. The exact formulae for calculating the complete forcing
numbers of those two kinds graphs are given, and the method for finding the minimum complete forcing
set was also given [21].

Based on the above research [21], using similar methods, Xu et al. presented an expression to calculate
complete forcing numbers and a method to find the minimum complete forcing set of perfect matchings
of primitive coronoids [22]. Motivated by the study of Xu [21], Chan et al. proved the linear relationship
between the complete forcing number and Clar number of catacondensed hexagonal system. They also
gave a linear time algorithm for calculating the complete forcing number of perfecting matchings and clar
number of catacondensed hexagonal system [3].

Recently, Liu and Bian et al.(2021) studied complete forcing number of perfect matchings of spiro
hexagonal system, gave its calculating formula, and obtained some inequality relations of global forcing
number of spiro hexagonal system [12]. Subsequently, in 2021, Xue and Bian et al. researched minimum
complete forcing set and complete forcing number of perfect matchings of random multiple chains, and
provided a method to find the minimum complete forcing set [23]. In 2021, He and Zhang used elementary
edge-cut cover and graph decomposition obtained the upper bound and lower bound of complete forcing
numbers of perfect matchings of general hexagonal systems respectively. And used those methods, they got
some formulas for complete forcing numbers of hexagonal systems [9]. Chang et al. (in 2021) discussed the
complete forcing number of perfect matchings of rectangular polynominoes (grid), and gave the calculation
formula of complete forcing number that related to its length [2].

This paper is organized as follows. In the next section, we will give preliminary knowledge and
conclusion concerning complete forcing set and complete forcing number of perfect matchings of graph. In
section 3, we will give explicit formulas of the complete forcing numbers of phenylene chains. In section 4,
we will give an explicit formula for the complete forcing numbers of catacondesed phenylene systems.
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2. Preliminaries

A hexagonal system is a connected graph without cut vertices embedded into the regular hexagonal
lattice in plane, and in which all inner faces are regular hexagons. A hexagonal system is catacondensed if
there no three hexagons sharing one common vertex.

Let H be a catacondensed hexagonal system. A hexagon r of H has one neighbouring hexagon, then it
is said to be terminal, and if it has three neighbouring hexagons, to be branched. A hexagon r being adjacent
to exactly two other hexagons is kink if r possess two adjacent vertices of degree 2, and is linear otherwise.
A catacondensed hexagonal system with no branched hexagon is said to be a hexagonal chain. A hexagonal
chain with no kinks is said to be a linear chain. The number of hexagons in hexagonal chain is called its
length. An edge is shared if it contained in two hexagons.

Fig. 1: A phenylene system and its squeeze.

Let G be a catacondensed hexagonal system with at least two hexagons. If we add quadrilaterals (face
where boundary is a 4-cycle) between all pair of adjacent hexagons of G obtained graph G′

is called phenlene
syetem. We say that G is the hexagonal squeeze of G′

. A phenylene system containing n hexagons is called
an [n]-phenylene system. Clearly, there is one to one correspondence between a phenylene system and its
hexagonal squeeze, both possesses the same number of hexagons, see Fig.1. A phenylene system with n
hexagons possess n − 1 squares.

A perfect matching (or 1-factor) of G is a set of independent edges of G covering all vertices of G. An
edge of G is termed allowed if it lies in some perfect matching of G and forbidden otherwise. A graph G is
said to be elementary if all its allowed edges form a connected subgraph of G.

The boundary of a finite face of G is called a ring if it is a cycle of G. A cycle C of G is called M-alternating
if the edges of C appear alternately in M and E(G)\M. A face f of G is said to be resonant if G has a perfect
matching M such that the boundary of f is an M alternating cycle. The symmetric difference of two finite set
M1 and M2 is defined by M1 ⊕M2 = (M1 ∪M2)\(M1 ∩M2).

A subgraph H of G is said to be nice if G − V(H) has a perfect matching. Let G be a bipartite graph
with a perfect matching M and a cycle C. If the edges of C appear alternating in M and E(G)\M, then we
say that C is an M-alternating cycle. It is obvious that a cycle of G is nice if and only if there is a perfect
matching M of G such that C is an M-alternating cycle. If M1 and M2 are two different perfect matchings,
then the symmetric difference M1 ⊕M2 consists of mutually disjoint (M1,M2)-alternating cycles. Let G be a
plane bipartite graph and C the boundary of a face f of G. If G has a perfect matching M such that C is an
M-alternating cycle, then C and f will be called an M-resonant cycle and face, respectively. That is, a face is
resonant if and only if the boundary of it is a nice cycle.

Let G be a graph with edge set E(G) that admit a perfect matching M. A forcing set of M is a subset
of M contained in no other perfect matchings of G. The minimum cardinality of forcing sets of M is called
forcing number (or innate degree of freedom) of M. The sum of forcing numbers over all perfect matchings
of G is called the degree of freedom of G, denoted by d f (G). Forcing set and forcing number of perfect
matchings of a graph G with edge set E(G) are defined by the “local” approach, i.e., defined with respect
to a particular perfect matching of G. The concept of global forcing set of G from the “global” point of view,
i.e., concerning all perfect matching instead of a particular perfect matching, which is defined as a subset
S of E(G) on which there no two distinct perfect matching coinciding. The minimum cardinality of global
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forcing sets of G is called the global forcing number of G, denoted by 1 f (G). Combing the above “forcing”
and “global” ideals, Xu et al. introduced and defined a complete forcing set of G as a subset of E(G) on which
the restriction of any perfect matching M of G is a forcing set of M. The minimum cardinality of complete
forcing sets is the complete forcing number of G, denoted by c f (G).

As an illustrative example, we consider K4 shown in Fig.2. K4 contains three different perfect matching:
M1 = {e1, e4}, M2 = {e2, e5}, M3 = {e3, e6}. It is easy to say that the restriction of every perfect matching M
on S = {e1, e2, e3} is a forcing set of M. Since every complete forcing set contains at least one edge of every
perfect matching of K4, S is a complete forcing set with the minimum cardinality. Hence, c f (G) = 3. It can
be see that only one edge is taken from each of the three set M1,M2,M3 to form a set, which are all complete
forcing set with minimum cardinality. The intersection of every perfect matching of K4 with set S1 = {e1.e2}

are not equal. It is easy to verify that S1 is one of the minimum set with this property. Then S1 ia a global
forcing set with the minimum cardinality, 1 f (G) = 2. It can be seen that from any two sets of three sets
M1,M2,M3, only one edge is taken respectively to from a set with cardinality 2, which are all global forcing
sets with minimum cardinality.

Fig. 2: The complete graph K4.

Corollary 2.1. [24] Let G be a plane elementary bipartite graph with a perfect matching M and C be an M-alternating
cycle. Then there exists an M-resonant face in the interior of C.

Theorem 2.2. [21] Let G be a graph with edge set E(G) and M be a perfect matching of G. Then S ⊆ E(G) is a
complete forcing set of G if and only if for any nice cycle C of G, the intersection of S and each-type-edges of C is
nonempty.

3. Complete forcing number of phenylene chain

Lemma 3.1. Let G be a catacondensed phenylene system with a cycle C, and M be a perfect matching of G. Suppose
that M(C) are one type-edges of C. Then there exists a hexagon h or a square s contained in C such that M(C) ∩ E(h)
are one type-edges of h, or M(C) ∩ E(s) are one type-edges of s.

Proof. We know that every edge of E(G) is allowed, and catacondensed phenylene system G is a bipartite
graph, then G is a plane elementary bipartite graph. G has perfect matching. For any cycle C of G is an even
cycle, there exists a perfect matching M such that C is an M-alternating cycle. Let M(C) be one type-edges
of C. From Corollary 2.1, there exists an M-resonant face hexagon h or square s contained in C, such that
M(C) ∩ E(h) are one type-edges of h, or M(C) ∩ E(s) are one type-edges of s.

Theorem 3.2. Let G be a catacondensed phenylene system with edge set E(G). Then S ⊆ E(G) is a complete forcing
set of G if and only if S has a nonempty intersection with either of two type-edges of each hexagon h and square s in G.
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Proof. We known that every hexagon and square in catacondensed phenylene system G is nice. From
Theorem 2.2, the necessity is obvious. Next, we prove the sufficiency.

Suppose that M is a perfect matching of G and S ⊆ E(G) has a nonempty intersection with either of two
type edges of each hexagon h and square s in G. From Theorem 2.2, we show that for any nice cycle C of G,
S has a nonempty intersection with either of two type-edges of C, say M(C), S ∩M(C) , ∅. From Lemma
3.1, C contain a face f (hexagon or square) is one of two type-edges of the boundary of f . According to the
definition of set S, S has a nonempty intersection with either two type-edges of each hexagon and square
of G. From Theorem 2.2, the sufficiency has proved. □

Let G be a catacondensed phenylene system with hexagon h, the shared edges in a kink hexagon h or a
branched hexagon h belong to one common type-edge of h, while the two shared edges in a linear hexagon
h belong to distinct type-edges of h.

Suppose that S is a complete forcing set of a catacondensed phenylene system with a hexagon h and
an edge e ∈ E(h). If e is not in S, then we say h contribute 0 to |S| in term of e, if e is in S and shared by h
and the other hexagon h′ , then we say h contribute 1

2 to S in term of e. If e is in S and not shared, then we
say h contribute 1 to |S| in terms of e. The contribution of a whole hexagon h to S is defined as the sum of
contribution in term of e over all edges e of E(h).

Theorem 3.3. Let H be a phenylene chain with n hexagons, then c f (H) = 3n − 1.

Proof. We first prove c f (H) ⩾ 3n − 1, and then construct a complete forcing set S with cardinality 3n − 1.
Let n∗ be the number of kink hexagons of H. According to the two shared edges of a kink hexagon

belong to one common type-edges, the two shared edges in a linear hexagon belong to distinct type-edges.
From Theorem 3.2, we known that every terminal hexagon in H contribute at least 1 + 1

2 =
3
2 to |S|, every

linear hexagon contribute at least 1
2 +

1
2 = 1 to |S|, and every kink hexagon contribute at least 1 + 1

2 =
3
2 to

|S|. So all non-kink hexagons in H have total contribute at least 3
2 × 2 + (n − n∗ − 2) × 1 = n − n∗ + 1, all kink

hexagons have total contribute at least 3
2 n∗.

For convenience, we specify that for a kink hexagon or terminal hexagon h, we take one type-edges of h
is the shared edge between h and the adjacent square to the right side of h. From Theorem 3.2, every square
contribute at least 1 + 1

2 =
3
2 , and on this basis, the square between two adjacent linear hexagons, or square

between adjacent linear and terminal hexagons, or from left to right square between adjacent kink hexagon
and non-kink hexagon (that is, it has order) contributes more than 1

2 to |S|. So, all squares contribute at least
3
2 (n − 1) + 1

2 (n − n∗ − 1).
From above, we have

c f (H) ⩾ n − n∗ + 1 +
3
2

n∗ +
3
2

(n − 1) +
1
2

(n − n∗ − 1)

= 3n − 1.

In what follow, we construct a complete forcing set S with cardinality of |S| = 3n − 1. For any linear or
terminal hexagon, in the case of type-edges with shared edge in it, we selected shared edge into S, for the
other type-edges of terminal hexagons any one edge can be selected into S. For every kink hexagon, we
selected the shared edge of kink hexagon and the adjacent square to the right side of this kink hexagon, for
any other type-edges of kink hexagon, we selected either one edge into S. For square, based on the above
selection of edges, we selected any one edge for the other type-edges into S. See example. It is easy to prove
that such an S is a complete forcing set of H with |S| = 3n − 1.

Note 3.1. We can also give the proof of Theorem 3.3 by induction on n.

In fact, for n = 1, 2, 3, the conclusion is clearly true. Assume that this is true when n = k, that is c f (H) = 3k−1.
Let’s verify when n = k + 1. The phenylene chain Hk+1 with k + 1 hexagons is equivalent to adding
a square and a hexagon to phenylene chain Hk, see Fig.3. From Theorem 3.2, the minimum complete
forcing set of Hk+1 has three more edges based on the minimum complete forcing set of Hk. That is
c f (Hk+1) = c f (Hk) + 3 = 3k − 1 + 3 = 3(k + 1) − 1. Conclusion of Theorem 3.3 is proved.
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From Theorem3.2, Theorem3.3 and Note3.1, we can give a linear-time algorithm to computer the
complete forcing number of a phenylene chain as follows.

Algorithm A (Computing the complete forcing number of a phenylene chain)
Input: a phenylene chain H with n hexagons.
Output: the complete forcing number ch(H) of H.
Initialize a set T as the set of terminal hexagons in H with |T| = 2 or 1; c f (H) = 0.
While T , ∅ do
If |T| = 2

choose a terminal hexagon h and the square s adjacent to h;
delete h from T, add hexagon h′ that adjacent to square s except h into T,
H← the subgraph of H that not contains h and s;
c f (H)← c f (H) + 3;

else |T| = 1
c f (H)← c f (H) + 2;
end if

end while

Theorem 3.4. Algorithm A runs in O(n) time.

Proof. Take any terminal hexagon h from the set of terminal hexagons in H1 = H. We explore the terminal
hexagon h and the square s that adjacent to h, which is implemented in O(2) time. We delete h and s from
G1 (but not shared edges with the other part) and denote the resulting graph with n− 1 hexagon by G2 and
update the set of terminal hexagons in G2 in O(1) time. We continue until there are left with the empty
graph. Hence the total time we need is O(2(n − 1) + n) = O(n).

Fig. 3: Two ways of constructing Hk+1 from Hk.

Fig. 4: A phenylene chain with 10 hexagons, with their kinks indicated by placing letter ‘K’ at centers of them. The complete forcing
set indicated by bold edges has minimum cardinality 29.

4. Complete forcing number of catacondensed phenylene system

In this subsection we study complete forcing numbers of catacondensed phenylene systems.
A branched hexagon h in a catacondensed phenylene system G is called terminal if two of its three



L. Wei et al. / Filomat 37:24 (2023), 8309–8317 8315

branches contain no branched hexagons of G, which are denoted by C1
G(h) and C2

G(h). According to the
terminal branched hexagon h, we decompose G into two smaller constituents by deleting the two unshared
edges e1, e2 of the square which between hexagon h and hexagon in C1

G(h) or C2
G(h), one is a phenylene chain,

denoted by Gc(h), the other is its residual, denoted by Gr(h).

Fig. 5: Illustration for decomposition of a catacondensed phenylene system G.

Theorem 4.1. Let G be a catacondensed phenylene system, h a terminal branched hexagon of G. Then c f (G) =
c f (Gc(h)) + c f (Gr(h)) + 1.

Proof. Let S be a minimum complete forcing set of G. It is evident that restrictions of S on Gc(h) and Gr(h)
are minimum complete forcing set of Gc(h) and Gr(h) respectively. In turn, let S1 be a minimum complete
forcing set of Gc(h), S2 is a minimum complete forcing set of Gr(h). Then S1 ∪ S2 ∪ {e1}(or{e2}) is a minimum
complete forcing set of G. So c f (G) = c f (Gc(h)) + c f (Gr(h)) + 1. □

Corollary 4.2. Let G be a catacondensed phenylene system with n hexagons, then c f (G) = 3n − 1.

Proof. Let l be the number of branched hexagons of a catacondensed phenylene system G. According to the
decomposition of above, we will have l + 1 phenylene chains, and l squares in G are reduced. We assume
that lengths of those l+ 1 phenylene chains are k1, k2, . . . , kl+1, then k1 + k2 + · · ·+ kl+1 = n. From Theorem 4.1
and From Theorem 3.3, we have

c f (G) = 3k1 − 1 + 3k2 − 1 + · · · + 3kl+1 − 1 + l
= 3(k1 + k2 + · · · + kl + 1) − (l + 1) + l
= 3n − 1.

From Theorem4.1 and Corollary4.2, we can give a linear-time algorithm to complete forcing number of
a catacondensed phenylene system as follows.

Algorithm B (Computing the complete forcing number of a cata-condensed phenylene system)
Input: a cata-condensed phenylene system G with n hexagons.
Output: the complete forcing number c f (G) of G.
Initialize a set T as the set of branched hexagons in G; c f (G) = 0.
While T , ∅ do

choose a terminal branched hexagon h ∈ T;
decompose G into subgraphs Cr

G(h) and Cc
G(h) to get a phenylene chain, which is denoted as H, (see

Fig.6);
T← T − h;
G← G\H;

c f (G)← c f (G) + c f (H) + 1;
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end while

In order to better explain Theorem 4.1 and Corollary 4.2, we will give the following example. The above
notations will continue to be used.

Example 4.3. Let G be a catacondensed phenylene system with 13 hexagons, and the decompositions of G are shown
in Fig.6.

Fig. 6: An application of Theorem 4.1 to a catacondensed phenylene system. G can be decomposed into G1,G2,G3,G4. A minimum
complete forcing set of G is indicated by bold edges.

Obviously, l = 3 for G. After the decomposition of G, k1 = 1, k2 = 4, k3 = 2, k4 = 6. Then

c f (G) = c f (G1) + c f (G2) + c f (G3) + c f (G4) + l
= 3k1 − 1 + 3k2 − 1 + 3k3 − 1 + 3k4 − 1 + 3
= 38.

On the other hand, c f (G) = 3n − 1 = 3 × 13 − 1 = 38.
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