An extension of the Euclidean Berezin number

Nooshin Eslami Mahdiabadi ${ }^{\text {a }}$, Mojtaba Bakherad ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

Abstract

The Berezin transform \widetilde{A} of an operator A, acting on the reproducing kernel Hilbert space $\mathbb{H}=\mathbb{H}(\Theta)$ over some (non-empty) set Θ, is defined by $\widetilde{A}(\lambda)=\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle(\lambda \in \Theta)$, where $\hat{k}_{\lambda}=\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|}$ is the normalized reproducing kernel of \mathbb{H}. The Berezin number of an operator A is defined by $\operatorname{ber}(A)=$ $\sup _{\lambda \in \Theta}|\widetilde{A}(\lambda)|=\sup _{\lambda \in \Theta}\left|\left\langle A \hat{k}_{\lambda}, \hat{k}_{\lambda}\right\rangle\right|$. In this paper, by using the definition of g-generalized Euclidean Berezin number, ${ }^{\lambda \in \Theta}$ we obtain some possible relations and inequalities. It is shown, among other inequalities, that if $A_{i} \in$ $\mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$, then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\operatorname{ber}\left(A_{i}\right)\right)\right) \leq \sum_{i=1}^{n} \operatorname{ber}\left(A_{i}\right)
$$

in which $g:[0, \infty) \rightarrow[0, \infty)$ is a continuous increasing convex function such that $g(0)=0$.

1. Introduction

Let $\mathbb{L}(\mathbb{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathbb{H} with an inner product $\langle.,$.$\rangle and the corresponding norm \|$.$\| . An operator A \in \mathbb{L}(\mathbb{H})$ is called positive if $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{H}$, and then we write $A \geq 0$. For $A \in \mathbb{L}(\mathbb{H})$, let $A=\Re(A)+i \Im(A)$ be the Cartesian decomposition of A, where the Hermitian matrices $\mathfrak{R}(A)=\frac{A+A^{*}}{2}$ and $\mathfrak{J}(A)=\frac{A-A^{*}}{2 i}$ are called the real and the imaginary parts of A, respectively.
A functional Hilbert space $\mathbb{H}=\mathbb{H}(\Theta)$ is a Hilbert space of complex valued functions on a(nonempty) set Θ, which has the property that point evaluations are continuous i.e. for each $\lambda \in \Theta$ the map $f \mapsto f(\lambda)$ is a continuous linear functional on \mathbb{H}. The Riesz representation theorem ensure that for each $\lambda \in \Theta$ there is a unique element $k_{\lambda} \in \mathbb{H}$ such that $f(\lambda)=\left\langle f, k_{\lambda}\right\rangle$ for all $f \in \mathbb{H}$. The collection $\left\{k_{\lambda}: \lambda \in \Theta\right\}$ is called the reproducing kernel of \mathbb{H}. If $\left\{e_{n}\right\}$ is an orthonormal basis for a functional Hilbert space \mathbb{H}, then the reproducing kernel of \mathbb{H} is given by $k_{\lambda}(z)=\sum_{n} \overline{e_{n}(\lambda)} e_{n}(z)$; (see [12, Problem 37]). For $\lambda \in \Theta$, let $\hat{k_{\lambda}}=\frac{k_{\lambda}}{\left\|k_{\lambda}\right\|}$ be the normalized reproducing kernel of \mathbb{H}. For a bounded linear operator A on \mathbb{H}, the function \widetilde{A} defined on Θ by $\widetilde{A}(\lambda)=\left\langle A \hat{k_{\lambda}}, \hat{k_{\lambda}}\right\rangle$ is the Berezin symbol of A, which firstly have been introduced by Berezin [4, 5]. The Berezin set and the Berezin number of the operator A are defined by

$$
\operatorname{Ber}(A):=\{\widetilde{A}(\lambda): \lambda \in \Theta\} \quad \text { and } \quad \operatorname{ber}(A):=\sup \{|\widetilde{A}(\lambda)|: \lambda \in \Theta\}
$$

[^0]respectively, (see [14]). In [3], the authors show that
$$
\operatorname{ber}(A)=\sup _{\theta \in \mathbb{R}} \operatorname{ber}\left(\Re\left(\mathrm{e}^{i \theta} A\right)\right)=\sup _{\alpha^{2}+\beta^{2}=1} \operatorname{ber}(\alpha \Re A+\beta \Im A)
$$

The Berezin symbol and the Berezin number has large application in the study of various questions of operator theory in the functional Hilbert space, quantum physics and non-commutative geometry. These are the important tools to study operators on Hardy and Bergman spaces, especially for Toeplitz and Hankel operators. Recall that the Hardy space $\mathbb{H}_{2}(\mathbb{D})$ of the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ is a RKHS of analytic functions on \mathbb{D} with reproducing kernel $k_{\tau}(z)=\frac{1}{1-\bar{\tau} z}$ (see, Paulsen and Raghupati [19]). Since, the collection of normalized reproducing kernel of \mathbb{H} is a subset of the unit sphere of \mathbb{H}, so the numerical radius and the Berezin number of an operator on \mathbb{H} may not be equal. The Berezin number inequalities have been studied by many mathematicians over the years, interested readers can see [11, 15, 18, 20]. Namely, the Berezin symbol have been investigated in detail for the Toeplitz and Hankel operators on the Hardy and Bergman spaces; it is widely applied in the various questions of analysis and uniquely determines the operator(i.e., for all $\lambda \in \Theta, \widetilde{A}(\lambda)=\widetilde{B}(\lambda)$ implies $A=B$). For further information about Berezin symbol we refer the reader to $[2,9-11,15,18,20-22]$ and references therein.

Moreover, The Berezin number of operators A, B satisfy the following properties:
(i) $\operatorname{ber}(\alpha \mathrm{A})=|\alpha| \operatorname{ber}(\mathrm{A})$ for all $\alpha \in \mathbb{C}$;
(ii) $\operatorname{ber}(A+B) \leq \operatorname{ber}(A)+\operatorname{ber}(B)$.

The numerical radius of $A \in \mathbb{L}(\mathbb{H}(\Theta))$ is defined by

$$
w(A):=\sup \{|\langle A x, x\rangle|: x \in \mathbb{H},\|x\|=1\}
$$

It is clear that

$$
\operatorname{ber}(A) \leq w(A) \leq\|A\| \quad \text { for all } A \in \mathbb{L}(\mathbb{H}(\Theta))
$$

Let $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(1 \leq i \leq n)$. The generalized Euclidean Berezin number of A_{1}, \ldots, A_{n} is defined in [2] as follows:

$$
\operatorname{ber}_{\mathbf{p}}\left(A_{1}, \cdots, A_{n}\right):=\sup _{\lambda \in \Theta}\left(\sum_{i=1}^{n}\left|\widetilde{A}_{i}(\lambda)\right|^{p}\right)^{\frac{1}{p}} \quad \text { for all } \quad p \geq 1
$$

In the case $p=2$, we have the Euclidean Berezin number and denote by

$$
\operatorname{ber}_{\mathbf{e}}\left(A_{1}, \ldots, A_{n}\right):=\sup _{\lambda \in \Theta}\left(\sum_{i=1}^{n}\left|\widetilde{A}_{i}(\lambda)\right|^{2}\right)^{\frac{1}{2}}
$$

For $p=1$ if $A_{1}=\cdots=A_{n}=A$, then $\operatorname{ber}_{1}(A, \cdots, A)=n \mathbf{b e r}(A)$.
The generalized Euclidean Berezin number $\operatorname{ber}_{\mathbf{p}}(\cdot)(p \geq 1)$ has the following properties:
(i) $\operatorname{ber}_{\mathbf{p}}\left(A_{1}, \cdots, A_{n}\right)=0$ if and if $A_{i}=0(i=1, \ldots, n)$;
(ii) $\operatorname{ber}_{\mathbf{p}}\left(\alpha A_{1}, \cdots, \alpha A_{n}\right)=|\alpha| \operatorname{ber}_{\mathbf{p}}\left(A_{1}, \cdots, A_{n}\right)$ for all $\alpha \in \mathbb{C}$;
(iii) $\operatorname{ber}_{\mathbf{p}}\left(A_{1}+B_{1}, \cdots, A_{n}+B_{n}\right) \leq \operatorname{ber}_{\mathbf{p}}\left(A_{1}, \cdots, A_{n}\right)+\operatorname{ber}_{\mathbf{p}}\left(B_{1}, \cdots, B_{n}\right)$;
(iv) $\operatorname{ber}_{\mathbf{p}}\left(A_{1}, A_{2}, \cdots, A_{n}\right)=\operatorname{ber}_{\mathbf{p}}\left(A_{1}^{*}, A_{2}^{*}, \cdots, A_{n}^{*}\right)$, where $A_{i}, B_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$.
The proof of the properties (i) - (iv) immediately comes from definition of generalized Berezin number. In [7], the author obtained the following inequality

$$
\begin{equation*}
\operatorname{ber}_{\mathbf{p}}^{p}\left(A_{1}\left|A_{1}\right|^{s+t-1}, \ldots, A_{n}\left|A_{n}\right|^{s+t-1}\right) \leq \boldsymbol{\operatorname { b e r }}\left(\sum_{i=1}^{n}\left(\frac{\left|A_{i}\right|^{2 s}+\left|A_{i}^{*}\right|^{2 t}}{2}\right)^{p}\right) \tag{1}
\end{equation*}
$$

in which $A_{1}, \ldots, A_{n} \in \mathbb{L}(\mathbb{H}(\Theta)), p>1$ and $s, t \in[0,1]$ such that $s+t \geq 1$.
The following we define an extension of the generalized Euclidean Berezin number as follows:

Definition 1.1. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(1 \leq i \leq n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing convex function such that $g(0)=0$. We define the g-generalized Euclidean Berezin number of A_{1}, \cdots, A_{n} by

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right):=\sup _{\lambda \in \Theta} g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) .
$$

For $g(t)=t^{p}(p \geq 1)$ we have $\boldsymbol{b e r}_{g}(\cdot)=\boldsymbol{b e r}_{\mathbf{p}}(\cdot)$ and for $g(t)=t^{2}$ we have $\boldsymbol{b e r}_{g}(\cdot)=\boldsymbol{b e r}_{\mathbf{e}}(\cdot)$.
A function $g:[0, \infty) \rightarrow[0, \infty)$ is convex if $g((1-\lambda) a+\lambda b) \leq(1-\lambda) g(a)+\lambda g(b)$ for all $\lambda \in[0,1]$ and $a, b \in[0, \infty)$. If $g:[0, \infty) \rightarrow[0, \infty)$ is convex such that $g(0)=0$, then

$$
g(x)+g(y) \leq g(x+y) \quad \text { (superadditive) }
$$

for all $x, y \in[0, \infty)$. The recent inequality is reversed if g is concave.
Dragomir [8] provided a generalization of Furuta's inequality

$$
\begin{equation*}
|(\widetilde{D C B A})(\lambda)|^{2} \leq\left(\widetilde{A^{*}|B|^{2}} A\right)(\lambda)\left(\overline{D\left|C^{*}\right|^{2} D^{*}}\right)(\lambda) \tag{2}
\end{equation*}
$$

where $A, B, C, D \in \mathbb{L}(\mathbb{H}(\Theta))$ and $\lambda \in \Theta$.
In this paper, by using the definition of g-generalized Euclidean Berezin number, we show some possible relations and inequalities. For these goals, we will apply some methods from [1].

2. Main results

In this section, we would like to check some properties about the g-generalized Euclidean Berezin number and then we state some inequalities related to this concept.

First we need the following lemmas:
Lemma 2.1. [6] Let g be a convex function on a real interval J and let $A \in \mathbb{L}(\mathbb{H}(\Theta))$ be a self-adjoint operator with spectrum in J. Then

$$
g(\widetilde{A}(\lambda)) \leq \overline{g(A)}(\lambda) \quad \text { for all } \quad \lambda \in \Theta
$$

The inequality is reversed if g is concave.
The following lemma is a simple consequence of the classical Jensen and Young inequalities(see [13]).
Lemma 2.2. Let $a, b \geq 0$ and $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\begin{equation*}
a^{\frac{1}{p}} b^{\frac{1}{q}} \leq \frac{a}{p}+\frac{b}{q} \leq\left(\frac{a^{r}}{p}+\frac{b^{r}}{q}\right)^{\frac{1}{r}} \quad \text { for all } \quad r \geq 1 \tag{3}
\end{equation*}
$$

Lemma 2.3. [16] Let $A \in \mathbb{L}(\mathbb{H}(\Theta))$ and $\lambda \in \Theta$. If $0 \leq s \leq 1$, then

$$
|\widetilde{A}(\lambda)|^{2} \leq \widetilde{\left.A\right|^{2 s}}(\lambda) \mid \widetilde{\left.A^{*}\right|^{2(1-s)}}(\lambda)
$$

where $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$ is the absolute value of A.
Proposition 2.4. Assume that $A_{i}, B_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing function such that $g(0)=0$. Then
(i) $\boldsymbol{b e r}_{g}\left(A_{1}, \ldots, A_{n}\right)=0$ if and only if $A_{i}=0(i=1, \ldots, n)$;
(ii) $\operatorname{ber}_{g}\left(\alpha A_{1}, \ldots, \alpha A_{n}\right)=|\alpha| \operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right)$ for all $\alpha \in \mathbb{C}$ if g is multiplicative;
(iii) $\operatorname{ber}_{g}\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\operatorname{ber}_{g}\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n}^{*}\right)$;
(iv) $\boldsymbol{\operatorname { e r g }}_{g}\left(A_{1}+B_{1}, \ldots, A_{n}+B_{n}\right) \leq \boldsymbol{b e r}_{g}\left(A_{1}, \ldots, A_{n}\right)+\boldsymbol{b e r}_{g}\left(B_{1}, \ldots, B_{n}\right)$, if g is geometrically convex i.e. $g(\sqrt{x y}) \leq$ $\sqrt{g(x) g(y)}$.

Proof. The parts (i), (ii) and (iii) immediately come from the definition of the g-generalized Euclidean Berezin number. For the part (iv) if g is increasing, then we have

$$
\sum_{i=1}^{n} g\left(\left|\left(\widetilde{A}_{i}+\widetilde{B}_{i}\right)(\lambda)\right|\right)=\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)+\widetilde{B}_{i}(\lambda)\right|\right) \leq \sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|+\left|\widetilde{B}_{i}(\lambda)\right|\right)
$$

whence by the monotonicity of g^{-1} and the geometrically convexity condition of g we get

$$
\begin{aligned}
g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)+\widetilde{B}_{i}(\lambda)\right|\right)\right) & \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|+\left|\widetilde{B}_{i}(\lambda)\right|\right)\right) \\
& \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right)+g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{B}_{i}(\lambda)\right|\right)\right),
\end{aligned}
$$

where the last inequality follows from [17, Corollary 1.1]. Hence by taking the supremum on $\lambda \in \Theta$ we get

$$
\boldsymbol{b e r}_{g}\left(A_{1}+B_{1}, \cdots, A_{n}+B_{n}\right) \leq \operatorname{ber}_{g}\left(A_{1}, \cdots, A_{n}\right)+\mathbf{b e r}_{g}\left(B_{1}, \ldots, B_{n}\right)
$$

Now, we obtain a result for the g-generalized Euclidean Berezin number.
Theorem 2.5. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing convex function such that $g(0)=0$. Then

$$
\begin{equation*}
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\operatorname{ber}\left(A_{i}\right)\right)\right) \leq \sum_{i=1}^{n} \operatorname{ber}\left(A_{i}\right) \tag{4}
\end{equation*}
$$

Proof. It follows from g is increasing convex that g^{-1} is increasing concave, and so g is superadditive and g^{-1} is subadditive. By the definition of $\operatorname{ber}(\cdot)$ we have

$$
\left|\widetilde{A}_{i}(\lambda)\right| \leq \operatorname{ber}\left(A_{i}\right) \quad \text { for all } i=1, \ldots, n
$$

Hence by the monotonicity of g and g^{-1} we have

$$
\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) \leq \sum_{i=1}^{n} g\left(\boldsymbol{\operatorname { b e r }}\left(A_{i}\right)\right) \Rightarrow g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\mathbf{\operatorname { b e r }}\left(A_{i}\right)\right)\right) .
$$

Taking the supremum on $\lambda \in \Theta$ we get

$$
\begin{aligned}
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) & =\sup _{\lambda \in \Theta} g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \\
& \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\mathbf{\operatorname { b e r }}\left(A_{i}\right)\right)\right) \\
& \left.\leq \sum_{i=1}^{n} g^{-1}\left(g\left(\operatorname{ber}\left(A_{i}\right)\right)\right) \quad \text { (by the subadditivity of } g^{-1}\right) \\
& =\sum_{i=1}^{n} \operatorname{ber}\left(A_{i}\right)
\end{aligned}
$$

In the next result, we show an inequality for concave functions.
Theorem 2.6. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing concave function such that $g(0)=0$. Then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \geq \boldsymbol{\operatorname { e e r }}\left(\sum_{i=1}^{n} A_{i}\right) .
$$

Proof. It follows from g is increasing concave that g^{-1} is increasing convex, and so g^{-1} is superadditive. Hence

$$
\begin{aligned}
\left|\overline{\left(\sum_{i=1}^{n} A_{i}\right)}(\lambda)\right| & =\left|\sum_{i=1}^{n} \widetilde{A}_{i}(\lambda)\right| \\
& \leq \sum_{i=1}^{n}\left|\widetilde{A}_{i}(\lambda)\right| \\
& =\sum_{i=1}^{n} g^{-1}\left(g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \\
& \left.\leq g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \quad \text { (by the superadditivity of } g^{-1}\right) \\
& \leq \operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) .
\end{aligned}
$$

Take the supremum on $\lambda \in \Theta$ we get the desired result.
In the next theorem, we present another lower bound for $\operatorname{ber}_{g}(\cdot)$
Theorem 2.7. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing convex function. Then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \geq \sup _{\left|\mu_{i}\right| \leq 1} \operatorname{ber}\left(\sum_{i=1}^{n} \frac{\mu_{i}}{n} A_{i}\right)
$$

In particular,

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \geq \frac{1}{n} \max \left\{\operatorname{ber}\left(\sum_{i=1}^{n} \pm A_{i}\right)\right\}
$$

Proof. The convexity of g implies that

$$
\begin{aligned}
\left|\left(\overline{\sum_{i=1}^{n} \frac{\mu_{i}}{n} A_{i}}\right)(\lambda)\right| & \left.=\left\lvert\, \sum_{i=1}^{n} \overline{\left(\frac{\mu_{i}}{n} A_{i}\right.}\right.\right)(\lambda) \mid \\
& \leq \sum_{i=1}^{n} \frac{1}{n}\left|\widetilde{A}_{i}(\lambda)\right| \\
& =g^{-1}\left(g\left(\sum_{i=1}^{n} \frac{1}{n}\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \\
& \leq g^{-1}\left(\sum_{i=1}^{n} \frac{1}{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \\
& \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \quad\left(\text { by the monotonicity of } g^{-1}\right)
\end{aligned}
$$

in which $\lambda \in \Theta$ and $\mu_{i} \in \mathbb{C}$ such that $\left|\mu_{i}\right| \leq 1$. Taking the supremum on $\lambda \in \Theta$ yields

$$
\operatorname{ber}\left(\sum_{i=1}^{n} \frac{\mu_{i}}{n} A_{i}\right) \leq \operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right)
$$

Therefore,

$$
\sup _{\left|\mu_{i}\right| \leq 1} \operatorname{ber}\left(\sum_{i=1}^{n} \frac{\mu_{i}}{n} A_{i}\right) \leq \operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right)
$$

which we reach the first inequality. If we put $\mu_{i}= \pm 1$, then we get the second inequality.
As a consequence, we have the next result.
Corollary 2.8. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be continuous increasing convex. Then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \geq \frac{1}{n} \max \left\{\boldsymbol{\operatorname { b e r }}\left(A_{1}\right), \ldots, \boldsymbol{\operatorname { e e r }}\left(A_{n}\right)\right\}
$$

Proof. If for any $j(j=1, \ldots, n)$ we assume that $\mu_{j}=1$ and $\mu_{i}=0$ when $i \neq j$ in Theorem 2.7, then

$$
\boldsymbol{\operatorname { b e r }}_{g}\left(A_{1}, \ldots, A_{n}\right) \geq \frac{1}{n} \operatorname{ber}\left(A_{j}\right) \quad \text { for all } \quad j=1, \ldots, n
$$

whence

$$
\boldsymbol{\operatorname { b e r }}_{g}\left(A_{1}, \ldots, A_{n}\right) \geq \frac{1}{n} \max \left\{\boldsymbol{\operatorname { b e r }}\left(A_{1}\right), \ldots, \boldsymbol{\operatorname { b e r }}\left(A_{n}\right)\right\} .
$$

Remark 2.9. Assume that $A_{1}=A_{2}=\cdots=A_{n}=A$. Using Theorem 2.5 we have

$$
\boldsymbol{\operatorname { b e r }}_{g}(A, \ldots, A) \leq n \boldsymbol{b e r}(A)
$$

Moreover, applying Corollary 2.8 we get

$$
\operatorname{ber}_{g}(A, \ldots, A) \geq \operatorname{ber}(A)
$$

Therefore,

$$
\operatorname{ber}(A) \leq \operatorname{ber}_{g}(A, \ldots, A) \leq n \operatorname{ber}(A)
$$

Theorem 2.10. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n), g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing convex function. Then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \leq g^{-1}\left(\operatorname{ber}\left(\sum_{i=1}^{n}\left(\frac{g\left(\left|A_{i}\right|^{2 s}\right)+g\left(\left|A_{i}^{*}\right|^{2(1-s)}\right)}{2}\right)\right)\right)
$$

where $s \in[0,1]$.
Proof. It follows from Lemma 2.3 and the arithmetic geometric mean inequality that

$$
\begin{equation*}
\left|\widetilde{A}_{i}(\lambda)\right|^{2} \leq\left|\overline{\left.A_{i}\right|^{2 s}(\lambda)}\right| A_{i}^{*} \overline{\left.\right|^{2(1-s)}}(\lambda) \leq\left(\frac{\left.\mid \overline{\left.A_{i}\right|^{2 s}(\lambda}\right)+\left|A_{i}^{*}\right| \overline{2(1-s)}(\lambda)}{2}\right)^{2} . \tag{5}
\end{equation*}
$$

Hence for the increasing function g we have

$$
\begin{aligned}
& \sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) \leq \sum_{i=1}^{n} g\left(\left(\frac{\left|\widetilde{\left.A_{i}\right|^{2 s}(\lambda)}+\right| A_{i}^{*} \overline{2^{(1-s)}}(\lambda)}{2}\right)\right) \\
& \leq \sum_{i=1}^{n} \frac{g\left(\widetilde{\left|A_{i}\right|^{2 s}}(\lambda)\right)+g\left(\mid \overline{\left.A_{i}^{*}\right|^{2(1-s)}}(\lambda)\right)}{2} \quad \text { (by inequality (5)) } \\
& \quad \text { (by convexity of } g \text {) }
\end{aligned}
$$

$$
\leq \sum_{i=1}^{n} \frac{g\left(\overline{\left(\left|A_{i}\right|^{2 s}\right.}\right)(\lambda)+g\left(\mid \overline{\left.A_{i}^{*}\right|^{2(1-s)}}\right)(\lambda)}{2}
$$

(by Lemma 2.1)

$$
=\sum_{i=1}^{n}\left(\frac{\left.g\left(\left|A_{i}\right|^{2 s}\right)+\left.\overline{+g\left(\mid A_{i}^{*}\right.}\right|^{2(1-s)}\right)}{2}\right)(\lambda),
$$

whence

$$
g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) \leq g^{-1}\left(\sum_{i=1}^{n} \frac{g\left(\left|A_{i}\right|^{2 s}\right) \bar{g}\left(\left|A_{i}^{*}\right|^{2(1-s)}\right)}{2}(\lambda)\right) .
$$

If we take the supremum on $\lambda \in \Theta$, then we get the desired result.
Proposition 2.11. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n), g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing geometrically convex function. Then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \leq g^{-1}\left(\left[\sum_{i=1}^{n} \operatorname{ber}^{p} g\left(\left(\left|A_{i}\right|^{2 s}\right)\right)\right]^{\frac{1}{2 p}}\left[\sum_{i=1}^{n} \operatorname{ber}^{q}\left(g\left(\left|A_{i}^{*}\right|^{2(1-s)}\right)\right)\right]^{\frac{1}{2 q}}\right)
$$

in which $s \in[0,1]$ and $p, q>1$ such that $p^{-1}+q^{-1}=1$.
Proof. It follows from Lemma 2.3 and the monotonicity and the geometrically convexity of g, respectively, that

$$
g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) \leq g\left(\left|\overline{\left.A_{i}\right|^{2 s}(\lambda)^{\frac{1}{2}}}\right| A_{i}^{*} \overline{\left.\right|^{2(1-s)}}(\lambda)^{\frac{1}{2}}\right) \leq \sqrt{\left.g\left(\mid \widetilde{\left.A_{i}\right|^{2 s}(\lambda}\right)\right) g\left(\left|A_{i}^{*}\right| \overline{2(1-s)}(\lambda)\right)} .
$$

The last inequality follows from the geometrically convexity of g. Hence

$$
\begin{aligned}
& \sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) \leq\left.\sum_{i=1}^{n} \sqrt{\left.g\left(\mid \widetilde{\left.A_{i}\right|^{2 s}(\lambda}\right)\right) g\left(\left|A_{i}^{*}\right| \overline{2(1-s)}\right.}(\lambda)\right) \\
& \leq {\left[\sum_{i=1}^{n} g\left(\mid \overline{\left.A_{i}\right|^{2 s}(\lambda)}\right)^{p}\right]^{\frac{1}{2 p}}\left[\sum_{i=1}^{n} g\left(\mid A_{i}^{*} \overline{\left.\right|^{(1-s)}}(\lambda)\right)^{q}\right]^{\frac{1}{2 q}} } \\
& \quad \text { by the Cauchy Schwarz inequality) } \\
& \leq\left[\sum_{i=1}^{n}\left(g\left(\mid \overline{\left.\left.A_{i}\right|^{2 s}\right)}(\lambda)\right)^{p}\right]^{\frac{1}{2 p}}\left[\sum_{i=1}^{n}\left(g\left(\left|A_{i}^{*}\right|^{2(1-s)}\right)(\lambda)\right)^{q}\right]^{\frac{1}{2 q}}\right.
\end{aligned}
$$

(by Lemma 2.1).

Hence

$$
\begin{aligned}
g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) & \leq g^{-1}\left(\left[\sum_{i=1}^{n}\left(g\left(\mid \widetilde{\left.\left.A_{i}\right|^{2 s}\right)}(\lambda)\right)^{p}\right]^{\frac{1}{2 p}}\left[\sum_{i=1}^{n}\left(g\left(\left|A_{i}^{*}\right| \overline{2(1-s)}\right)(\lambda)\right)^{q}\right]^{\frac{1}{2 q}}\right)\right. \\
& \leq g^{-1}\left(\left[\sum_{i=1}^{n} \boldsymbol{\operatorname { b e r }}^{p}\left(g\left(\left|A_{i}\right|^{2 s}\right)\right)\right]^{\frac{1}{2 p}}\left[\sum_{i=1}^{n} \boldsymbol{b e r}^{q}\left(g\left(\left|A_{i}^{*}\right|^{2(1-s)}\right)\right)\right]^{\frac{1}{2 q}}\right)
\end{aligned}
$$

The last inequality follows from the monotonicity of g^{-1} and the definition of $\mathbf{b e r}(\cdot)$. By taking the supremum on $\lambda \in \Theta$ we get the desired result.

The following, we present some results for the g-generalized Euclidean Berezin number.
Theorem 2.12. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n), g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing convex and super-multiplicative function. Then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \leq g^{-1}\left(\operatorname{ber}\left(\sqrt{n \sum_{i=1}^{n} g\left(\frac{A_{i}^{*} A_{i}+A_{i} A_{i}^{*}}{2}\right)}\right)\right)
$$

Proof. By the convexity of $h(t)=t^{2}$ we have

$$
\begin{aligned}
\left|\widetilde{A}_{i}(\lambda)\right|^{2} & =\left(\overline{\mathfrak{R}\left(A_{i}\right)}(\lambda)\right)^{2}+\left(\overline{\mathfrak{J}\left(A_{i}\right)}(\lambda)\right)^{2} \\
& \leq\left(\widetilde{\left.\mathfrak{R}\left(A_{i}\right)\right)^{2}}(\lambda)+\left(\overline{\left.\mathfrak{J}\left(A_{i}\right)\right)^{2}}(\lambda)\right.\right. \\
& =\left(\left(\Re\left(A_{i}\right) \overline{)^{2}+\left(\mathfrak{J}\left(A_{i}\right)\right)^{2}\right)(\lambda),}\right.\right.
\end{aligned}
$$

which implies that

$$
\begin{aligned}
g^{2}\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) & \leq g\left(\left|\widetilde{A}_{i}(\lambda)\right|^{2}\right) \\
& \leq g\left(\left(\left(\Re\left(A_{i}\right) \overline{)^{2}+(\Im}\left(A_{i}\right)\right)^{2}\right)(\lambda)\right) \\
& \leq\left(g\left(\left(\Re\left(A_{i}\right) \overline{)^{2}+(\Im}\left(A_{i}\right)\right)^{2}\right)\right)(\lambda),
\end{aligned}
$$

whence

$$
\sum_{i=1}^{n} g^{2}\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) \leq \sum_{i=1}^{n}\left(g\left(\left(\Re\left(A_{i}\right) \overline{)^{2}+(\mathfrak{J}}\left(A_{i}\right)\right)^{2}\right)(\lambda)\right)
$$

Moreover, the Jensen inequality for the function $h(t)=t^{2}$ implies that

$$
\begin{aligned}
\left(\frac{1}{n} \sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right)^{2} & \leq \frac{1}{n} \sum_{i=1}^{n} g^{2}\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) \\
& \leq \frac{1}{n} \sum_{i=1}^{n}\left(g\left(\left(\Re\left(A_{i}\right) \overline{)^{2}+(\Im}\left(A_{i}\right)\right)^{2}\right)(\lambda)\right),
\end{aligned}
$$

which equivalent to

$$
\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) \leq\left(n \sum_{i=1}^{n}\left(g\left(\left(\Re\left(A_{i}\right) \overline{)^{2}+(\mathfrak{J}}\left(A_{i}\right)\right)^{2}\right)(\lambda)\right)\right)^{\frac{1}{2}}
$$

It follows from g^{-1} is increasing that

$$
\begin{aligned}
g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) & \leq g^{-1}\left(\left(n \sum_{i=1}^{n}\left(g\left(\left(\Re\left(A_{i}\right) \overline{)^{2}+(\Im}\left(A_{i}\right)\right)^{2}\right)(\lambda)\right)\right)^{\frac{1}{2}}\right) \\
& =g^{-1}\left(\sqrt{n}\left(\sum_{i=1}^{n}\left(g\left(\frac{A_{i}^{*} \overline{A_{i}+A_{i}} A_{i}^{*}}{2}\right)(\lambda)\right)\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

If we take the supremum on $\lambda \in \Theta$, then we get the desired result.
Corollary 2.13. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $p \geq 1$. Then

$$
\boldsymbol{\operatorname { b e r }}_{p}^{p}\left(A_{1}, \ldots, A_{n}\right) \leq \frac{\sqrt{n}}{2^{\frac{p}{2}}} \boldsymbol{\operatorname { e e r }}\left(\sqrt{\sum_{i=1}^{n}\left(A_{i}^{*} A_{i}+A_{i} A_{i}^{*}\right)^{p}}\right) .
$$

In particular,

$$
\operatorname{ber}_{e}^{2}\left(A_{1}, \ldots, A_{n}\right) \leq \frac{\sqrt{n}}{2} \operatorname{ber}\left(\sqrt{\sum_{i=1}^{n}\left(A_{i}^{*} A_{i}+A_{i} A_{i}^{*}\right)^{2}}\right)
$$

Proof. Employing Theorem 2.12 for the convex function $g(t)=t^{p}(p \geq 1)$ we have the first inequality. For the second inequality put $p=2$ in the first inequality.

Theorem 2.14. Assume that $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing convex function such that $g(0)=0$. Then

$$
\operatorname{ber}_{g}\left(A_{1}, \ldots, A_{n}\right) \leq g^{-1}\left(\sum_{i=1}^{n} \operatorname{ber}\left(g\left(\left|\mathfrak{R}\left(A_{i}\right)\right|+\left|\mathfrak{J}\left(A_{i}\right)\right|\right)\right)\right)
$$

Proof. Let $\lambda \in \Theta$. We have

$$
\begin{aligned}
\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right) & =\sum_{i=1}^{n} g\left(\sqrt{\left|\widetilde{\mathfrak{R}\left(A_{i}\right)}(\lambda)\right|^{2}+\left|\overline{\mathfrak{J}\left(A_{i}\right)}(\lambda)\right|^{2}}\right) \\
& \leq \sum_{i=1}^{n} g\left(\left|\widetilde{\mathfrak{R}\left(A_{i}\right)}(\lambda)\right|+\left|\overline{\mathfrak{J}\left(A_{i}\right)}(\lambda)\right|\right) \\
& \leq \sum_{i=1}^{n} g\left(\left|\overline{\mathfrak{R}\left(A_{i}\right) \mid}(\lambda)+\left|\overline{\mathfrak{J}\left(A_{i}\right) \mid}\right| \lambda\right)\right) \quad \text { (by Lemma 2.1) } \\
& =\sum_{i=1}^{n} g\left(\left(\left|\Re\left(A_{i}\right)\right|+\left|\mathfrak{J}\left(A_{i}\right)\right|\right)(\lambda)\right) \\
& \leq \sum_{i=1}^{n} g\left(\left|\mathfrak{R}\left(A_{i}\right)\right|+\left|\mathfrak{J}\left(A_{i}\right)\right|\right)(\lambda) \quad \text { (by Lemma 2.1), }
\end{aligned}
$$

whence it follows from g^{-1} is increasing that

$$
\begin{aligned}
g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\widetilde{A}_{i}(\lambda)\right|\right)\right) & \leq g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\mathfrak{R}\left(A_{i}\right)\right|+\left|\mathfrak{J}\left(A_{i}\right)\right|\right)(\lambda)\right) \\
& \leq g^{-1}\left(\sum_{i=1}^{n} \operatorname{ber}\left(g\left(\left|\mathfrak{\Re}\left(A_{i}\right)\right|+\left|\Im\left(A_{i}\right)\right|\right)\right)\right)
\end{aligned}
$$

Taking the supremum on $\lambda \in \Theta$ on the last term we get the desired result.

Remark 2.15. If $A_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $p \geq 1$, then Theorem 2.14 concludes that

$$
\operatorname{ber}_{p}^{p}\left(A_{1}, \ldots, A_{n}\right) \leq \sum_{i=1}^{n} \operatorname{ber}\left(\left(\left|\mathfrak{R}\left(A_{i}\right)\right|+\left|\mathfrak{J}\left(A_{i}\right)\right|\right)^{p}\right)
$$

In the next theorem, we present the g-generalized Euclidean Berezin number for product of operators.
Theorem 2.16. Assume that $A_{i}, B_{i}, C_{i}, D_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n)$ and $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing geometrically convex function such that $g(0)=0$. Then

$$
\operatorname{ber}_{g}\left(D_{1} C_{1} B_{1} A_{1}, \ldots, D_{n} C_{n} B_{n} A_{n}\right) \leq g^{-1}\left(\boldsymbol{\operatorname { e e r }}\left(\sum_{i=1}^{n}\left(\frac{1}{p} g^{\frac{p}{2}}\left(A_{i}^{*}\left|B_{i}\right|^{2} A_{i}\right)+\frac{1}{q} g^{\frac{q}{2}}\left(D_{i}\left|C_{i}^{*}\right|^{2} D_{i}^{*}\right)\right)\right)\right)
$$

in which $p, q>1$ such that $p^{-1}+q^{-1}=1$.
Proof. If $\lambda \in \Theta$, then by applying (2) we have

$$
\begin{aligned}
& \sum_{i=1}^{n} g\left(\left|\left(\overline{D_{i} C_{i} B_{i} A_{i}}\right)(\lambda)\right|\right) \\
& \leq \sum_{i=1}^{n} g\left(\sqrt{\left(\overline{A_{i}^{*}\left|B_{i}\right|^{2}} A_{i}\right)(\lambda)\left(D_{i} \overline{\left.C_{i}^{*}\right|^{2}} D_{i}^{*}\right)(\lambda)}\right) \\
& \text { (by inequality (2)) } \\
& \leq \sum_{i=1}^{n} g^{\frac{1}{2}}\left(\left(\overline{A_{i}^{*}\left|B_{i}\right|^{2}} A_{i}\right)(\lambda)\right) g^{\frac{1}{2}}\left(\left(D_{i} \mid \overline{\left.C_{i}^{*}\right|^{2} D_{i}^{*}}\right)(\lambda)\right) \\
& \text { (by the geometrically convexity) } \\
& \leq\left(\sum_{i=1}^{n} g^{\frac{p}{2}}\left(\left(\overline{A_{i}^{*}\left|B_{i}\right|^{2}} A_{i}\right)(\lambda)\right)\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} g^{\frac{q}{2}}\left(\left(D_{i} \mid \overline{C_{i}^{*} \mid 2} D_{i}^{*}\right)(\lambda)\right)\right)^{\frac{1}{q}} \\
& \text { (by the Cauchy Schwarz inequality) } \\
& \leq \frac{1}{p}\left(\sum_{i=1}^{n} g^{\frac{p}{2}}\left(\left(\overline{A_{i}^{*}\left|B_{i}\right|^{2}} A_{i}\right)(\lambda)\right)\right)+\frac{1}{q}\left(\sum_{i=1}^{n} g^{\frac{q}{2}}\left(\left(\overline{D_{i}\left|C_{i}^{*}\right|^{2}} D_{i}^{*}\right)(\lambda)\right)\right) \\
& \text { (by the Young inequality (3)) } \\
& \leq \frac{1}{p}\left(\sum_{i=1}^{n}\left(g^{\frac{p}{2}}\left(\overline{A_{i}^{*}\left|B_{i}\right|^{2}} A_{i}\right)(\lambda)\right)\right)+\frac{1}{q}\left(\sum_{i=1}^{n}\left(g^{\frac{q}{2}}\left(\widetilde{D_{i}\left|C_{i}^{*}\right|^{2}} D_{i}^{*}\right)(\lambda)\right)\right) \\
& \text { (by Lemma 2.1) } \\
& =\sum_{i=1}^{n}\left(\frac{1}{p} g^{\frac{p}{2}}\left(\overline{A_{i}^{*}\left|B_{i}\right|^{2}} A_{i}\right)+\frac{1}{q} g^{\frac{q}{2}}\left(\widetilde{D_{i}\left|C_{i}^{*}\right|^{2}} D_{i}^{*}\right)\right)(\lambda),
\end{aligned}
$$

whence it follows from g^{-1} is increasing that

$$
g^{-1}\left(\sum_{i=1}^{n} g\left(\left|\left(\widetilde{D_{i} C_{i} B_{i} A_{i}}\right)(\lambda)\right|\right)\right) \leq g^{-1}\left(\sum_{i=1}^{n}\left(\frac{1}{p^{\frac{p}{2}}}\left(\widetilde{\left.A_{i}^{*}\left|B_{i}\right|^{2} A_{i}\right)}+\frac{1}{q} g^{\frac{q}{2}}\left(\widetilde{\left(D_{i}\left|C_{i}^{*}\right|^{2}\right.} D_{i}^{*}\right)\right)(\lambda)\right)\right.
$$

By taking the supremum on $\lambda \in \Theta$ we get

$$
\operatorname{ber}_{g}\left(D_{1} C_{1} B_{1} A_{1}, \ldots, D_{n} C_{n} B_{n} A_{n}\right) \leq g^{-1}\left(\operatorname{ber}\left(\sum_{i=1}^{n}\left(\frac{1}{p} g^{\frac{p}{2}}\left(A_{i}^{*}\left|B_{i}\right|^{2} A_{i}\right)+\frac{1}{q} g^{\frac{q}{2}}\left(D_{i}\left|C_{i}^{*}\right|^{2} D_{i}^{*}\right)\right)\right)\right)
$$

Corollary 2.17. Assume that $T_{i} \in \mathbb{L}(\mathbb{H}(\Theta))(i=1, \ldots, n), g:[0, \infty) \rightarrow[0, \infty)$ be a continuous increasing convex function such that $g(0)=0$ and $s, t \in[0,1]$, where $s+t \geq 1$. Then

$$
\operatorname{ber}_{g}\left(T_{1}\left|T_{1}\right|^{\mid+t-1}, \ldots, T_{n}\left|T_{n}\right|^{s+t-1}\right) \leq g^{-1}\left(\operatorname{ber}\left(\sum_{i=1}^{n}\left(\frac{1}{p} g^{\frac{p}{2}}\left(\left|T_{i}\right|^{2 s}\right)+\frac{1}{q} g^{\frac{q}{2}}\left(\left|T_{i}^{*}\right|^{2 t}\right)\right)\right)\right)
$$

in which $p, q>1$ such that $p^{-1}+q^{-1}=1$. In particular,

$$
\boldsymbol{\operatorname { b e r }}_{r}^{r}\left(T_{1}\left|T_{1}\right|^{\mid+t-1}, \ldots, T_{n}\left|T_{n}\right|^{s+t-1}\right) \leq \boldsymbol{\operatorname { b e r }}\left(\sum_{i=1}^{n}\left(\frac{1}{p}\left(\left|T_{i}\right|^{r s p}+\frac{1}{q}\left|T_{i}^{*}\right|^{r t p}\right)\right),\right.
$$

where $r \geq 1$.
Proof. Let $D_{i}=U_{i}, B_{i}=1_{\mathbb{H}}, C_{i}=\left|T_{i}\right|^{t}$ and $A_{i}=\left|T_{i}\right|^{s}$ such that $s+t \geq 1$ in Theorem 4, where T_{i} and U_{i} are in the polar decomposition of $T_{i}=U_{i}\left|T_{i}\right|(i=1, \ldots, n)$. Then we have

$$
D_{i} C_{i} B_{i} A_{i}=U_{i}\left|T_{i}\right|^{t}\left|T_{i}\right|^{s}=U_{i}\left|T_{i}\right|\left|T_{i}\right|^{s+t-1}=T_{i}\left|T_{i}\right|^{s+t-1},
$$

also, we have $A_{i}^{*}\left|B_{i}\right|^{2} A_{i}=\left|T_{i}\right|^{2 s}$ and $D_{i}\left|C_{i}^{*}\right|^{2} D_{i}^{*}=U_{i}\left|T_{i}\right|^{2 t} U_{i}^{*}=\left|T_{i}^{*}\right|^{2 t}$. If we take $g(t)=t^{r}(r \geq 1)$ in the first inequality, then we have

$$
\boldsymbol{b e r}_{r}\left(T_{1}\left|T_{1}\right|^{s+t-1}, \ldots, T_{n}\left|T_{n}\right|^{s+t-1}\right) \leq \operatorname{ber}^{\frac{1}{r}}\left(\sum_{i=1}^{n}\left(\frac{1}{p}\left|T_{i}\right|^{r s p}+\frac{1}{q}\left|T_{i}^{*}\right|^{r t p}\right)\right)
$$

- Author contributions: All authors have equal contributions.
- Funding: No funding is applicable for this article.
- Conflict of interest: All authors declare that they have no conflict of interest.
- Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Acknowledgements

The authors thank the referees for the valuable suggestions and comments on an earlier version.

References

[1] M.W. Alomari, M. Sababheh, C. Conde, and H.R. Moradi, Generalized Euclidean Operator Radius, arXiv preprint arXiv:2211.00290
[2] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J. 68(143) (2018), no. 4, 997-1009
[3] M. Bakherad and M.T. Karaev, Berezin number inequalities for operators, Concr. Oper. 6 (2019), no. 1, 33-43.
[4] F.A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972), 1117-1151.
[5] F.A. Berezin, Quantizations, Math. USSR-Izv. 8 (1974), 1109-1163.
[6] R. Bhatia, Positive definite matrices, Princeton University Press, Princeton, 2007
[7] F. Chien, E. F.Mohommed, M. Hajmohamadi, and R. Lashkaripour, Inequalities of generalized Euclidean Berezin number, Filomat, 36, no. 16 (2022), 5337-5345
[8] S.S. Dragomir, Some inequalities generalizing Kato's and Furuta's results, Filomat, 28 (1) (2014), 179-195.
[9] M.T. Garayev, M. Gürdal, and S. Saltan, Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems, Positivity, 21 (2017), no. 4, 1615-1623.
[10] M.T. Garayev and U. Yamancı Čebyšev's type inequalities and power inequalities for operators of Berezin number, Filomat, 33(8) (2019), 2307-2316.
[11] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Improvements of Berezin number inequalities, Linear and Multilinear Algebra, 68 (2020), no. 6, 1218-1229.
[12] P.R. Halmos, A Hilbert Space Problem Book, 2nd ed., springer, New York, 1982.
[13] G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1988.
[14] M.T. Karaev, Berezin symbol and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal. 238 (2006), 181-192
[15] M.T. Karaev, and S. Saltan, Some results on Berezin symbols, Complex Var. Theory Appl. 50(3) (2005), 185-193.
[16] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), 283-293.
[17] H.P. Mulholland, On generalizations of Minkowski's inequality in the form of a triangle inequality, Proc. Lond. Math. Soc. 2(1) (1949), 294-307.
[18] E. Nordgren, and P. Rosenthal, Boundary values of Berezin symbols, Oper. Theory Adv. Appl. 73 (1994), 362-368.
[19] V.I. Paulsen, and M. Raghupati, An introduction to the theory of reproducing kernel Hilbert spaces, Cambridge Univ. Press, 2016.
[20] U. Yamancı and M. Gürdal, On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math. 23 (2017), 1531-1537.
[21] U. Yamancı M. Gürdal, and M.T. Garayev, Berezin number inequality for convex function in reproducing Kernel Hilbert space, Filomat, 31 (2017), no. 18, 5711-5717.
[22] U. Yamancı and M. Garayev, Some results related to the Berezin number inequalities, Turkish J. Math., 43 (2019), 1940-1952.

[^0]: 2020 Mathematics Subject Classification. 47A63, 15A18, 15A45
 Keywords. Berezin number, Berezin set, Berezin symbol, Euclidean Berezin number
 Received: 23 March 2023; Revised: 23 April 2023; Accepted: 26 April 2023
 Communicated by Fuad Kittaneh

 * Corresponding author: Mojtaba Bakherad

 Email addresses: nooshineslami@pgs.usb.ac.ir (Nooshin Eslami Mahdiabadi), mojtaba.bakherad@yahoo.com (Mojtaba Bakherad)

