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Basic classes of timelike general rotational surfaces in the
four-dimensional Minkowski space
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Abstract. In the present paper, we consider timelike general rotational surfaces in the Minkowski 4-
space which are analogous to the general rotational surfaces in the Euclidean 4-space introduced by C.
Moore. We study two types of such surfaces (with timelike and spacelike meridian curve, respectively)
and describe analytically some of their basic geometric classes: flat timelike general rotational surfaces,
timelike general rotational surfaces with flat normal connection, and timelike general rotational surfaces
with non-zero constant mean curvature. We give explicitly all minimal timelike general rotational surfaces
and all timelike general rotational surfaces with parallel normalized mean curvature vector field.

1. Introduction

Rotational surfaces are basic sources of examples of many geometric classes of surfaces both in Euclidean
and pseudo-Euclidean spaces. In [17], C. Moore introduced a class of surfaces in the four-dimensional
Euclidean space R4 which generalized the rotational surfaces and described a special case of such surfaces
with constant Gauss curvature [18].

The analogue of these surfaces in the Minkowski 4-space was considered by G. Ganchev and the second
author in [9], where spacelike general rotational surfaces in R4

1 with plane meridian curves and special
invariants were studied. The flat general rotational surfaces and the general rotational surfaces with flat
normal connection were described analytically and the minimal general rotational surfaces and the general
rotational surfaces consisting of parabolic points were completely classified. Spacelike general rotational
surfaces in R4

1 with plane meridian curves and having pointwise 1-type Gauss map were studied by U.
Dursun in [6].

Analogously to the general rotational surfaces in the Euclidean 4-space and in the Minkowski 4-space,
in [1], Y. Aleksieva, N.-C. Turgay and the second author defined general rotational surfaces of elliptic
and hyperbolic type in the pseudo-Euclidean 4-space with neutral metric R4

2. Especially, Lorentz general
rotational surfaces with plane meridian curves were considered and the complete classification of some
special geometric classes was given: minimal general rotational surfaces of elliptic and hyperbolic type,
general rotational surfaces with parallel normalized mean curvature vector field, flat general rotational
surfaces, and general rotational surfaces with flat normal connection.
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In the present paper, we consider two types of timelike general rotational surfaces in the Minkowski
4-spaceR4

1 with meridian curves lying in 2-dimensional planes and describe analytically some of their basic
geometric classes. In Theorem 4.1 we describe all flat timelike general rotational surfaces of first and second
type. In Theorem 5.1 we describe the timelike general rotational surfaces with flat normal connection. The
minimal general rotational surfaces of first and second type are explicitly determined in Theorem 6.1. In
Theorem 7.1 we classify the timelike general rotational surfaces with non-zero constant mean curvature.
In the last section, we give explicitly all timelike general rotational surfaces with parallel normalized mean
curvature vector field.

2. Preliminaries

Let R4
1 be the four-dimensional Minkowski space endowed with the metric ⟨, ⟩ of signature (3, 1) and

Oe1e2e3e4 be a fixed orthonormal coordinate system, i.e. e2
1 = e2

2 = e2
3 = 1, e2

4 = −1, giving the orientation of
R4

1. The standard flat metric is given in local coordinates by dx2
1 + dx2

2 + dx2
3 − dx2

4.
A surface M2 : z = z(u, v), (u, v) ∈ D (D ⊂ R2) in R4

1 is said to be spacelike if ⟨, ⟩ induces a Riemannian
metric 1 on M2. A surface M2 is said to be timelike if the induced metric 1 on M2 is a metric with index 1.
So, at each point p of a spacelike (resp. timelike) surface M2 we have the following decomposition:

R4
1 = TpM2

⊕NpM2

with the property that the restriction of the metric ⟨, ⟩ onto the tangent space TpM2 is of signature (2, 0) (resp.
(1, 1)), and the restriction of the metric ⟨, ⟩ onto the normal space NpM2 is of signature (1, 1) (resp. (2, 0)).

Denote by ∇̃ and ∇ the Levi Civita connections on R4
1 and M2, respectively. If x and y are vector fields

tangent to M2 and ξ is a normal vector field, then we have the following formulas of Gauss and Weingarten:

∇̃xy = ∇xy + σ(x, y);

∇̃xξ = −Aξx +Dxξ,

which define the second fundamental tensor σ, the normal connection D and the shape operator Aξ with
respect to ξ.

The mean curvature vector field H of M2 is defined as H =
1
2

tr σ. A normal vector field ξ on a surface M2

is called parallel in the normal bundle (or simply parallel) if Dξ = 0 [4]. The surface M2 is said to have parallel
mean curvature vector field if its mean curvature vector H is parallel, i.e. DH = 0. The class of surfaces with
parallel mean curvature vector field is naturally extended to the class of surfaces with parallel normalized
mean curvature vector field as follows: a surface is said to have parallel normalized mean curvature vector
field if H is non-zero and there exists a unit vector field in the direction of H which is parallel in the normal
bundle [3].

Let M2 : z = z(u, v), (u, v) ∈ D (D ⊂ R2) be a local parametrization on a timelike surface in R4
1. The

tangent space TpM2 at an arbitrary point p = z(u, v) of M2 is spanned by zu and zv. We use the standard
denotations E(u, v) = ⟨zu, zu⟩, F(u, v) = ⟨zu, zv⟩, G(u, v) = ⟨zv, zv⟩ for the coefficients of the first fundamental
form. Since M2 is timelike, without loss of generality we assume that ⟨zu, zu⟩ < 0, ⟨zv, zv⟩ > 0. Hence,
E(u, v) < 0, G(u, v) > 0 and we set W =

√

−EG + F2. We choose an orthonormal frame field {n1,n2} of the
normal bundle, i.e. ⟨n1,n1⟩ = 1, ⟨n2,n2⟩ = 1, ⟨n1,n2⟩ = 0. Then we have the following derivative formulas:

∇̃zu zu = zuu = −Γ
1
11 zu + Γ

2
11 zv + c1

11 n1 + c2
11 n2;

∇̃zu zv = zuv = −Γ
1
12 zu + Γ

2
12 zv + c1

12 n1 + c2
12 n2;

∇̃zv zv = zvv = −Γ
1
22 zu + Γ

2
22 zv + c1

22 n1 + c2
22 n2;

(1)
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where Γk
i j are the Christoffel’s symbols and the functions ck

i j, i, j, k = 1, 2 are given by

c1
11 = ⟨zuu,n1⟩; c1

12 = ⟨zuv,n1⟩; c1
22 = ⟨zvv,n1⟩;

c2
11 = ⟨zuu,n2⟩; c2

12 = ⟨zuv,n2⟩; c2
22 = ⟨zvv,n2⟩.

It is obvious, that M2 lies in a two-dimensional plane if and only if it is totally geodesic, i.e. ck
i j = 0 for

all i, j, k = 1, 2. Further, we assume that at least one of the coefficients ck
i j is not zero.

Let us consider the following determinants:

∆1 =

∣∣∣∣∣∣∣ c1
11 c1

12

c2
11 c2

12

∣∣∣∣∣∣∣ , ∆2 =

∣∣∣∣∣∣∣ c1
11 c1

22

c2
11 c2

22

∣∣∣∣∣∣∣ , ∆3 =

∣∣∣∣∣∣∣ c1
12 c1

22

c2
12 c2

22

∣∣∣∣∣∣∣ .
At a given point p ∈M2, the first normal space of M2 in E4

1, denoted by Im σp, is the subspace given by

Im σp = span{σ(x, y) : x, y ∈ TpM2
}.

It is obvious, that the condition ∆1 = ∆2 = ∆3 = 0 characterizes points at which the first normal space
Im σp is one-dimensional. Such points are called flat (or inflection) points of the surface [12, 13]. E. Lane [12]
has shown that every point of a surface in a 4-dimensional affine spaceA4 is an inflection point if and only
if the surface is developable or lies in a 3-dimensional space. So, further we consider timelike surfaces free
of inflection points, i.e. we assume that (∆1,∆2,∆3) , (0, 0, 0).

Now, we shall consider a special class of surfaces in the Minkowski 4-space, which are called general
rotational surfaces.

General rotational surfaces in the Euclidean 4-space R4 were introduced by F. N. Cole [5] and later
studied by C. Moore [17]. We present shortly the construction. Let c : x(u) =

(
x1(u), x2(u), x3(u), x4(u)

)
;

u ∈ J ⊂ R be a smooth curve in R4, and α, β be real constants. A general rotation of the meridian curve c in
R4 is defined by

X(u, v) =
(
X1(u, v),X2(u, v),X3(u, v),X4(u, v)

)
,

where
X1(u, v) = x1(u) cosαv − x2(u) sinαv; X3(u, v) = x3(u) cos βv − x4(u) sin βv;

X2(u, v) = x1(u) sinαv + x2(u) cosαv; X4(u, v) = x3(u) sin βv + x4(u) cos βv,

v ∈ [0; 2π). The constants α and β determine the rates of rotation. In the case β = 0, x2(u) = 0, the plane Oe3e4
is fixed and one gets the classical rotation about a fixed two-dimensional axis. In [18], C. Moore described
a special case of general rotational surfaces with constant Gauss curvature.

In [16], the second author considered a special case of such surfaces, given by

M : z(u, v) =
(

f (u) cosαv, f (u) sinαv, 1(u) cos βv, 1(u) sin βv
)
, (2)

where u ∈ J ⊂ R, v ∈ [0; 2π), f (u) and 1(u) are smooth functions, satisfying α2 f 2(u) + β212(u) > 0, f ′ 2(u) +
1′ 2(u) > 0, and α, β are positive constants. In the case α , β each parametric curve u = const is a curve in
R4 with constant Frenet curvatures, and in the case α = β each parametric curve u = const is a circle. The
parametric curves v = const are plane curves called the meridians ofM.

The surfaces defined by (2) are general rotational surfaces in the sense of C. Moore with plane meridian
curves. In [16], the second author found the invariants of these surfaces and completely classified the
minimal super-conformal general rotational surfaces in R4.

Similarly to the general rotations in R4 one can consider general rotational surfaces in the Minkowski
4-space R4

1. Let c : x(u) =
(
x1(u), x2(u), x3(u), x4(u)

)
; u ∈ J ⊂ R be a smooth spacelike or timelike curve in R4

1,
and α, β be real constants. We consider the surface defined by

X(u, v) =
(
X1(u, v),X2(u, v),X3(u, v),X4(u, v)

)
, (3)
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where

X1(u, v) = x1(u) cosαv − x2(u) sinαv; X3(u, v) = x3(u) cosh βv + x4(u) sinh βv;

X2(u, v) = x1(u) sinαv + x2(u) cosαv; X4(u, v) = x3(u) sinh βv + x4(u) cosh βv. (4)

In the case β = 0, x2(u) = 0 (or x1(u) = 0) one gets the standard rotational surface (with two-dimensional
axis) of elliptic type inR4

1. A local classification of spacelike rotational surfaces of elliptic type, whose mean
curvature vector field is either vanishing or lightlike, was obtained in [11].

In the case α = 0, x3(u) = 0 one gets the standard hyperbolic rotational surface of first type, and in the
case α = 0, x4(u) = 0 we get the standard hyperbolic rotational surface of second type. Spacelike rotational
surfaces of hyperbolic type with either vanishing or lightlike mean curvature vector field are classified
in [10]. In [14], the classification of timelike and spacelike hyperbolic rotational surfaces with non-zero
constant mean curvature in the three-dimensional de Sitter space S3

1 is given. Spacelike and timelike
Weingarten rotational surfaces in S3

1 are studied in [15]. The class of Chen spacelike rotational surfaces of
hyperbolic or elliptic type in R4

1 is described in [7]. Timelike rotational surfaces with two-dimensional axis
of hyperbolic, elliptic, and parabolic type in R4

1 were studied in [2], where such surfaces with pointwise
1-type Gauss map of first and second kind were considered.

In the case α > 0 and β > 0 the surfaces defined by (3) and (4) are analogous to the general rotational
surfaces of C. Moore in R4. In [8] and [9], G. Ganchev and the second author considered spacelike general
rotational surfaces with plane meridian curves inR4

1 and described analytically some basic geometric classes
of these surfaces.

In the present paper, we study timelike general rotational surfaces in the Minkowski space R4
1 with

plane meridian curves and describe analytically some of their basic geometric classes, namely: flat surfaces,
surfaces with flat normal connection, minimal surfaces, surfaces with non-zero constant mean curvature,
and surfaces with parallel normalized mean curvature vector field.

3. Timelike general rotational surfaces with plane meridian curves

We consider a surfaceM1 in R4
1 parametrized by

M1 : z(u, v) =
(

f (u) cosαv, f (u) sinαv, 1(u) sinh βv, 1(u) cosh βv
)
, (5)

where u ∈ J ⊂ R, v ∈ [0; 2π), f (u) and 1(u) are smooth functions, satisfying the conditions

f ′ 2(u) − 1′ 2(u) < 0, α2 f 2(u) + β212(u) > 0,

and α, β are positive constants. This is a general rotational surface with plane meridian curves, defined by
(3) and (4) in the case x2(u) = 0 and x3(u) = 0. The meridian curve c : x(u) =

(
f (u), 0, 0, 1(u)

)
; u ∈ J ⊂ R is

timelike.
The coefficients of the first fundamental form ofM1 are

E = f ′ 2(u) − 1′ 2(u); F = 0; G = α2 f 2(u) + β212(u).

M1 is a timelike surface in R4
1, since E < 0, G > 0. We call it a general rotational surface of first type.

We consider the tangent frame field {x, y} defined by:

x =
zu√

1′ 2 − f ′ 2
; y =

zv√
α2 f 2 + β212

. (6)

Obviously, ⟨x, x⟩ = −1; ⟨y, y⟩ = 1; ⟨x, y⟩ = 0. Let us consider the following normal frame field ofM1:

n1 =
1√

α2 f 2 + β212

(
β1 sinαv,−β1 cosαv, α f cosh βv, α f sinh βv

)
;

n2 =
1√

1′ 2 − f ′ 2

(
1′ cosαv, 1′ sinαv, f ′ sinh βv, f ′ cosh βv

)
.

(7)
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It can easily be seen that ⟨n1,n1⟩ = ⟨n2,n2⟩ = 1; ⟨n1,n2⟩ = 0. Hence, {x, y,n1,n2} is an orthonormal moving
frame field of the surfaceM1.

By direct computation we obtain the second partial derivatives of z(u, v):

zuu =
(

f ′′(u) cosαv, f ′′(u) sinαv, 1′′(u) sinh βv, 1′′(u) cosh βv
)

;

zuv =
(
−α f ′(u) sinαv, α f ′(u) cosαv, β1′(u) cosh βv, β1′(u) sinh βv

)
;

zvv =
(
−α2 f (u) cosαv,−α2 f (u) sinαv, β21(u) sinh βv, β21(u) cosh βv

)
.

(8)

Formulas (7) and (8) imply that the functions ck
i j, i, j, k = 1, 2 are expressed as follows:

c1
11 = 0; c1

12 =
αβ( f1′ − f ′1)√
α2 f 2 + β212

; c1
22 = 0;

c2
11 =

f ′′1′ − f ′1′′√
1′ 2 − f ′ 2

; c2
12 = 0; c2

22 = −
α2 f1′ + β2 f ′1√
1′ 2 − f ′ 2

.
(9)

Taking into consideration (6) and (9), we obtain that the second fundamental tensor σ is expressed by:

σ(x, x) =
f ′′1′ − f ′1′′

(1′ 2 − f ′ 2)
3
2

n2; σ(x, y) =
αβ( f1′ − f ′1)√

1′ 2 − f ′ 2(α2 f 2 + β212)
n1; σ(y, y) = −

α2 f1′ + β2 f ′1√
1′ 2 − f ′ 2(α2 f 2 + β212)

n2.

Using the last formulas, we obtain the Gauss curvature K and the mean curvature vector field H of M1
expressed by the functions f (u), 1(u) and their derivatives:

K =

(
f ′′1′ − f ′1′′

) (
α2 f1′ + β2 f ′1

)
(α2 f 2 + β212) + α2β2 (

f1′ − f ′1
)2 (1′ 2

− f ′ 2)

(1′ 2 − f ′ 2)2(α2 f 2 + β212)2 ; (10)

H =

(
f ′1′′ − f ′′1′

)
(α2 f 2 + β212) −

(
α2 f1′ + β2 f ′1

)
(1′ 2
− f ′ 2)

2(α2 f 2 + β212)(1′ 2 − f ′ 2)
3
2

n2. (11)

In a similar way, we consider the surfaceM2 in R4
1 parametrized by

M2 : z(u, v) =
(

f (u) cosαv, f (u) sinαv, 1(u) cosh βv, 1(u) sinh βv
)
, (12)

where u ∈ J, v ∈ [0; 2π), f (u) and 1(u) are smooth functions, satisfying the inequalities

α2 f 2(u) − β212(u) < 0, f ′ 2(u) + 1′ 2(u) > 0,

and α, β are positive constants. The surface, defined by (12), is a general rotational surface for which
x2(u) = 0 and x4(u) = 0. In this case, the meridian curve c : x(u) =

(
f (u), 0, 1(u), 0

)
; u ∈ J ⊂ R is spacelike.

The coefficients of the first fundamental form ofM2 are

E = f ′ 2(u) + 1′ 2(u); F = 0; G = α2 f 2(u) − β212(u).

M2 is a timelike surface in R4
1, since E > 0, G < 0. We call it a general rotational surface of second type.

We consider the tangent frame field {x, y} defined by:

x =
zu√

f ′ 2 + 1′ 2
; y =

zv√
β212 − α2 f 2

. (13)



V. Bencheva, V. Milousheva / Filomat 37:25 (2023), 8505–8519 8510

Obviously, in this case, ⟨x, x⟩ = 1; ⟨y, y⟩ = −1; ⟨x, y⟩ = 0. We choose the following normal frame field ofM2:

n1 =
1√

f ′ 2 + 1′ 2

(
1′ cosαv, 1′ sinαv,− f ′ cosh βv,− f ′ sinh βv

)
;

n2 =
1√

β212 − α2 f 2

(
−β1 sinαv, β1 cosαv, α f sinh βv, α f cosh βv

)
,

(14)

which satisfies ⟨n1,n1⟩ = ⟨n2,n2⟩ = 1; ⟨n1,n2⟩ = 0.
As in the previous case, by calculating the second partial derivatives of z(u, v) and the functions ck

i j,
i, j, k = 1, 2, we obtain the second fundamental tensor σ, which in this case is expressed by:

σ(x, x) =
f ′′1′ − f ′1′′

( f ′ 2 + 1′ 2)
3
2

n1; σ(x, y) =
αβ( f ′1 − f1′)√

f ′ 2 + 1′ 2(β212 − α2 f 2)
n2; σ(y, y) = −

α2 f1′ + β2 f ′1

( f ′ 2 + 1′ 2)
√
β212 − α2 f 2

n1.

By use of these formulas we obtain that the Gauss curvature K and the mean curvature vector field H of
M2 are expressed by the functions f (u), 1(u) and their derivatives, as follows:

K =
α2β2 (

f ′1 − f1′
)2 ( f ′ 2 + 1′ 2) − ( f ′′1′ − f ′1′′)(α2 f 2

− β212)
(
α2 f1′ + β2 f ′1

)
( f ′ 2 + 1′ 2)2(α2 f 2 − β212)2 ; (15)

H =

(
f ′1′′ − f ′′1′

)
(α2 f 2

− β212) +
(
α2 f1′ + β2 f ′1

)
( f ′ 2 + 1′ 2)

2(α2 f 2 − β212)(
√
1′ 2 + f ′ 2)3

n1. (16)

In the following sections we shall describe some basic classes of timelike general rotational surfaces of
first and second type, like flat surfaces, surfaces with flat normal connection, minimal surfaces, surfaces of
constant mean curvature.

4. Flat timelike general rotational surfaces

LetM1 andM2 be timelike general rotational surfaces of first and second type, defined by (5) and (12),
respectively. A surface is called flat if the Gauss curvature K is zero. In the next statement, we describe
analytically all flat timelike general rotational surfaces of first and second type.

Theorem 4.1. (i) The timelike general rotational surface of first type is flat if and only if, up to parametrization,
the meridian curve is determined by c : x(u) =

(
f (u), 0, 0,u

)
, where f (u) is a solution to the following differential

equation:(
ln

∣∣∣∣∣1 + f ′

1 − f ′

∣∣∣∣∣)′ = −2α2β2 (
f − u f ′

)2(
α2 f + β2u f ′

)
(α2 f 2 + β2u2)

. (17)

(ii) The timelike general rotational surface of second type is flat if and only if, up to parametrization, the meridian
curve is determined by c : x(u) =

(
f (u), 0,u, 0

)
, where f (u) is a solution to the following differential equation:

(arctan f ′)
′

=
α2β2 (

u f ′ − f
)2

(α2 f 2 − β2u2)
(
α2 f + β2u f ′

) . (18)

Proof. (i) LetM1 be a timelike general rotational surface of first type, defined by (5). Using formula (10)
for the Gauss curvature ofM1, we obtain that K = 0 if and only if the functions f (u) and 1(u) satisfy the
equality

α2β2 (
f1′ − f ′1

)2 ( f ′ 2
− 1′ 2) =

(
f ′′1′ − f ′1′′

) (
α2 f1′ + β2 f ′1

)
(α2 f 2 + β212). (19)



V. Bencheva, V. Milousheva / Filomat 37:25 (2023), 8505–8519 8511

Without loss of generality we may assume that the meridian curve is parametrized by f = f (u); 1 = u.
Then, equation (19) takes the form

f ′′

(1 − f ′ 2)
=

−α2β2 (
f − u f ′

)2(
α2 f + β2u f ′

)
(α2 f 2 + β2u2)

,

which is equivalent to (17).

(ii) Analogously, if M2 is a timelike general rotational surface of second type, defined by (12), then it
follows from (15) that K = 0 if and only if f (u) and 1(u) satisfy

α2β2 (
f ′1 − f1′

)2 ( f ′ 2 + 1′ 2) = ( f ′′1′ − f ′1′′)(α2 f 2
− β212)

(
α2 f1′ + β2 f ′1

)
. (20)

Again we assume that the meridian curve is parametrized by f = f (u); 1 = u. Then, equation (20) takes the
following form

f ′′

1 + f ′ 2 =
α2β2 (

u f ′ − f
)2

(α2 f 2 − β2u2)
(
α2 f + β2u f ′

) ,
which is equivalent to (18).

5. Timelike general rotational surfaces with flat normal connection

A surface is said to have flat normal connection if the curvature of the normal connection is zero. The

curvature of the normal connection κ is expressed by the formula κ =
⟨RD(x, y,n1),n2⟩

⟨x, x⟩⟨y, y⟩ − ⟨x, y⟩2
, where RD is the

curvature tensor associated with the normal connection D, i.e. RD(x, y,n1) = DxDyn1 −DyDxn1 −D[x,y]n1.
Now, letM1 be a timelike general rotational surface of first type, defined by (5). Then, using formula

(7) for the normal frame field ofM1, by direct computations we obtain that:

⟨∇̃xn1,n2⟩ = ⟨∇̃xn2,n1⟩ = 0; ⟨∇̃yn1,n2⟩ =
αβ(11′ − f f ′)√

1′ 2 − f ′ 2(α2 f 2 + β212)
; ⟨∇̃yn2,n1⟩ = −

αβ(11′ − f f ′)√
1′ 2 − f ′ 2(α2 f 2 + β212)

.

Hence, for the normal connection D ofM1 we have the formulas:

Dxn1 = 0; Dxn2 = 0;

Dyn1 =
αβ(11′ − f f ′)√

1′ 2 − f ′ 2(α2 f 2 + β212)
n2; Dyn2 = −

αβ(11′ − f f ′)√
1′ 2 − f ′ 2(α2 f 2 + β212)

n1.
(21)

Since the Levi-Civita connection ∇̃ is flat, the commutator [x, y] can be calculated by the formula [x, y] =

∇̃xy − ∇̃yx. Having in mind that x =
1√

1′ 2 − f ′ 2
zu; y =

1√
α2 f 2 + β212

zv, we get

[x, y] =
α2 f f ′ + β211′√

1′ 2 − f ′ 2(α2 f 2 + β212)
y. (22)

Now, taking into consideration formulas (21) and (22), by long but direct computations we obtain that the
curvature of the normal connection κ ofM1 is expressed by the following formula:

κ =
αβ( f1′ − f ′1)

(
( f ′ 2
− 1′ 2)(α2 f1′ + β2 f ′1) + ( f ′′1′ − f ′1′′)(α2 f 2 + β212)

)
( f ′ 2 − 1′ 2)2(α2 f 2 + β212)2 . (23)
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In a similar way, we calculate the curvature of the normal connection of the timelike general rotational
surface of second typeM2. The normal frame field ofM2 is determined by (14) and by direct computations
we get the following formulas for the normal connection D:

Dxn1 = 0; Dxn2 = 0;

Dyn1 =
αβ( f f ′ + 11′)√

f ′ 2 + 1′ 2(β212 − α2 f 2)
n2; Dyn2 = −

αβ( f f ′ + 11′)√
f ′ 2 + 1′ 2(β212 − α2 f 2)

n1.
(24)

Using (24) we obtain that the curvature of the normal connection ofM2 is expressed by the formula:

κ =
αβ( f1′ − f ′1)

(
( f ′ 2 + 1′ 2)(α2 f1′ + β2 f ′1) + ( f ′′1′ − f ′1′′)(α2 f 2

− β212)
)

( f ′ 2 + 1′ 2)2(α2 f 2 − β212)2 . (25)

In the next theorem, we describe analytically all timelike general rotational surfaces of first and second
type with flat normal connection.

Theorem 5.1. (i) The timelike general rotational surface of first type has flat normal connection if and only if, up
to parametrization, the meridian curve is determined by c : x(u) =

(
f (u), 0, 0,u

)
, where f (u) is a solution to the

following differential equation:(
ln

∣∣∣∣∣1 + f ′

1 − f ′

∣∣∣∣∣)′ = 2(α2 f + β2u f ′)
α2 f 2 + β2u2 . (26)

(ii) The timelike general rotational surface of second type has flat normal connection if and only if, up to parametriza-
tion, the meridian curve is determined by c : x(u) =

(
f (u), 0,u, 0

)
, where f (u) is a solution to the following differential

equation:

(arctan f ′)′ =
α2 f + β2u f ′

β2u2 − α2 f 2 . (27)

Proof. (i) LetM1 be a timelike general rotational surface of first type, defined by (5). Using formula (23), we
obtain that the curvature of the normal connection is zero if and only if the functions f (u) and 1(u) satisfy
the equality

f ′′1′ − 1′ f ′′

1′ 2 − f ′ 2 =
α2 f1′ + β2 f ′1
α2 f 2 + β212 . (28)

Without loss of generality we may assume that the meridian curve is parametrized by f = f (u); 1 = u.
Then, equation (28) takes the form

f ′′

1 − f ′ 2 =
α2 f + β2u f ′

α2 f 2 + β2u2 ,

which is equivalent to (26).

(ii) Analogously, if M2 is a timelike general rotational surface of second type, defined by (12), then it
follows from (25) that κ = 0 if and only if f (u) and 1(u) satisfy

f ′′1′ − f ′1′′

f ′ 2 + 1′ 2 =
α2 f1′ + β2 f ′1
β212 − α2 f 2 . (29)

Again we assume that the meridian curve is parametrized by f = f (u); 1 = u. Then, equation (29) takes the
form

f ′′

1 + f ′ 2 =
α2 f + β2u f ′

β2u2 − α2 f 2 ,

which is equivalent to (27).
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6. Minimal timelike general rotational surfaces

In this section we shall find all minimal timelike general rotational surfaces of first and second type.
Recall that a surface is minimal if and only if the normal mean curvature vector field H vanishes. LetM1
be a timelike general rotational surface of first type, defined by (5). Using the expression (11) for the mean
curvature vector field H, we get that the timelike general rotational surface of first type is minimal if and
only if the functions f (u) and 1(u) satisfy the following equality:

f ′′1′ − f ′1′′

1′2 − f ′2
=
−(α2 f1′ + β21 f ′)
α2 f 2 + β212 . (30)

Similarly, the general rotational surface of second typeM2, defined by (12), is minimal if and only if

f ′′1′ − f ′1′′

f ′2 + 1′2
=

(α2 f1′ + β21 f ′)
α2 f 2 − β212 .

In the following theorem, we describe explicitly the class of minimal timelike general rotational surfaces
of first and second type.

Theorem 6.1. (i) The timelike general rotational surface of first type is minimal if and only if, up to parametrization,
the meridian curve is determined by c : x(u) =

(
f (u), 0, 0,u

)
, where f (u) is given by the formula

f =

√
A
α

sin
(
ε
α
β

ln
∣∣∣∣∣βu + √

A + β2u2

∣∣∣∣∣ + C
)

; A = const, C = const, ε = ±1. (31)

(ii) The timelike general rotational surface of second type is minimal if and only if, up to parametrization, the meridian
curve is determined by c : x(u) =

(
f (u), 0,u, 0

)
, where f (u) is given by the formula

f =

√
A
α

sin
(
ε
α
β

ln
∣∣∣∣∣βu + √

β2u2 − A
∣∣∣∣∣ + C

)
; A = const, C = const, ε = ±1. (32)

Proof. (i) LetM1 be a timelike general rotational surface of first type, defined by (5). Using (6) and (8), we
obtain the following Frenet-type derivative formulas with respect to the frame field {x, y,n1,n2}, defined by
(6) and (7):

∇̃xx = ν1 n2; ∇̃xn1 = −µ y;

∇̃xy = µn1; ∇̃xn2 = ν1 x;

∇̃yx = −γ y + µn1; ∇̃yn1 = µ x + φn2;

∇̃yy = −γ x + ν2 n2; ∇̃yn2 = −ν2 y − φn1,

where γ, µ, ν1, ν2, φ are smooth functions expressed in terms of f (u) and 1(u) as follows:

γ = −
α2 f f ′ + β211′√

1′2 − f ′2(α2 f 2 + β212)
; µ =

αβ( f1′ − 1 f ′)√
1′2 − f ′2(α2 f 2 + β212)

;

ν1 =
f ′′1′ − f ′1′′

(
√
1′2 − f ′2)3

; ν2 = −
α2 f1′ + β21 f ′√

1′2 − f ′2(α2 f 2 + β212)
;

φ =
αβ(11′ − f f ′)√

1′2 − f ′2(α2 f 2 + β212)
.

(33)
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Using that the connection ∇̃ of R4
1 is flat, from R̃(x, y, x) = 0 and R̃(x, y, y) = 0 we obtain that the functions

γ, µ, ν1, ν2, φ satisfy the following equalities:

x(µ) = 2µγ − ν1φ; x(ν2) = γ(ν1 + ν2) + µφ; x(γ) = ν1ν2 − µ
2 + γ2. (34)

In the case M1 is a minimal surface, the functions ν1 and ν2 satisfy the relation ν1 = ν2, which is
equivalent to (30). In this case, from equalities (34) we get

x(µ) = 2µγ − ν1φ; x(ν1) = 2γν1 + µφ,

which implies that γ =
1
4

x
(
ln(µ2 + ν2

1)
)
. On the other hand, γ = −⟨∇̃yx, y⟩ and having in mind (6) and

G = ⟨zv, zv⟩, we calculate that γ = −x
(
ln
√

G
)
. Hence, we obtain the equation

1
4

x
(
ln(µ2 + ν2

1)
)
+ x

(
ln
√

G
)
= 0,

which implies
x
(
G2(µ2 + ν2

1)
)
= 0.

Now, using that the functions µ, ν1, and G depend only on the parameter u, we obtain G2(µ2 + ν2
1) = c2 for

some real constant c. Having in mind that G = α2 f 2+β212 and the functions µ and ν1 are expressed in terms
of f and 1 as given in (33), we obtain the equality

α2β2( f1′ − 1 f ′)2 + (α2 f1′ + β21 f ′)2

1′2 − f ′2
= c2,

which implies
α2 f 21′2 + β212 f ′2

1′2 − f ′2
=

c2

α2 + β2 .

Without loss of generality we may assume that 1′2 − f ′2 = 1, i.e. the meridian curve c is parametrized by
the arc-length. So, we get

α2 f 21′2 + β212 f ′2 =
c2

α2 + β2 . (35)

Denote A =
c2

α2 + β2 . Now, using that 1′2 = 1 + f ′2, from (35) we get

f ′2 =
A − α2 f 2

α2 f 2 + β212 ; 1′2 =
A + β212

α2 f 2 + β212 . (36)

Note that the constant A satisfies A > α2 f 2. Equalities (36) imply that

(A + β212) f ′2 = (A − α2 f 2)1′2,

which is equivalent to
f ′√

A − α2 f 2
= ε

1′√
A + β212

, ε = ±1.

Thus, integrating the last equality, we obtain:∫
d f√

A − α2 f 2
= ε

∫
d1√

A + β212
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and calculating these integrals, we get

arcsin
α f
√

A
= ε
α
β

ln
∣∣∣∣∣β1 + √

A + β212

∣∣∣∣∣ + C, C = const.

Now, setting 1 = u, we obtain that the function f satisfies:

arcsin
α f
√

A
= ε
α
β

ln
∣∣∣∣∣βu + √

A + β2u2

∣∣∣∣∣ + C, C = const.

Consequently, in the case of a minimal timelike general rotational surface of first type, the meridian
curve c is given by formula (31).

(ii) In a similar way, for the timelike general rotational surface of second type we obtain the following
Frenet-type derivative formulas with respect to the frame field {x, y,n1,n2}, defined by (13) and (14):

∇̃xx = ν1 n1; ∇̃xn1 = −ν1 x;

∇̃xy = µn2; ∇̃xn2 = µ y;

∇̃yx = γ y + µn2; ∇̃yn1 = ν2 y + φn2;

∇̃yy = γ x + ν2 n1; ∇̃yn2 = −µ x − φn1,

where γ, µ, ν1, ν2, φ are smooth functions expressed in terms of f (u) and 1(u) as follows:

γ =
α2 f f ′ − β211′√

f ′2 + 1′2(α2 f 2 − β212)
; µ =

αβ( f1′ − 1 f ′)√
f ′2 + 1′2(α2 f 2 − β212)

;

ν1 =
f ′′1′ − f ′1′′

(
√

f ′2 + 1′2)3
; ν2 =

α2 f1′ + β21 f ′√
f ′2 + 1′2(α2 f 2 − β212)

;

φ = −
αβ(11′ + f f ′)√

f ′2 + 1′2(α2 f 2 − β212)
.

(37)

Again, using that the connection ∇̃ ofR4
1 is flat, from R̃(x, y, x) = 0 and R̃(x, y, y) = 0 we obtain the following

equalities in the case of a minimal surface:

x(µ) = ν1φ − 2µγ; x(ν1) = −2γν1 − µφ,

which imply γ = −
1
4

x
(
ln(µ2 + ν2

1)
)
. On the other hand, it can easily be calculated that γ = x

(
ln
√
−G

)
.

Hence, we get
1
4

x
(
ln(µ2 + ν2

1)
)
+ x

(
ln
√

−G
)
= 0, which implies

x
(
G2(µ2 + ν2

1)
)
= 0.

Since µ, ν1, and G are functions depending only on u, we obtain G2(µ2 + ν2
1) = c2, where c is a constant.

In the case of a timelike general rotational surface of second type we have G = α2 f 2
− β212, and using the

expressions of µ and ν1 given in (37), we obtain:

α2β2( f ′1 − f1′)2 + (α2 f1′ + β21 f ′)2

( f ′2 + 1′2)
= c2,
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which is equivalent to
α2 f 21′2 + β212 f ′2

( f ′2 + 1′2)
=

c2

α2 + β2 .

Without loss of generality we assume that f ′2 + 1′2 = 1, i.e. the meridian curve is parametrized by the
arc-length. So, we get

α2 f 21′2 + β212 f ′2 =
c2

α2 + β2 .

Denote A =
c2

α2 + β2 . Using that 1′2 = 1 − f ′2, we obtain

f ′2 =
A − α2 f 2

β212 − α2 f 2 , 1
′2 =

β212
− A

β212 − α2 f 2 . (38)

The constant A satisfies α2 f 2 < A < β212. It follows from (38) that

(β212
− A) f ′2 = (A − α2 f 2)1′2,

which is equivalent to
f ′√

A − α2 f 2
= ε

1′√
β212 − A

, ε = ±1.

Integrating the last equality, we obtain:∫
d f√

A − α2 f 2
= ε

∫
d1√
β212 − A

,

and calculating the integrals, we get

arcsin
α f
√

A
= ε
α
β

ln
∣∣∣∣∣β1 + √

β212 − A
∣∣∣∣∣ + C, C = const.

Consequently, after setting 1 = u, we obtain that in the case of a minimal timelike general rotational surface
of second type, the meridian curve is given by formula (32).

7. Timelike general rotational surfaces with constant mean curvature

In this section we shall classify the timelike general rotational surfaces with non-zero constant mean
curvature, i.e. ⟨H,H⟩ = const , 0. The mean curvature vector field H of a timelike general rotational surface
of first type is expressed by formula (11). Hence,

⟨H,H⟩ =

((
f ′1′′ − f ′′1′

)
(α2 f 2 + β212) +

(
α2 f1′ + β2 f ′1

)
( f ′ 2
− 1′ 2)

)2

4(α2 f 2 + β212)2(1′ 2 − f ′ 2)3 .

So, ⟨H,H⟩ = const if and only if the following equality is satisfied:

f ′′1′ − f ′1′′

(
√
1′2 − f ′2)3

= −
α2 f1′ + β21 f ′

(α2 f 2 + β212)(
√
1′2 − f ′2)

+ c, c , 0. (39)

Assume that the meridian curve is parametrized by f = f (u); 1 = u. Then, equality (39) takes the form

f ′′

(
√

1 − f ′2)3
= −

α2 f + β2u f ′

(α2 f 2 + β2u2)(
√

1 − f ′2)
+ c,
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which is equivalent to
f ′′

1 − f ′2
= −
α2 f + β2u f ′

α2 f 2 + β2u2 + c
√

1 − f ′2,

or equivalently(
ln

∣∣∣∣∣1 + f ′

1 − f ′

∣∣∣∣∣)′ = −2
α2 f + β2u f ′

α2 f 2 + β2u2 + 2c
√

1 − f ′2. (40)

Similarly, the mean curvature vector field of a timelike general rotational surface of second type is
expressed by (16). Hence, ⟨H,H⟩ = const if and only if

f ′′1′ − f ′1′′

(
√

f ′2 + 1′2)3
=

(α2 f1′ + β21 f ′)

(α2 f 2 − β212)(
√

f ′2 + 1′2)
+ c, c , 0.

Assume that the meridian curve is parametrized by f = f (u); 1 = u. Then, the above equation takes the
form

f ′′

1 + f ′2
=
α2 f + β2u f ′

α2 f 2 − β2u2 + c
√

1 + f ′2,

which is equivalent to

(arctan f ′)′ =
α2 f + β2u f ′

α2 f 2 − β2u2 + c
√

1 + f ′2. (41)

Equations (40) and (41) describe analytically the class of timelike general rotational surfaces of first and
second type with constant mean curvature.

Finally, we proved the following result.

Theorem 7.1. (i) The timelike general rotational surface of first type has non-zero constant mean curvature if and
only if, up to parametrization, the meridian curve is determined by c : x(u) =

(
f (u), 0, 0,u

)
, where f (u) is a solution

to the following differential equation:(
ln

∣∣∣∣∣1 + f ′

1 − f ′

∣∣∣∣∣)′ = −2
α2 f + β2u f ′

α2 f 2 + β2u2 + 2c
√

1 − f ′2, c , 0.

(ii) The timelike general rotational surface of second type has non-zero constant mean curvature if and only if,
up to parametrization, the meridian curve is determined by c : x(u) =

(
f (u), 0,u, 0

)
, where f (u) is a solution to the

following differential equation:

(arctan f ′)′ =
α2 f + β2u f ′

α2 f 2 − β2u2 + c
√

1 + f ′2, c , 0.

8. Timelike general rotational surfaces with parallel normalized mean curvature vector field

In this section, we shall give explicitly all timelike general rotational surfaces with parallel normalized
mean curvature vector field. Let us recall that a surface has parallel normalized mean curvature vector field if
the mean curvature vector field H is non-zero and there exists a unit vector field in the direction of H which
is parallel.

Now, letM1 be a timelike general rotational surface of first type, defined by (5). In the case H , 0 the
normalized mean curvature vector field of M1 is n2, where n2 is determined in (7). So, M1 has parallel
normalized mean curvature vector field if and only if the following equalities are satisfied: Dxn2 = 0 and
Dyn2 = 0.
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Similarly, if M2 is a timelike general rotational surface of second type, defined by (12), then, M2 has
parallel normalized mean curvature vector field if and only if Dxn1 = 0 and Dyn1 = 0, where n1 is given in
(14).

The next theorem describes all timelike general rotational surfaces of first and second type with parallel
normalized mean curvature vector field.

Theorem 8.1. (i) The timelike general rotational surface of first type has parallel normalized mean curvature vector
field if and only if, up to parametrization, the meridian curve is determined by c : x(u) =

(
f (u), 0, 0,u

)
, where

f (u) = ±
√

u2 + C2; C = const , 0.

(ii) The timelike general rotational surface of second type has parallel normalized mean curvature vector field if
and only if, up to parametrization, the meridian curve is determined by c : x(u) =

(
f (u), 0,u, 0

)
, where

f (u) = ±
√

C2 − u2; u ∈ (−C,C); C = const , 0.

Proof. (i) LetM1 be a timelike general rotational surface of first type, defined by (5). In Section 5, we derived
formulas (21) giving the normal connection D ofM1. These formulas imply that Dxn2 = Dyn2 = 0 if and
only if the functions f (u) and 1(u) satisfy the following differential equation:

f f ′ − 11′ = 0.

The above equation implies that the functions f and 1 are related by f 2 = 12 + C1 for some constant C1.
Without loss of generality we may assume that 1(u) = u. Then f (u) = ±

√
u2 + C1. Since f ′2 − 1′2 < 0, we

obtain C1 > 0. Hence, f (u) = ±
√

u2 + C2 for some constant C , 0.

(ii) In a similar way, having in mind formulas (24) giving the normal connection D of M2, we obtain
that the timelike general rotational surface of second type has parallel normalized mean curvature vector
field if and only if the functions f (u) and 1(u) satisfy the following differential equation:

f f ′ + 11′ = 0,

which implies that f 2 + 12 = C1 for some constant C1. Again we assume that 1(u) = u. Then f (u) =
±

√
−u2 + C1. Since f ′2 + 1′2 > 0, we obtain C1 > 0. Hence, f (u) = ±

√

C2 − u2 for some constant C , 0.

References

[1] Y. Aleksieva, N.-C. Turgay, V. Milousheva, General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric. Bulletin
of the Malaysian Mathematical Sciences Society 41, no. 4 (2018), 1773–1793.

[2] B. Bektas, U. Dursun, Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E4
1 with

Pointwise 1-Type Gauss Map. Filomat 29:3 (2015), 381–392.
[3] B.-Y. Chen, Surfaces with parallel normalized mean curvature vector. Monatshefte fur Mathematik 90, no. 3 (1980), 185–194.
[4] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications. World Scientific Publishing Co. Pte. Ltd., Hackensack,

NJ, 2011.
[5] F. N. Cole, On Rotations in Space of Four Dimensions. American Journal of Mathematics, 12, no. 2 (1890), 191–210.
[6] U. Dursun, On spacelike rotational surfaces with pointwise 1-type Gauss map. Bulletin of the Korean Mathematical Society 52,

no. 1 (2015), 301–312.
[7] G. Ganchev, V. Milousheva, Chen rotational surfaces of hyperbolic or elliptic type in the four-dimensional Minkowski space.

Comptes Rendus de L’Academie Bulgare des Sciences 64 (2011), 641–652.
[8] G. Ganchev, V. Milousheva, An invariant theory of spacelike surfaces in the four-dimensional Minkowski space. Mediterranean

Journal of Mathematics 9 (2012), 267–294.
[9] G. Ganchev, V. Milousheva, General rotational surfaces in the four-dimensional Minkowski space. Turkish Journal of Mathematics

38, no. 5 (2014), 883–895.
[10] S. Haesen, M. Ortega, Boost invariant marginally trapped surfaces in Minkowski 4-space. Classical and Quantum Gravity 24

(2007), 5441–5452,
[11] S. Haesen, M. Ortega, Marginally trapped surfaces in Minkowski 4-space invariant under a rotational subgroup of the Lorentz

group. General Relativity and Gravitation 41 (2009), 1819–1834.



V. Bencheva, V. Milousheva / Filomat 37:25 (2023), 8505–8519 8519

[12] E. Lane, Projective differential geometry of curves and surfaces. University of Chicago Press, Chicago, 1932.
[13] J. Little, On singularities of submanifolds of higher dimensional Euclidean spaces. Annali di Matematica Pura ed Applicata, IV

Ser 83 (1969), 261–335.
[14] H. Liu, G. Liu, Hyperbolic rotation surfaces of constant mean curvature in 3-de Sitter space. Bulletin of the Belgian Mathematical

Society - Simon Stevin 7 (2000), 455–466.
[15] H. Liu, G. Liu, Weingarten rotation surfaces in 3-dimensional de Sitter space. Journal of Geometry 79 (2004), 156–168.
[16] V. Milousheva, General rotational surfaces inR4 with meridians lying in two-dimensional planes. Comptes Rendus de L’Academie

Bulgare des Sciences 63 (2010), 339–348.
[17] C. Moore, Surfaces of rotation in a space of four dimensions. Annals of Mathematics 21 (1919), 81–93.
[18] C. Moore, Rotation surfaces of constant curvature in space of four dimensions. Bulletin of the American Mathematical Society

26 (1920), 454–460.


