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Abstract. The purpose of this paper is to study variational inequality problem over the solution set of
multiple-set split monotone variational inclusion problem. We propose an iterative algorithm with inertial
method for finding an approximate solution of this problem in real Hilbert spaces. Strong convergence of
the sequence of iterates generated from the proposed method is obtained under some mild assumptions.The
iterative scheme does not require prior knowledge of operator norm. Also we present some applications of
our main result to solve the bilevel programming problem, the bilevel monotone variational inequalities, the
split minimization problem, the multiple-set split feasibility problem and the multiple set split variational
inequality problem.

1. Introduction

The variational inclusion problems are being used as mathematical models for the study of several
optimization problems arising in finance, economics, network, transportation and engineering. For a real
Hilbert spaceH , the monotone inclusion problem is formulated as follows:

Find an element x⋆ ∈ H such that 0 ∈ (A + B)x∗, (1)

where B : H → 2H is a maximal monotone operator and A : H → H is a Lipschitz continuous monotone
operator. The set of solutions of the problem (1) is denoted by (A + B)−1(0).

Let C be a nonempty closed convex subset of a real Hilbert spaceH and F : H →H be an operator. The
classical variational inequality problem (VIP) is formulated as follows:

Find an element x⋆ ∈ C such that ⟨Fx⋆, y − x⋆⟩ ≥ 0, ∀y ∈ C. (2)

The set of solutions of this problem is denoted by VI(C,F). Several researches used different approaches to
develop iterative algorithms for solving various classes of variational inequality and variational inclusion
problems. For details see [1, 17, 28, 31, 34–36, 43, 48, 50, 56] and the references therein.
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A popular method for solving problem (1) in real Hilbert spaces is the well-known forward-backward
splitting method introduced by Passty [43] and Lions and Mercier [36]. The method is formulated as:

xn+1 = (I + λnB)−1(I − λnA)xn, λn > 0, (3)

under the condition that Dom(B) ⊂ Dom(A). It was shown, see for example [17], that weak convergence of
(3) requires quite restrictive assumptions on A and B, such that the inverse of A is strongly monotone or
B is Lipschitz continuous and monotone and the operator A + B is strongly monotone on Dom(B). In [56],
Tseng weakened these assumptions and included an extra step per each step of (3) (called Tseng’s splitting
algorithm) and obtained weak convergence result in real Hilbert spaces. Recently, Gibali and Thong [26],
have obtained strong convergence result by modifying Tseng’s splitting algorithm in real Hilbert spaces.

In the recent years, inertial terms have attracted the interest and research of scholars as a technique
to accelerate the convergence speed of algorithms. A common feature of inertial-type algorithms is that
the next iteration depends on the combination of the previous two iterations (see [2, 44] for more details).
This small change greatly improves the computational efficiency of inertial-type algorithms. Recently,
many researchers have constructed a large number of inertial-type algorithms to solve variational inclusion
problems and other optimization problems; see, e.g., [38] and the references therein. The computational
efficiency of these inertial-type algorithms was demonstrated by a number of computational tests and
applications. Quite recently, Eslamian and Kamandi [24], proposed an iterative algorithm with inertial
extrapolation step for finding a common element of the set of solutions of a system of monotone inclusion
problems.

LetH andK be real Hilbert spaces, T : H → K be a bounded linear operator and let {Ci}
p
i=1 be a family

of nonempty closed convex subsets inH and {Q j}
r
j=1 be a family of nonempty closed convex subsets in K .

The multiple-set split feasibility problem was introduced by Censor et al. (2005) [14] and is formulated as
finding a point x⋆ with the property:

x⋆ ∈
p⋂

i=1

Ci and Tx⋆ ∈
r⋂

j=1

Qi.

The multiple-set split feasibility problem with p = r = 1 is known as the split feasibility problem [13].
In 2011, Moudafi [41] introduced the following split monotone variational inclusion problem:

Find x⋆ ∈ H such that 0 ∈ (A1 + B1)x∗,

and such that

y⋆ = Tx⋆ ∈ K solves 0 ∈ (A2 + B2)y∗,

(4)

where B1 : H → 2H is a multi-valued mapping on a Hilbert space H , B2 : K → 2K is a multi-valued
mapping on a Hilbert spaceK , T : H → K is a bounded linear operator, A1 : H →H , A2 : K → K are two
given single-valued operators. In the case that A1 and A2 are inverse strongly monotone mapping, based on
average operator technique, Moudafi [41] proposed an iterative method with weak convergence for solving
it. Many mathematical problems such as split feasibility problem, split variational inequality problem,
split zero problem, split equilibrium problem and split minimization problem [15, 40], are the special cases
of the split monotone variational inclusion problem. These problems have been studied and applied to
solving many real life problems such as in modelling intensity-modulated radiation therapy treatment
planning, modelling of inverse problems arising from phase retrieval, in sensor networks in computerized
tomography and data compression [9, 12, 14, 20]. Therefore split variational inclusion problem has drawn
the attention of many mathematicians. In the case A1 = 0 and A2 = 0, Byrne et al. [10] studied the weak
convergence of the following iterative method for the split variational inclusion problem:

xn+1 = JB1
λ (xn + τT∗(JB2

λ − I))Txn (5)

where λ > 0 and τ ∈ (0, 2
∥T∥2 ). There have been many authors who modified of this method for solving

the split variational inclusion problem in the several settings (see, e.g., [3, 16, 18, 21–23, 25, 45–47, 53]).
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However, it is observed that the stepsizes of almost of the methods depend on the norm of a bounded linear
operator. It is known that the norm of a bounded linear operator or matrix in the finite dimensional space is
very difficult to compute (see [30]). To overcome this difficulty, López et al. [37], introduced a self-adaptive
method for solving the split feasibility problem. The advantage of this method is the stepsize does not
require the prior knowledge norm of a bounded linear operator. It is worth to interest the self-adaptive
method because we can easily compute the stepsize. In recent years, there have been many authors who
studied the modified methods such that the stepsizes do not depend on the norm (see, e.g., [19, 54, 58]).

A constrained optimization problem in which the constrained set is a solution set of another optimization
problem is called a bilevel programming problem. Among the applications where bilevel programming
problems play an important role we mention the modelling of Stackelberg games, the determination of
Wardrop equilibria for network flows, convex feasibility problems, domain decomposition methods for
PDEs, image processing problems and optimal control problems, etc, ( see [4–7, 11, 39, 42]). If the first-
level problem is a variational inequality problem and the second-level problem is a set of fixed points of a
mapping, then the bilevel problem is called hierarchical variational inequality problem. Many important
application problems, such as signal recovery, power-control, bandwidth allocation, optimal control, and
beam-forming, are special cases of hierarchical variational inequality problem, see ( [32, 33, 51, 57]). Yamada
[57] considered the following hybrid steepest-decent iterative method for solving hierarchical variational
inequality:

xn+1 = (I − µαnF)Txn,

where F is a Lipschitzian continuous and strongly monotone operator and T is a nonexpansive operator.
Let H and K , be real Hilbert spaces and let Ti : H → K , (i = 1, 2, ...,m), be bounded linear operators

such that Ti , 0. Let for i ∈ {1, 2, ...,m}, Gi : K → 2K , Bi : H → 2H be maximal monotone operators and
let Ai : H → H be monotone and Lipschitz continuous operator. Let F be a Lipschitzian continuous and
strongly monotone operator. In this paper we study the following problem: Find x⋆ ∈ Ω =

⋂m
i=1(Ai + Bi)−1(0) ∩ T−1

i (G−1
i 0),

such that x⋆ ∈ VI(Ω,F).
(6)

Inspired by the inertial algorithm, the hybrid steepest-descent method and Tseng’s splitting algorithm, we
introduce a new and efficient iterative method for solving the problem (6). The strong convergence of the
proposed algorithm is proved without knowing any information of the Lipschitz and strongly monotone
constants of the mappings. Moreover, the iterative scheme does not require prior knowledge of operator
norm. Also we present some applications of our main results to solve the bilevel programming problem, the
bilevel monotone variational inequalities, the split minimization problem, the multiple-set split feasibility
problem and the multiple set split variational inequality problem. Our results improve and generalize the
results of Anh et al. [3], Censor et al. [15], Thong et al. [55], and many others.

2. Preliminaries

We use the following notation in the sequel:
•⇀ for weak convergence and→ for strong convergence.

Given a nonempty closed convex subset C of a Hilbert space H , the mapping that assigns every point
x ∈ H , to its unique nearest point in C is called the metric projection onto C and is denoted by PC; i.e.,
PC(x) ∈ C and ∥x−PC(x)∥ = in fy∈C∥x− y∥. The metric projection PC is characterized by the fact that PC(x) ∈ C
and

⟨y − PC(x), x − PC(x)⟩ ≤ 0, ∀x ∈ H , y ∈ C.

We recall the following definitions concerning operator F : H →H .

Definition 2.1. The operator F : H →H is called
• Lipschitz continuous with constant L > 0 if

∥F(x) − F(y)∥ ≤ L∥x − y∥, ∀x, y ∈ H .
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• Contraction, if there exists a constant 0 ≤ k < 1 such that

∥F(x) − F(y)∥ ≤ k∥x − y∥, ∀x, y ∈ H .

•Monotone if
⟨F(x) − F(y), x − y⟩ ≥ 0, ∀x, y ∈ H .

• Strongly monotone with constant β > 0, if

⟨F(x) − F(y), x − y⟩ ≥ β∥x − y∥2, ∀x, y ∈ H .

• Inverse strongly monotone with constant β > 0, (β − ism) if

⟨F(x) − F(y), x − y⟩ ≥ β∥F(x) − F(y)∥2, ∀x, y ∈ H .

• Nonexpansive, if
∥Fx − Fy∥ ≤ ∥x − y∥, ∀x, y ∈ H .

• Firmly nonexpansive, if

∥Fx − Fy∥2 ≤ ∥x − y∥2 − ∥(x − Fx) − (y − Fy)∥2, ∀x, y ∈ H .

Definition 2.2. Let C be a nonempty convex subset of a real Hilbert spaceH . A mapping F : C → H is said to be
hemicontinuous if for any fixed x, y ∈ C, the mapping t→ F(x + t(y − x)) defined on [0, 1] is continuous, that is, if F
is continuous along the line segments in C.

It is easy to see that every Lipschitz continuous mapping is hemicontinuous.

Lemma 2.3. [35] Let C be a nonempty closed and convex subset of real Hilbert spaceH and A : C→H be a strongly
monotone and Lipschitz continuous mapping. Then VI(C,A) consists only one point.

Lemma 2.4. [57] Let the operator A : H → H be l-Lipschitz continuous and δ-strongly monotone with constants
l > 0, δ > 0. Assume that γ ∈ (0, 2δ

l2 ). For α ∈ (0, 1) define Tα = I − αγA. Then for all x, y ∈ H ,

∥Tαx − Tαy∥ ≤ (1 − αη)∥x − y∥

holds, where η = 1 −
√

1 − γ(2δ − γl2) ∈ (0, 1).

Lemma 2.5. [27] (Demiclosed Principle) Let C be a nonempty closed convex subset of a Hilbert space H and
T : C → H a nonexpansive mapping. Then I − T is demiclosed at zero, that is, if {xn} is a sequence in C converges
weakly to x and (I − T)xn converges strongly to zero, then (I − T)x = 0.

Let B be a mapping of H into 2H . The effective domain of B is denoted by Dom(B), that is, Dom(B) =
{x ∈ H : Bx , ∅}. A multi-valued mapping B on H is said to be monotone if ⟨x − y, u − v⟩ ≥ 0 for all
x, y ∈ Dom(B), u ∈ Bx and v ∈ By. A monotone mapping B on H is said to be maximal if its graph is not
properly contained in the graph of any other monotone mapping onH . For a maximal monotone mapping
B on H and r > 0, we may define a single-valued mapping JB

r = (I + rB)−1 : H → Dom(B), which is called
the resolvent of B for r. Let B be a maximal monotone mapping onH and let B−10 = {x ∈ H : 0 ∈ Bx}. It is
known that the resolvent JB

r is firmly nonexpansive and B−10 = Fix(JB
r ) for all r > 0; see [52] for more details.

Lemma 2.6. [8] Let B : H → 2H be a maximal monotone mapping and A : H →H be a Lipschitz continuous and
monotone mapping. Then the mapping A + B is a maximal monotone mapping.

Lemma 2.7. [26] Let B : H → 2H be a maximal monotone operator and A : H → H be a mapping onH . Define
Tλ := (I + λB)−1(I − λA), (λ > 0).Then we have

Fix(Tλ) = (A + B)−1(0).
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Lemma 2.8. [8](The Resolvent Identity) For λ, µ > 0, there holds the identity:

JT
λx = JT

µ(
µ

λ
x + (1 −

µ

λ
)JT
λx), x ∈ H .

Lemma 2.9. ([29]) Assume {sn} is a sequence of nonnegative real numbers such thatsn+1 ≤ (1 − ηn)sn + ηnδn, n ≥ 0,
sn+1 ≤ sn − ϱn + ζn, n ≥ 0,

where {ηn} is a sequence in (0, 1), {ϱn} is a sequence of nonnegative real numbers and {δn} and {ζn} are two sequences
in R such that

(i)
∑
∞

n=1 ηn = ∞,
(ii) limn→∞ ζn = 0

(iii) limk→∞ ϱnk = 0, implies lim supk→∞ δnk ≤ 0 for any subsequence {nk} ⊂ {n}.

Then limn→∞ sn = 0.

3. The algorithm and its convergence

In this section, we first present the new algorithm for solving the problem (6) and then analyze its
convergence.

Theorem 3.1. LetH andK , be real Hilbert spaces and let Ti : H → K , (i = 1, 2, ...,m), be bounded linear operators
such that Ti , 0. Let for i ∈ {1, 2, ...,m}, Gi : K → 2K , Bi : H → 2H be maximal monotone operators and
let Ai : H → H be monotone and Li-Lipschitz continuous operators. Suppose that Ω =

⋂m
i=1(Ai + Bi)−1(0) ∩

(Ti)−1((Gi)−1(0)) , ∅. Let the operator F : H → H be l-Lipschitz continuous and δ-strongly monotone with
constants l > 0, δ > 0. Let α > 0, γi ∈ (0, 1), λ(1,i) > 0 and let x1, x0 ∈ H be two initial points. Let {xn} be a sequence
defined by:

wn = xn + αn(xn − xn−1),

zn,i = (I − τn,iT∗i (I − JGi
sn,i

)Ti)wn

un,i = (I + λn,iBi)−1(zn,i − λn,iAi(zn,i)),

vn,i = un,i + λn,i(Ai(zn,i) − Ai(un,i)), i ∈ {1, 2, ...,m},

yn =
∑m

i=1 aivn,i,

xn+1 = (I − βnF)yn, n ≥ 1,

(7)

where 0 ≤ αn ≤ αn such that

αn =

 min{
εn

∥xn − xn−1∥
, α}, if ∥xn − xn−1∥ , 0,

α, otherwise,
(8)

and

τn,i =


ρn,i∥(I − JGi

sn,i
)Ti(wn)∥2

∥(T∗i (I − JGi
sn,i

)Ti)(wn)∥2
, if ∥(T∗i (I − JGi

sn,i
)Ti)(wn)∥2 , 0,

0, otherwise,
(9)

and

λ(n+1,i) =

 min{ γi∥zn,i−un,i∥

∥Ai(zn,i)−Ai(un,i)∥
, λn,i}, if ∥Ai(zn,i) − Ai(un,i)∥ , 0,

λn,i, otherwise.
(10)

Assume that the sequences {βn}, {ai}, {sn,i}, {ρn,i} and {εn} satisfying the following conditions:
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(i) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑
∞

n=0 βn = ∞,
(ii) ai > 0,

∑m
i=1 ai = 1, for i = 1, 2, ...,m,

(iii) lim infn sn,i > 0 for i = 1, 2, ...,m,
(iv) 0 < ρn,i < 2 and infn ρn,i(2 − ρn,i) > 0 for i = 1, 2, ...,m,
(v) εn > 0 and limn→∞

εn

βn
= 0.

Then, the sequence {xn} converges strongly to the unique solution x⋆ ∈ VI(Ω,F).

Proof. First we show that {xn} is bounded. Since Ω is nonempty, closed and convex, from Lemma 2.3 we
have VI(Ω,F) has a unique solution. We denote x⋆ ∈ H the unique solution of VI(Ω,F).

Since x⋆ ∈ Ω, we have 0 ∈ Gi(Tix⋆). Thus Tix⋆ ∈ (Gi)−1(0) = Fix(JGi
sn,i

). Hence we have

⟨T∗i (I − JGi
sn,i

)Tiwn,wn − x⋆⟩ = ⟨(I − JGi
sn,i

)Tiwn − (I − JGi
sn,i

)Tix⋆,Tiwn − Tix⋆⟩

≥ ∥(I − JGi
sn,i

)Tiwn∥
2. (11)

If for some n ≥ 1 and i ∈ {1, 2, ...,m}, ∥(T∗i (I − JGi
sn,i

)Ti)(wn)∥ = 0, then ∥zn,i − x⋆∥ = ∥wn − x⋆∥. Otherwise,
from (9) and inequality (11) we get

∥zn,i − x⋆∥2

= ∥(I − τn,iT∗i (I − JGi
sn,i

)Ti)wn − x⋆∥2

= ∥(wn − x⋆) − τn,iT∗i (I − JGi
sn,i

)Tiwn∥
2

= ∥wn − x⋆∥2 + (τn,i)2
∥T∗i (I − JGi

sn,i
)Tiwn∥

2
− 2τn,i⟨wn − x⋆,T∗i (I − JGi

sn,i
)Tiwn⟩

≤ ∥wn − x⋆∥2 + (τn,i)2
∥T∗i (I − JGi

sn,i
)Tiwn∥

2
− 2τn,i∥(I − JGi

sn,i
)Tiwn∥

2

≤ ∥wn − x⋆∥2 − ρn,i(2 − ρn,i)
∥(I − JGi

sn,i
)Ti(wn)∥4

∥T∗i (I − JGi
sn,i

)Ti(wn)∥2
. (12)

Note that, if ∥T∗i (I − JGi
sn,i

)Ti(wn)∥ = 0, it follows from JGi
sn,i

(Ti(x⋆)) = Ti(x⋆) and the equation (11) that
∥(I − JGi

sn,i
)Ti(wn)∥ = 0.

From [26] we know that for each i ∈ {1, 2, ...,m} the limit of {λn,i} exists, and limn→∞ λn,i = λi > 0. For
each i ∈ {1, 2, ...,m}, we have (see [26]):

∥vn,i − x⋆∥2 ≤ ∥zn,i − x⋆∥2 − (1 − (
γiλn,i

λ(n+1,i)
)2)∥zn,i − un,i∥

2, (13)

and

∥vn,i − un,i∥ ≤
γiλn,i

λ(n+1,i)
∥zn,i − un,i∥. (14)

From the inequalities (12) and (13) and convexity of ∥.∥2 we get

∥yn − x⋆∥2 = ∥
m∑

i=1

aivn,i − x⋆∥2 ≤
m∑

i=1

ai∥vn,i − x⋆∥2

≤

m∑
i=1

ai∥zn,i − x⋆∥2 −
m∑

i=1

ai(1 − (
γiλn,i

λn+1,i
)2)∥zn,i − un,i∥

2

≤ ∥wn − x⋆∥2 −
m∑

i=1

ai(1 − (
γiλn,i

λn+1,i
)2)∥zn,i − un,i∥

2

−

m∑
i=1

aiρn,i(2 − ρn,i)
∥(I − JGi

sn,i
)Ti(wn)∥4

∥T∗i (I − JGi
sn,i

)Ti(wn)∥2
. (15)
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We have αn∥xn − xn−1∥ ≤ εn for all n, which together with limn→∞
εn
βn
= 0 implies that

lim
n→∞

αn

βn
∥xn − xn−1∥ = 0.

It follows that there exists a constant M1 > 0 such that

αn

βn
∥xn − xn−1∥ ≤M1.

From the definition of wn, we get

∥wn − x⋆∥ = ∥xn + αn(xn − xn−1) − x⋆∥

≤ ∥xn − x⋆∥ + αn∥xn − xn−1∥

= ∥xn − x⋆∥ + βn
αn
βn
∥xn − xn−1∥

≤ ∥xn − x⋆∥ + βnM1.

(16)

Hence, it follows from (15) and (16) that

∥yn − x⋆∥ ≤ ∥wn − x⋆∥ ≤ ∥xn − x⋆∥ + βnM1. (17)

Take γ ∈ (0, 2δ
l2 ). Since limn→∞ βn = 0, there exist n0 ∈ N such that for all n > n0, βn < γ. Hence βn

γ ∈ (0, 1).
From Lemma 2.4 for all n > n0 we have

∥(I − βnF)yn − (I − βnF)x⋆∥ = ∥(I − βn

γ γF)yn − (I − βn

γ γF)x⋆∥

≤ (1 − βn

γ η)∥yn − x⋆∥,
(18)

where η = 1 −
√

1 − γ(2δ − γl2) ∈ (0, 1). Utilizing the inequalities (17) and (18) we get that

∥xn+1 − x⋆∥ = ∥yn − βnFyn − x⋆∥

= ∥(I − βnF)yn − (I − βnF)x⋆ − βnFx⋆∥

≤ ∥(I − βnF)yn − (I − βnF)x⋆∥ + βn∥Fx⋆∥

≤ (1 − βn

γ η)∥yn − x⋆∥ + βn∥Fx⋆∥

≤ (1 − βn

γ η)∥xn − x⋆∥ + βnM1 + βn∥Fx⋆∥

≤ (1 − βn

γ η)∥xn − x⋆∥ + βn

γ η[
γ(M1+∥Fx⋆∥)

η ]

≤ max{∥xn − x⋆∥, γ(M1+∥Fx⋆∥)
η }

≤ · · · ≤ max{∥xn0 − x⋆∥, γ(M1+∥Fx⋆∥)
η }

This implies that {xn} is bounded. We also get {yn} and {wn} are bounded. We have

∥wn − x⋆∥2 = ∥xn + αn(xn − xn−1) − x⋆∥2

≤ ∥xn − x⋆∥2 + (αn)2
∥xn − xn−1∥

2 + 2αn⟨xn − x⋆, xn − xn−1⟩

≤ ∥xn − x⋆∥2 + (αn)2
∥xn − xn−1∥

2 + 2αn∥xn − x⋆∥∥xn − xn−1∥.
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Utilizing inequality (18) and inequality ∥x + y∥2 ≤ ∥x∥2 + 2⟨y, x + y⟩,∀x, y ∈ H ,we arrive at

∥xn+1 − x⋆∥2 = ∥yn − βnFyn − x⋆∥2

= ∥(I − βnF)yn − (I − βnF)x⋆ − βnFx⋆∥2

≤ ∥(I − βnF)yn − (I − βnF)x⋆∥2 − 2βn⟨Fx⋆, xn+1 − x⋆⟩

≤ (1 − βn

γ η)
2
∥yn − x⋆∥2 + 2βn⟨Fx⋆, x⋆ − xn+1⟩

≤ (1 − βn

γ η)∥wn − x⋆∥2 + 2βn⟨Fx⋆, x⋆ − xn+1⟩

≤ (1 − βn

γ η)∥xn − x⋆∥2 + 2βn⟨Fx⋆, x⋆ − xn+1⟩

+ (αn)2
∥xn − xn−1∥

2 + 2αn∥xn − x⋆∥∥xn − xn−1∥

≤ (1 − βn

γ η)∥xn − x⋆∥2 + ( βn

γ η)(
2γ
η )⟨Fx⋆, x⋆ − xn+1⟩

+ αn∥xn − xn−1∥(αn∥xn − xn−1∥ + 2∥xn − x⋆∥)

≤ (1 − βn

γ η)∥xn − x⋆∥2 + ( βn

γ η)(
2γ
η )⟨Fx⋆, x⋆ − xn+1⟩

+ 3αn∥xn − xn−1∥M

= (1 − βn

γ η)∥xn − x⋆∥2

+
βn

γ η[
2γ
η ⟨Fx⋆, x⋆ − xn+1⟩ +

3γαn

βn

M
η ∥xn − xn−1∥]

= (1 − σn)∥xn − x⋆∥2 + σnϑn, ∀n > n0,

(19)

where

σn =
βn

γ
η, ϑn =

2γ
η
⟨Fx⋆, x⋆ − xn+1⟩ +

3γαn

βn

M
η
∥xn − xn−1∥

and M = supn∈N{∥xn − x⋆∥, αn∥xn − xn−1∥}. It is easy to see that σn → 0,
∑
∞

n=1 σn = ∞.
Since {xn} is bounded, there exists a constant M2 > 0 such that

2γ⟨Fx⋆, x⋆ − xn+1⟩ ≤M2.

From Algorithm 7 and inequality (18) we have

∥xn+1 − x⋆∥2 = ∥yn − βnFyn − x⋆∥2

= ∥(I − βnF)yn − (I − βnF)x⋆ − βnFx⋆∥2

≤ ∥(I − βnF)yn − (I − βnF)x⋆∥2 − 2βn⟨Fx⋆, xn+1 − x⋆⟩

≤ (1 − βn

γ η)
2
∥yn − x⋆∥2 + 2βn⟨Fx⋆, x⋆ − xn+1⟩

≤ ∥yn − x⋆∥2 + βnM2 ∀n > n0.

From above inequality and inequality (15), for all n > n0, we get

∥xn+1 − x⋆∥2 ≤ ∥wn − x⋆∥2 −
∑m

i=1 ai(1 − (γiλn,i

λn+1,i
)2)∥zn,i − un,i∥

2

−
∑m

i=1 ai ρn,i(2 − ρn,i)
∥(I − JGi

sn,i
)Ti(wn)∥4

∥T∗i (I − JGi
sn,i

)Ti(wn)∥2
+ βnM2.

(20)

Also we have
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∥wn − x⋆∥2 = (∥xn − x⋆∥ + βnM1)2

= ∥xn − x⋆∥2 + βn(2M1∥xn − x⋆∥ + βnM2
1)

≤ ∥xn − x⋆∥2 + βnM3.

for some constant M3 > 0. From above inequalities we get that for all n > n0,

∥xn+1 − x⋆∥2 ≤ ∥xn − x⋆∥2 + βnM3 −
∑m

i=1 ai(1 − (γiλn,i

λn+1,i
)2)∥zn,i − un,i∥

2

−
∑m

i=1 ai ρn,i(2 − ρn,i)
∥(I − JGi

sn,i
)Ti(wn)∥4

∥T∗i (I − JGi
sn,i

)Ti(wn)∥2
+ βnM2.

(21)

Now we set

ξn =
∑m

i=1 ai(1 − (γiλn,i

λn+1,i
)2)∥zn,i − un,i∥

2

+
∑m

i=1 ai ρn,i(2 − ρn,i)
∥(I − JGi

sn,i
)Ti(wn)∥4

∥T∗i (I − JGi
sn,i

)Ti(wn)∥2
,

and

ζn = βn(M2 +M3), Γn = ∥xn − x⋆∥2. (22)

Hence the inequality (21) can be rewritten in the following form:

Γn+1 ≤ Γn − ξn + ζn. (23)

In order to prove Γn → 0, by Lemma 2.9, ( considering inequalities (19) and (23)) it is sufficient to prove that
for any subsequence {nk} ⊂ {n}, if limk→∞ ξnk = 0, then

lim sup
k→∞

ϑnk ≤ 0.

We assume that limk→∞ ξnk = 0. By our assumption we get

lim
k→∞
∥unk ,i − znk,i∥ = 0, i = 1, 2, ...,m. (24)

From inequality (14) we get
lim
k→∞
∥vnk,i − unk,i∥ = 0.

Also we have

lim
k→∞
ρnk ,i(2 − ρnk ,i)

∥(I − JGi
snk ,i

)Ti(wnk )∥
4

∥T∗i (I − JGi
snk ,i

)Ti(wnk )∥2
= 0. (25)

By our assumption that 0 < ρn,i < 2 and infn ρn,i(2 − ρn,i) > 0, we get

lim
k→∞
∥(I − JGi

snk ,i
)Ti(wnk )∥ = 0, for all i = 1, 2, . . . ,m. (26)

Note that, if ∥T∗i (I − JGi
snk ,i

)Ti(wnk )∥ = 0, then ∥(I − JGi
snk ,i

)Ti(wnk )∥ = 0.
From (26) we have,

lim
k→∞
∥znk ,i − wnk∥ = 0, for all i = 1, 2, . . . ,m. (27)
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Note that
∥xn − wn∥ = αn∥xn − xn−1∥ = βn

αn

βn
∥xn − xn−1∥ → 0.

From inequality
∥unk ,i − xnk∥ ≤ ∥unk ,i − znk,i∥ + ∥znk,i − wnk∥ + ∥wnk − xnk∥,

we arrive at
lim
k→∞
∥unk ,i − xnk∥ = 0, i = 1, 2, ...,m.

Since {xnk } is bounded, there exists a subsequence {xnkj
} of {xnk } which converges weakly to x̂. Without loss

of generality, we can assume that xnk ⇀ x̂. Since limk→∞ ∥wnk −xnk∥ = 0, we have wnk ⇀ x̂. Since Ti is a linear
bounded operator, it yields that Ti(wnk )⇀ Tix̂. Utilizing the resolvent identity for each s > 0 we have

∥(I − JGi
s )Ti(wnk )∥ ≤ ∥(I − JGi

snk ,i
)Ti(wnk )∥

+ |1 −
s

snk,i
|∥(I − JGi

snk ,i
)Ti(wnk )∥ → 0, k→∞. (28)

Since I − JGi
s is demiclosed at zero, we know that Tix̂ ∈ Fix(JGi

s ) = G−1
i (0), i = 1, 2, ...,m. Since limk→∞ ∥vnk ,i −

xnk∥ = 0, we have vnk ,i ⇀ x̂. Now by similar proof as Lemma 7 in [26], we obtain that x̂ ∈
⋂m

i=1(Ai + Bi)−1(0)).
Thus x̂ ∈ Ω. Now we show that

lim sup
k→∞

⟨Fx⋆, x⋆ − xnk⟩ ≤ 0. (29)

To show this inequality, we choose a subsequence {xnkj
} of {xnk } such that

lim
j→∞
⟨Fx⋆, x⋆ − xnkj

⟩ = lim sup
k→∞

⟨Fx⋆, x⋆ − xnk⟩.

Since x⋆ is the unique solution of VI(Ω,F) and {xnkj
} converges weakly to x̂ ∈ Ω. we conclude that

lim sup
k→∞

⟨Fx⋆, x⋆ − xnk⟩ = lim
j→∞
⟨Fx⋆, x⋆ − xnkj

⟩ = ⟨Fx⋆, x⋆ − x̂⟩ ≤ 0.

Therefore
lim sup

k→∞
ϑnk ≤ 0.

Hence, all conditions of Lemma 2.9 are satisfied. Therefore, we immediately deduce that limn→∞ Γn =
limn→∞ ∥xn − x⋆∥2 = 0, that is {xn} converges strongly to x⋆ which is the unique solution of VI(Ω,F).

Remark 3.2. In our proposed algorithm, the step size {τn,i}, i = 1, 2, ...,m are independent of the norm of Ti. Also, we
observe that the choice of the {λn,i}, i = 1, 2, ...,m are independent of Lipschitz constants of the operators Ai. Moreover,
we do not require any prior information regarding the Lipschitz constant of the mapping F and the modulus of strong
monotonicity of F. In some applications, finding the norm Ti and Lipschitz constants of the operators Ai and F is a
difficult task. Therefore, our proposed method is easier to implement than the methods in [3, 16, 19, 55].

Remark 3.3. Putting F(x) = x − f (x) in Theorem 3.1, where the mapping f : H → H is ρ-contraction. It can be
easily verified that the mapping F : H → H is (1 + ρ)-Lipschitz continuous and (1 − ρ)-strongly monotone. In this
situation, we obtain a viscosity type algorithm for solving split monotone variational inclusion problem. Especially,
when F(x) = x for all x ∈ H . Then F is 1-strongly monotone and 1-Lipschitz continuous onH , and in this situation,
the problem (6) becomes the problem of finding the minimum-norm solution of the split monotone variational inclusion
problem.

4. Application

In section, we present some special cases of our problem (6) and obtain some corollaries of Theorem 3.1.
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4.1. Bilevel programming problem

A function, Φ : H → R is said to be convex if, for any x, y ∈ H and for any λ ∈ [0, 1], Φ(λx + (1 − λ)y) ≤
λΦ(x) + (1 − λ)Φ(y). In particular, a convex function Φ : H → R, is said to be strongly convex with c > 0
(c-strongly convex) if

Φ(λx + (1 − λ)y) ≤ λΦ(x) + (1 − λ)Φ(y) −
cλ(1 − λ)

2
∥x − y∥2,

for all x, y ∈ H and for all λ ∈ [0, 1]. Let Φ : H → R be a Fréchet differentiable function. If Φ is c-strongly
convex, ∇Φ is c-strongly monotone.

Suppose thatΦ : H → R is δ-strongly convex and Fréchet differentiable, and ∇Φ : H →H is l-Lipschitz
continuous. Let C be a nonempty closed convex subset ofH . Then, VI(C,∇Φ) can be characterized as the
set of all minimizers of Φ over C.

VI(C,∇Φ) = ar1min
x∈C
Φ(x) := {x∗ ∈ C : Φ(x∗) = min

x∈C
Φ(x)}.

Let H and K be two real Hilbert spaces. Let f : H → (−∞,∞] and 1 : K → (−∞,∞] be two proper,
convex and lower semi-continuous functions, and T : H → K be a linear and bounded operators. The
so-called split minimization problem (SMP) is the problem of finding

x∗ ∈ H s.t., f (x∗) = min f (y)y∈H and 1(Tx∗) = min 1(z)z∈K . (30)

The subdifferential of f is the set-valued mapping ∂ f : H → 2H which is defined, for each x ∈ H , by

∂ f (x) := {z ∈ H : f (y) − f (x) ≥ ⟨y − x, z⟩ ∀y ∈ H}.

The proximity operator Prox f of f , is defined by

Prox f (x) := ar1min
y∈H
{ f (y) +

1
2
∥y − x∥2}.

Equivalently, Prox f (x) = (I + ∂ f )−1x, x ∈ H . It is known that ∂ f is a maximal monotone operator and that
x0 ∈ arg minx∈H f (x) if and only if 0 ∈ ∂ f (x0) (see[52] for details).

By Theorem 3.1, we obtain the following convergence result for solving minimization problem defined
over the set of solutions of split minimization problem.

Theorem 4.1. LetH andK , be real Hilbert spaces and let Ti : H → K , (i = 1, 2, ...,m) be bounded linear operators
such that Ti , 0. Let fi : H → (−∞,∞] and 1i : K → (−∞,∞] be proper, lower semicontinuous and convex
functions. Suppose that Ω = {x∗ ∈ H s.t., fi(x∗) = min fi(y)y∈H and 1i(Tix∗) = min 1i(z)z∈K , (i =
1, 2, ...,m)} , ∅. Let the operatorΦ : H → R be a δ-strongly convex and Fréchet differentiable, and ∇Φ be l-Lipschitz
continuous. Let α > 0, λi > 0 and let x1, x0 ∈ H be two initial points. Let {xn} be a sequence defined by:

wn = xn + αn(xn − xn−1),

yn =
∑m

i=1 ai J
∂ fi
λi

(I − τn,iT∗i (I − J∂1i
sn,i

)Ti)wn

xn+1 = (I − βn∇Φ)yn, n ≥ 1,

(31)

where

τn,i =


ρn,i∥(I − J∂1i

sn,i
)Ti(wn)∥2

∥(T∗i (I − J∂1i
sn,i

)Ti)(wn)∥2
, if ∥(T∗i (I − J∂1i

sn,i
)Ti)(wn)∥2 , 0,

0, otherwise,

(32)
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and 0 ≤ αn ≤ αn such that

αn =

 min{
εn

∥xn − xn−1∥
, α}, if ∥xn − xn−1∥ , 0,

α, otherwise.
(33)

Assume that the sequences {βn},{an}, {sn,i}, {ρn,i} and {εn} satisfying the following conditions:

(i) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑
∞

n=0 βn = ∞,
(ii) ai > 0,

∑m
i=1 ai = 1, for i = 1, 2, ...,m,

(iii) lim infn sn,i > 0 for i = 1, 2, ...,m,
(iv) 0 < ρn,i < 2 and infn ρn,i(2 − ρn,i) > 0 for i = 1, 2, ...,m,

(v) εn > 0 and limn→∞
εn

βn
= 0.

Then, the sequence {xn} converges strongly to the unique solution x⋆ ∈ ar1minx∈ΩΦ(x).

4.2. Multiple-set split feasibility problem

Let C be a nonempty, closed and convex subset of a real Hilbert space H . Denote by iC the indicator
function of C, that is,

iC :=

0, if x ∈ C,
∞, if x < C,

It is not difficult to see that iC is a proper, lower semicontinuous and convex function. Hence its
subdifferential ∂iC is a maximal monotone operator. It is known that

∂iC(u) = N(u,C) = { f ∈ H : ⟨u − y, f ⟩ ≥ 0 ∀y ∈ C},

where N(u,C) is the normal cone of C at u.
We denote the resolvent operator of ∂iC by Jr, where r > 0. Suppose u = Jrx for x ∈ H , that is,

x − u
r
∈ ∂iC(u) = N(u,C).

Then we have

⟨x − u,u − y⟩ ≥ 0

for all y ∈ C. Since this inequality characterizes the metric projection, it follows that u = PCx.
Theorem 3.1 now yields the following result regarding an algorithm for solving the multiple-set split

feasibility problem in Hilbert spaces.

Theorem 4.2. LetH andK , be real Hilbert spaces and let Ti : H → K be bounded linear operators such that Ti , 0.
Let {Ci}

m
i=1 be a finite family of nonempty closed convex subsets of H and let {Qi}

m
i=1 be a finite family of nonempty

closed convex subsets of K . Suppose that Ω =
⋂m

i=1(Ci ∩ T(−1)
i Qi) , ∅. Let the operator F : H → H be l-Lipschitz

continuous and δ-strongly monotone with constants l > 0, δ > 0. Let α > 0 and let x1, x0 ∈ H be two initial points.
Let {xn} be a sequence defined by:

wn = xn + αn(xn − xn−1),

yn =
∑m

i=1 ai PCi (I − τn,iT∗i (I − PQi )Ti)wn,

xn+1 = (I − βnF)yn, n ≥ 1,

(34)
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where

τn,i =


ρn,i∥(I − PQi )Ti(wn)∥2

∥(T∗i (I − PQi )Ti)(wn)∥2
, if ∥(T∗i (I − PQi )Ti)(wn)∥2 , 0,

0, otherwise,
(35)

and 0 ≤ αn ≤ αn such that

αn =

 min{
εn

∥xn − xn−1∥
, α}, if ∥xn − xn−1∥ , 0,

α, otherwise.
(36)

Assume that the sequences {βn}, {ai} {ρn,i} and {εn} satisfying the following conditions:

(i) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑
∞

n=0 βn = ∞,
(ii) ai > 0,

∑m
i=1 ai = 1, for i = 1, 2, ...,m,

(iii) 0 < ρn,i < 2 and infn ρn,i(2 − ρn,i) > 0 for i = 1, 2, ...,m,

(iv) εn > 0 and limn→∞
εn

βn
= 0.

Then, the sequence {xn} converges strongly to the unique solution x⋆ ∈ VI(Ω,F).

4.3. Multiple Set Split Variational Inequality Problem

Let C be a nonempty convex subset of a real Hilbert spaceH . Let Φ : H → H be an operator. Further,
the set valued mapping SΦ related to the normal cone NC(x) is defined by

SΦ =

 Φ(x) +NC(x), x ∈ C,

∅, otherwise.
(37)

In the sense, if Φ is a is monotone and hemicontinuous operator, then SΦ is a maximal monotone mapping.
More importantly, x ∈ VI(C,Φ) if and only if 0 ∈ SΦ(x),(see [49] for details).

In [15], Censor et al. introduced the multiple set split variational inequality problem which is formulated
as follows. LetH andK be two real Hilbert spaces. Given a bounded linear operator T : H → K , functions
Ai : H → H , and Gi : K → K and nonempty, closed and convex subsets Ci ⊂ H , Qi ⊂ K for i = 1, 2, ...,m,
the multiple set split variational inequality problem is formulated as follows:

Findin1 x∗ ∈
m⋂

i=1

VI(Ci,Ai) : such that T(x∗) ∈
m⋂

i=1

VI(Qi,Gi).

Censor et al.[15], present an algorithm with weak convergence for solving this problem for inverse strongly
monotone operators.

Now, let Φi : K → K be monotone and hemicontinuous operators and let Ai : H → H be monotone
and Li-Lipschitz continuous operators. Setting Gi = SΦi and Bi = ∂iCi in Theorem 3.1 we can apply our
algorithm for solving the multiple set split variational inequality problem. Note that every inverse strongly
monotone operators is monotone, hemicontinuous and Lipschitz continuous operator. Hence our result
generalizes the result of Censor et al. [15].

4.4. Bilevel variational inequality problem

Finally, we utilize our algorithm for solving the Bilevel variational inequality problem in Hilbert spaces.
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Theorem 4.3. LetH be a Hilbert space. Let for each i = 1, 2, ..,m, Ci be a nonempty closed convex subset ofH and
let Ai : H → H be a monotone and Li- Lipschitz continuous operator. Suppose that Ω =

⋂m
i=1 VI(Ci,Ai) , ∅. Let

the operator F : H →H be l-Lipschitz continuous and δ-strongly monotone with constants l > 0, δ > 0. Let α > 0,
γi ∈ (0, 1), λ(1,i) > 0 and let x1, x0 ∈ H be two initial points. Let {xn} be a sequence defined by:

wn = xn + αn(xn − xn−1),

un,i = PCi (wn − λn,iAi(wn)),

vn,i = un,i + λn,i(Ai(wn) − Ai(un,i)), i ∈ {1, 2, ...,m},

yn =
∑m

i=1 aivn,i,

xn+1 = (I − βnF)yn, n ≥ 1,

(38)

where

λ(n+1,i) =

 min{ γi∥wn−un,i∥

∥Ai(wn)−Ai(un,i)∥
, λn,i}, if ∥Ai(wn) − Ai(un,i)∥ , 0,

λn,i, otherwise,
(39)

and 0 ≤ αn ≤ αn such that

αn =

 min{
εn

∥xn − xn−1∥
, α}, if ∥xn − xn−1∥ , 0,

α, otherwise.
(40)

Assume that the sequences {βn}, {ai} and {εn} satisfying the following conditions:

(i) {βn} ⊂ (0, 1), limn→∞ βn = 0 and
∑
∞

n=0 βn = ∞,
(ii) {ai} ⊂ (0, 1] and

∑m
i=1 ai = 1, for i = 1, 2, ...,m,

(iii) εn > 0 and limn→∞
εn

βn
= 0.

Then, the sequence {xn} converges strongly to the unique solution x⋆ ∈ VI(Ω,F).

Proof. We know that J
∂iCi
r (x) = PCi x for all x ∈ H and r > 0. Also, we know that

x ∈ (∂iCi + Ai)−1(0)⇔ x ∈ VI(Ci,Ai).

Now putting Bi = ∂iCi , K = H , Ti = I, Gi = 0, (i = 1, 2, ...,m), we obtain the desired result from Theorem
3.1.
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