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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. We study curvature invariants of a sub-Riemannian manifold (i.e., a manifold with a Rieman-
nian metric on a non-holonomic distribution) related to mutual curvature of several pairwise orthogonal
subspaces of the distribution, and prove geometrical inequalities for a sub-Riemannian submanifold. As
applications, inequalities are proved for submanifolds with mutually orthogonal distributions that include
scalar and mutual curvature. For compact submanifolds, inequalities are obtained that are supported by
known integral formulas for almost-product manifolds.
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1. Introduction

Extrinsic geometry of Riemannian submanifolds deals with properties that can be expressed in terms
of the second fundamental form and its invariants (e.g., principal curvatures). The recent development of
the geometry of submanifolds was inspired by the embedding theorem of J.F. Nash, [7], and theorems that
surfaces with positive curvature are easily embedded in 3D space (A.D. Aleksandrov and A.V. Pogorelov),
while surfaces with negative curvature usually do not allow such an embedding (D. Gilbert and N.V. Efi-
mov). This led to the following problem (see [3, Problem 2]): find a simple optimal connection between intrinsic
and extrinsic invariants of a Riemannian submanifold. The difficulty was to understand smooth submanifolds
(the problem is different for C1-immersions, [8]) of large codimension using only a few known relationships
(fundamental Gauss-Codazzi-Ricci equations) between intrinsic and extrinsic geometry. In 1968, S.S. Chern
posed a question on other obstacles for a Riemannian manifold to admit an isometric minimal immersion
in a Euclidean space. To study these questions, it is necessary to introduce new types of Riemannian
invariants, and to find optimal relations between them and extrinsic invariants of submanifolds.

In 1990s, B.Y. Chen introduced the concept of δ-curvature invariants for a Riemannian manifold and
proved the optimal inequality for a submanifold that involves these invariants and the square of mean
curvature, e.g., [4], the equality case led to the notion of “ideal immersions” (isometric immersions of least
possible tension). The δ-invariants are obtained from the scalar curvature (which is the “sum” of sectional
curvatures) by discarding some of sectional curvatures. Similar scalar invariants are known for Kähler,
contact and affine manifolds, warped products and submersions, see [4, 5]. For manifolds endowed with
nonholonomic distributions or foliations, such curvature invariants have hardly been studied.
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Distributions on a manifold, i.e., sub-bundles of the tangent bundle, arise in differential geometry in
terms of line fields, submersions, Lie groups actions, and almost product manifolds. A nonholonomic
manifold, i.e., a pair (M,D), where D is a distribution on a smooth manifold M, was introduced for
the geometric interpretation of constrained systems in classical mechanics and thermodynamics. A sub-
Riemannian manifold, that is (M,D) equipped with a Riemannian metric 1 on D, is a certain type of
generalization of a Riemannian manifold. There are several lines of research in sub-Riemannian geometry
based on optimal control methods, partial differential equations and constrains of other geometries, see [1, 2].

In [13], we introduced curvature invariants (different from δ-invariants by Chen) of a Riemannian
manifold equipped with complementary orthogonal distributions, and proved the geometric inequality for
submanifolds that includes our curvature invariants and the square of mean curvature. These curvature
invariants are related with the mixed scalar curvature – a well-known curvature invariant of a Riemannian
almost k-product manifold, in particular, (multiply) twisted or warped products, e.g., [12]. In [14] we
introduced invariants of a Riemannian manifold more general than in [13], related to the mutual curvature
of noncomplementary pairwise orthogonal subspaces of the tangent bundle. In the case of one-dimensional
subspaces, the mutual curvature is equal to half the scalar curvature of the subspace spanned by them,
and in the case of complementary subspaces, this is the mixed scalar curvature. Using these invariants, we
proved inequalities for Riemannian submanifolds and gave applications for sub-Riemannian submanifolds.

In this article, we study curvature invariants (defined in [13, 14]) and also introduce Chen-type invari-
ants for a sub-Riemannian manifold. We prove geometrical inequalities for submanifolds with mutually
orthogonal distributions that include scalar and mutual curvature. In the case of compact submanifolds,
we obtain the inequalities supported by known integral formulas for almost-product manifolds.

The article is organized as follows. In Section 2 (following the introductory Section 1), we recall some
integral formulas containing scalar and mutual curvature for a sub-Riemannian manifold. In Section 3, we
introduce and study scalar invariants based on this kind of curvature. In Section 4, we prove geometric
inequalities for a sub-Riemannian submanifold equipped with distributions.

2. The mutual curvature of distributions

Here, we recall definitions of mutual curvature and mixed scalar curvature of distributions on a sub-
Riemannian manifold and briefly discuss equalities with them and divergence of some vector fields, which
lead to integral formulas on a compact manifold.

Let an n-dimensional Riemannian manifold (M, 1) with the Levi-Civita connection ∇ be endowed with
a d-dimensional distributionD (subbundle of the tangent bundle TM of rank d). The Riemannian curvature
tensor is given by RX,Y = [∇X,∇Y] −∇[X,Y], its contraction is the Ricci tensor RicX,Y = trace(Z 7→ RZ,X Y), and
the trace of Ricci tensor is the scalar curvature τ = trace1 Ric, e.g., [9].

Let D⊥ be the orthogonal complement to D in TM, its rank is d⊥ = n − d. We call (M, 1,D,D⊥) a
Riemannian almost product manifold, see [6]. The second fundamental form h and integrability tensor T
ofD (and, similarly, tensors h⊥ and T⊥ ofD⊥) are defined as follows:

h(X,Y) =
1
2

(∇XY + ∇YX)⊥, T(X,Y) =
1
2

(∇XY − ∇YX)⊥.

IfD is integrable (i.e., T = 0), then it is tangent to a foliation. Denote by H = trace1 h and H⊥ = trace h⊥ the
mean curvature vectors ofD andD⊥, respectively. We callD totally geodesic if h = 0, harmonic if H = 0 and
totally umbilical if h = (H/d) 1 (and similarly, forD⊥).

Let {ei} be an adapted local orthonormal frame, i.e., {e1, . . . , ed} ⊂ D and {ed+1, . . . , en} ⊂ D
⊥. The mixed

scalar curvature S mix(D,D⊥) is a function on M defined by

S mix(D,D⊥) =
∑

1≤a≤d, d<b≤n
K(ea ∧ eb),

where K(ea ∧ eb) = 1(Rea,eb eb, ea) is the sectional curvature of the plane ea ∧ eb, and it does not depend on the
choice of frames. For example, if D (or D⊥) is one-dimensional and locally spanned by a unit vector field
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N, then Smix(D,D⊥) = RicN,N. The following formula for complementary orthogonal distributions D and
D
⊥ on a Riemannian manifold (M, 1) was proved in [16]:

div(H +H⊥) = Smix(D,D⊥) + ∥ h ∥2 + ∥ h⊥ ∥2 − ∥H ∥2 − ∥H⊥ ∥2 − ∥T ∥2 − ∥T⊥ ∥2. (1)

Example 2.1. Let D be tangent to a codimension one foliation F , and N be a unit normal to the leaves of
F . The shape operator AN : TF → TF is given by AN(X) = −∇X N, where ∇ is the Levi–Civita connection.
The generalized mean curvatures σr = σr(AN) are functions on M defined as coefficients of the n-th degree
polynomial det(idD + tAN) in t. Thus, σ0 = 1, σ1 = trace AN, . . . , σn = det AN. In this case, (1) reduces to

div(∇N N + σ1N) = RicN,N − 2 σ2. (2)

Next, let a Riemannian manifold (M, 1) be endowed with three pairwise orthogonal ni-dimensional
distributions Di (i = 1, 2, 3) such that TM = D1 ⊕ D2 ⊕ D3. We call (M, 1,D1,D2,D3) a Riemannian almost
3-product manifold. Denote byD⊥i the orthogonal complement toDi in TM, its rank is n⊥i = n − ni.

Remark 2.2. A Riemannian almost multi-product manifold is a Riemannian manifold equipped with k ≥ 2
pairwise orthogonal complementary distributions D1, . . . ,Dk. We meet this structure in such topics of
differential geometry as multiply-warped (or twisted) products and the webs of foliations; see e.g., [11].
In particular, almost 3-product manifolds appear naturally among almost para- f -manifolds, lightlike man-
ifolds, orientable 3-manifolds (since they admit 3 linearly independent vector fields), webs composed of 3
generic foliations, minimal hypersurfaces in space forms with 3 distinct principal curvatures, tubes over
standard embeddings of a projective plane in a sphere, etc.

The second fundamental forms hi : Di ×Di →D
⊥

i and the integrability tensors Ti : Di ×Di →D
⊥

i ofDi
(and similarly, h⊥i and T⊥i of orthogonal distributionsD⊥i ) are defined by

2 hi(X,Y) = (∇XY + ∇YX)⊥, 2 Ti(X,Y) = (∇XY − ∇YX)⊥ = [X,Y]⊥.

Then Hi = trace1 hi is called the mean curvature vector field of the distribution Di. A distribution Di is
integrable (or involutive) if Ti = 0, andDi is totally umbilical, minimal, or totally geodesic, if hi = (Hi/ni) 1, Hi =
0, or hi = 0, respectively.

Let x ∈ M and {ei} be an adapted orthonormal frame on the subspace D1(x) ⊕ D2(x), i.e., {e1, . . . , en1 } ⊂

D1(x), {en1+1, . . . , ed} ⊂ D2(x). The mutual curvature of a pair (D1,D2) is a function on M defined by

S m(D1(x),D2(x)) =
∑

a≤n1, n1<b≤d
K(ea, eb),

and it does not depend on the choice of frames, e.g., [15]. The mixed scalar curvature of the triple (D1,D2,D3)
is defined similarly as S mix(D,D⊥) for a pair (D,D⊥), and it can be presented as follows, e.g., [11]:

S mix(D1,D2,D3) = S m(D1,D2) + S m(D1,D3) + S m(D2,D3). (3)

Lemma 2.3. The following formulas are true:

2 S mix(D1,D2,D3) = div(H1 +H⊥1 +H2 +H⊥2 +H3 +H⊥3 ) −Q1 −Q2 −Q3, (4)
Sm(D1,D2) = div(H1 +H⊥1 +H2 +H⊥2 −H3 −H⊥3 ) −Q1 −Q2 +Q3, (5)

where Qi = ∥ hi ∥
2 + ∥ h⊥i ∥

2
− ∥Hi ∥

2
− ∥H⊥i ∥

2
− ∥Ti ∥

2
− ∥T⊥i ∥

2 for i = 1, 2, 3.

Proof. We can write (3) in the form

2 S mix(D1,D2,D3) = S mix(D1,D
⊥

1 ) + S mix(D2,D
⊥

2 ) + S mix(D3,D
⊥

3 ),

or in the form (expressing mutual curvature in terms of mixed scalar curvature)

S m(D1,D2) = S mix(D1,D2,D3) − 2 S mix(D1 ⊕D2,D3)
= S mix(D1,D

⊥

1 ) + S mix(D2,D
⊥

2 ) − S mix(D3,D
⊥

3 ).

Thus, using (1), we get (4) and (5).
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Example 2.4. Let (M3, 1) admit three pairwise orthogonal codimension-one foliations Fi, and let Ni be unit
vector fields orthogonal to Fi. Writing down (2) for each Ni, summing for i = 1, 2, 3, and using the equality
τ =
∑3

i=1 Ric Ni,Ni , where τ is the scalar curvature of (M, 1), yields the formula

div
∑3

i=1
(∇Ni Ni + σ1(ANi )Ni) = 2

∑3

i=1
σ2(Fi) − τ .

Two consequences, using 2 σ2(ANi ) = trace(ANi )
2
− (trace ANi )

2 :
• if τ < 0 then each foliation Fi cannot be totally umbilical;
• if τ > 0 then each foliation Fi cannot be harmonic.

Remark 2.5. Applying the Divergence Theorem to (1), (2), (4) and (5) on a compact Riemannian manifold
gives well-known integral formulas. These formulas can be extended for distributions defined on the
complement M \ Σ of a union Σ of finitely many closed codimension k ≥ 2 submanifolds of a manifold M.
Namely, if (M, 1) is a closed oriented Riemannian manifold, X is a vector field on an open set M\Σ, (k−1)(p−1) ≥ 1
and ∥X∥ ∈ Lp(M, 1), then

∫
M (div X) d vol1 = 0, see [17] and [12, p. 75].

3. Invariants based on scalar and mutual curvature

Here, we introduce and study scalar invariants based on scalar and mutual curvature.
Given integer k ≥ 2, let V1, . . . ,Vk be mutually orthogonal subspaces of Dx at a point x ∈ M with

dim Vi = ni ≥ 1. Let {ei} be an adapted orthonormal basis of the subspace V =
⊕ k

i=1 Vi, i.e., {e1, . . . , en1 } ⊂

V1, . . . , {enk−1+1, . . . , enk } ⊂ Vk. Define the mutual curvature of the set {V1, . . . ,Vk} by

S m(V1, . . . ,Vk) =
∑

i< j

∑
ni−1<a≤ni, n j−1<b≤n j

K(ea ∧ eb).

Note that S m(V1, . . . ,Vk) does not depend on the choice of frames. We immediately have

S m(V1, . . . ,Vk) =
∑

i< j
S m(Vi,V j),

where S m(Vi,V j) =
∑

ni−1<a≤ni, n j−1<b≤n j
K(ea ∧ eb).

For the scalar curvature τ(V) = trace1 Ric |V (the trace of the Ricci tensor on a subspace V =
⊕ k

i=1 Vi)
and the scalar curvatures τ(Vi) = trace1 Ric |Vi of subspaces Vi we get

τ(V) = 2 S m(V1, . . . ,Vk) +
∑k

i=1
τ(Vi) . (6)

For example, if all subspaces Vi are one-dimensional, then 2 S m(V1, . . . ,Vk) = τ(V).
For an integer k ≥ 2, denote by S(d, k) the set of unordered k-tuples (n1, . . . ,nk) of natural numbers

satisfying n1 + . . . + nk ≤ d. Denote by S(d) the set of all unordered k-tuples with k ≥ 2 and n1 + . . . + nk ≤ d.

Definition 3.1 ([14]). For a k-tuple (n1, . . . ,nk) ∈ S(d, k) the scalar invariants δ±m,D(n1, . . . ,nk) are defined by

δ+m,D(n1, . . . ,nk)(x) = max S m(V1, . . . ,Vk), δ−m,D(n1, . . . ,nk)(x) = min S m(V1, . . . ,Vk),

where V1, . . . ,Vk run over all k mutually orthogonal subspaces of Dx with dim Vi = ni (i = 1, . . . , k).
ForD = TM we get invariants δ±m(n1, . . . ,nk) = δ±m,TM(n1, . . . ,nk), see also [13].

If the sectional curvature of (M, 1) alongD satisfies c ≤ K |D ≤ C and
∑k

i=1 ni = s ≤ d, then

c
2

(s2
−

∑
i
n2

i ) = c
∑

i< j
ni n j ≤ δ

−

m,D(n1, . . .nk) ≤ δ+m,D(n1, . . .nk) ≤ C
∑

i< j
ni n j =

C
2

(s2
−

∑
i
n2

i ) .
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Example 3.2. Recall that for a subspace V spanned by q + 1 orthonormal vectors {e0, e1, . . . , eq} of (M, 1), the
q-th Ricci curvature is Ric q(V) =

∑q
i=1 K(E0,Ei), e.g., [10]. For k = 2 and n1 = 1, using the intermediate Ricci

curvature, we get δ+m(1,n2)(x) = max Ricn2 (V) and δ−m(1,n2)(x) = min Ricn2 (V), where V = span(V1,V2) and
V1,V2 run over all mutually orthogonal subspaces ofDx such that dim V1 = 1 and dim V2 = n2.

For a k-tuple (k ≥ 0) and x ∈M, B.-Y Chen [4, Sect. 13.2] defined the following curvature invariants:

2 δ(n1, . . . ,nk)(x) = τ(x) −min {τ(V1) + . . . + τ(Vk)},
2 δ̂(n1, . . . ,nk)(x) = τ(x) −max {τ(V1) + . . . + τ(Vk)}, (7)

where V1, . . . ,Vk run over all k mutually orthogonal subspaces of TxM with dim Vi = ni (i = 1, . . . , k).
The coefficient 2 in (7) is due to the definition of the scalar curvature in [4] as half of the “trace Ricci”.

Definition 3.3 ([14]). For each k-tuple (k ≥ 0) and x ∈M, we define Chen-type δD-invariants of (M, 1;D) by

2 δD(n1, . . . ,nk)(x) = τ(Dx) −min {τ(V1) + . . . + τ(Vk)},
2 δ̂D(n1, . . . ,nk)(x) = τ(Dx) −max {τ(V1) + . . . + τ(Vk)} , (8)

where V1, . . . ,Vk run over all k mutually orthogonal subspaces ofDx with dim Vi = ni (i = 1, . . . , k).

The theory of δD-invariants (8) of a sub-Riemannian manifold can be developed similarly to the theory
of Chen’s δ-invariants of a Riemannian manifold.

The δ±m,D-invariants are related with the curvature invariants in (8) by the following inequalities.

Proposition 3.4. Let k ≥ 2. If n1 + . . . + nk < d, then the following inequalities are valid:

δ+m,D(n1, . . . ,nk) ≥ δD(n1, . . . ,nk) − δD(n1 + . . . + nk) ,

δ−m,D(n1, . . . ,nk) ≤ δ̂D(n1, . . . ,nk) − δ̂D(n1 + . . . + nk) , (9)

and if n1 + . . . + nk = d, then δ̂D(n1, . . . ,nk) = δ−m,D(n1, . . . ,nk) ≤ δ+m,D(n1, . . . ,nk) = δD(n1, . . . ,nk).
In particular, if n1 + . . . + nk = d − 1, then

δ̂D(n1, . . . ,nk) −min Ricd−1(D) ≥ δ−m,D(n1, . . . ,nk) ≥ δ+m,D(n1, . . . ,nk) ≥ δD(n1, . . . ,nk) −max Ricd−1(D).

Proof. Using (6) and the equality −min a = max(−a), we get

2 δD(n1, . . . ,nk)(x) = τ(V) −min {τ(V1) + . . . + τ(Vk)}
= τ(Dx) +max(τk(x) − (τ(V1) + . . . + τ(Vk)) − τk(V))
≤ τ(Dx) −min τk(x) + 2 max S m(V1, . . . ,Vk)
= 2 δD(n1 + . . . + nk)(x) + 2 δ+m,D(n1, . . . ,nk)(x),

hence, (9)1 is valid. The proof of (9)2 is similar. The case of n1 + . . . + nk = d follows from (9). The case of
n1 + . . . + nk = d − 1 follows from δD(d − 1)(x) = max Ricd−1(Dx) and δ̂D(d − 1)(x) = min Ricd−1(Dx).

Corollary 3.5. If (M, 1;D) has nonnegative sectional curvature alongD and k ≥ 2, then

δ̂(n1, . . . ,nk) ≤ δ−m,D(n1, . . . ,nk) ≤ δ+m,D(n1, . . . ,nk) ≤ δ(n1, . . . ,nk),

and if (M, 1;D) has nonpositive sectional curvature alongD, then the inequalities are opposite.
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4. Geometric inequalities for a submanifold equipped with distributions

First, we consider adapted isometric immersions f : (M, 1;D)→ (M̄, 1̄; D̄) of sub-Riemannian manifolds,
i.e., f∗(D) ⊂ D̄ | f (M). IfD and D̄ are the sums of s ≥ 2 mutually orthogonal distributions, i.e.,D =

⊕s
i=1Di

and D̄ =
⊕s

i=1 D̄i, then we also require the following: f∗(Di) ⊂ D̄i | f (M) for all i. Below we assume s = 2.

Remark 4.1. A sub-Riemannian structure on a smooth manifold M can be obtained from a special immersion
of M in (M̄, 1̄; D̄). Namely, let f∗(TM) intersects transversally with the distribution D̄ restricted to f (M),
then f : M→ M̄ induces a required distributionD = f−1

∗ (D̄ ∩ f (TM)) on M with induced metric 1.

We will identify M with its image f (M) (since the induced metric on f (M) is equal to 1) and put a top “bar”
for objects related to M̄. Let TM⊥ be the normal bundle of the submanifold M ⊂ M̄ and h̄ : TM×TM→ TM⊥

be the second fundamental form of M. Recall the Gauss equation for an isometric immersion f , e.g., [4]:

1̄(R̄Y,Z U,X) = 1(RY,Z U,X) + 1̄(h̄(Y,U), h̄(Z,X)) − 1̄(h̄(Z,U), h̄(Y,X)), U,X,Y,Z ∈ TM, (10)

where R̄ and R are the curvature tensors of (M̄, 1̄) and (M, 1), respectively. The mean curvature vector of
a subspace V ⊂ Dx is given by H̄V = trace h̄ |V =

∑
i h̄(ei, ei), where ei is an orthonormal basis of V. Thus,

H̄D = trace1 h̄ |D is the mean curvature vector of D, and H̄ = trace1 h̄ is the mean curvature vector of M.
An isometric immersion f with the property H̄D = 0 is calledD-minimal (minimal if H̄ = 0). Set

Hx(s) = max{ ∥ H̄V ∥ : V ⊂ Dx, dim V = s > 0}.

If s = d, then H̄V = H̄Dx . For s < d the conditionH(s) = 0 implies that h̄ |D = 0.
An isometric immersion f : (M, 1;D) → (M̄, 1̄) is called mixed totally geodesic on V =

⊕ k
i=1 Vi ⊂ D if

h̄(X,Y) = 0 for all X ∈ Vi, Y ∈ V j and i , j .

Theorem 4.2. Let f : (M, 1;D)→ (M̄, 1̄, D̄) be an adapted isometric immersion, and
∑

i ni = s ≤ d. Then

δ+m,D(n1, . . . ,nk) ≤ δ̄+m,D̄(n1, . . . ,nk) +
k − 1
2 k

{
HD(s)2, if s < d,
∥ H̄D ∥2, if s = d. (11)

The equality in (11) holds at a point x ∈ M if and only if there exist mutually orthogonal subspaces V1, . . . ,Vk of
Dx with

∑
i ni = s such that f is mixed totally geodesic on V =

⊕ k
i=1 Vi, H̄1 = . . . = H̄k, ∥ H̄V∥ = HDx (s) and

S̄ m(V1, . . . ,Vk) = δ̄+
m,D̄

(n1, . . . ,nk)(x).

Proof. Taking trace of the Gauss equation (10) for the immersion f along V and Vi yields the equalities

τ̄(V) − τ(V) = ∥ h̄V ∥
2
− ∥ H̄V ∥

2, τ̄(Vi) − τ(Vi) = ∥ h̄i ∥
2
− ∥ H̄i ∥

2, (12)

where τ̄(V), τ̄(Vi) and τ(V), τ(Vi) are the scalar curvatures of subspaces V =
⊕ k

i=1 Vi and Vi for the curvature
tensors R̄ and R, respectively, h̄i and H̄i are the second fundamental form and mean curvature vector of Vi.

Assume that H̄V , 0 is satisfied on an open set U ⊂ M and complement over U an adapted local
orthonormal frame {e1, . . . , en} of (M, 1) with vector en+1 parallel to H̄V. Using H̄V =

∑ k
i=1 H̄i and the

algebraic inequality a2
1 + . . . + a2

k ≥
1
k (a1 + . . . + ak)2 for real ai = 1̄(H̄i, en+1), we find∑

i
∥ H̄i ∥

2
≥

∑
i
1̄(H̄i, en+1)2

≥
1
k
∥ H̄V ∥

2, (13)

and the equality holds if and only if H̄1 = . . . = H̄k. The above inequality is trivially satisfied for H̄V = 0,
hence it is valid on M. Set ∥ h̄mix

i j ∥
2 =
∑

ea∈Vi, eb∈V j
∥ h̄(ea, eb) ∥2 for i , j and note that

∥ h̄V ∥
2 =
∑

i
∥ h̄i ∥

2 +
∑

i< j
∥ h̄mix

i j ∥
2
≥

∑
i
∥ h̄i ∥

2, (14)
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and the equality holds if and only if ∥ h̄mix
i j ∥

2 = 0 (∀ i < j), i.e., f is mixed totally geodesic along V.
By (12), (13), (14) and the equalities

τ̄(V) = 2 S̄ m(V1, . . . ,Vk) +
∑

i
τ̄(Vi), τ(V) = 2 S m(V1, . . . ,Vk) +

∑
i
τ(Vi),

see (6), we obtain

2 S m(V1, . . . ,Vk) = 2 S̄ m(V1, . . . ,Vk) +
∑

i
(τ̄(Vi) − τ(Vi)) + ∥ H̄V ∥

2
− ∥ h̄V ∥

2

≤ 2 δ̄+m,D̄(n1, . . . ,nk) − (∥ h̄V ∥
2
−

∑
i
∥ h̄i ∥

2) + (∥ H̄V ∥
2
−

∑
i
∥ H̄i ∥

2)

≤ 2 δ̄+m,D̄(n1, . . . ,nk) +
k − 1

k
H(s)2,

(and the equality holds in the second line if and only if S̄ m(V1, . . . ,Vk) = δ̄+
m,D̄

(n1, . . . ,nk) and ∥ H̄V∥ = Hx(s)
at each point x ∈M) that proves (11) for s < d. The case

∑
i ni = d of (11) was proved in [13].

Corollary 4.3. For an adapted isometric immersion f : (M, 1;D) 7→ (M̄, 1̄; D̄) with sectional curvature along D̄
bounded above by c and

∑
i ni = s ≤ d, from (11) we get the following inequality:

δ+m,D(n1, . . . ,nk) ≤
c
2

(d2
−

∑
i
n2

i ) +
k − 1
2 k

{
HD(s)2, if s < d,
∥ H̄D ∥2, if s = d.

Corollary 4.4 (see [14, Corollary 4]). A sub-Riemannnian manifold (M, 1;D) with δ+m,D(n1, . . . ,nk) > 0 for some
(n1, . . . ,nk) ∈ S(d, k) with

∑
i ni = d does not admitD-minimal isometric immersions in a Euclidean space.

Proof. This follows directly from (11).

Corollary 4.5. Let f : (M, 1;D)→ (M̄, 1̄) be an isometric immersion. If M is compact andD is defined on an open
set M \ Σ, (k − 1)(p − 1) ≥ 1 and ∥H +H⊥∥ ∈ Lp(M, 1) (see Remark 2.5), then∫

M
(∥H ∥2 + ∥H⊥ ∥2 + ∥T ∥2 + ∥T⊥ ∥2 − ∥ h ∥2 − ∥ h⊥ ∥2) d vol1 ≤

1
4

∫
M
∥ H̄ ∥2 d vol1 + δ̄+m(d, d⊥) Vol(M, 1).

Proof. Applying (1) to (11) and the Divergence-type theorem in Remark 2.5, proves the assertion.

Remark 4.6. In conditions of Corollary 4.5, if distributionsD andD⊥ are totally umbilical, i.e., ∥H∥2−∥h∥2 =
d−1

d ∥H∥
2 and ∥H⊥∥2 − ∥h⊥∥2 = d⊥−1

d⊥ ∥H
⊥
∥

2, then such a compact (M, 1) does not admit minimal isometric
immersions (H̄ = 0) in a Riemannian manifold (M̄, 1̄) with δ̄+m(d, d⊥) < 0.

Corollary 4.7. Let f : (M, 1;D1,D2,D3)→ (M̄, 1̄) be an isometric immersion and n1+n2+n3 = n. If M is compact
and all Di are defined on an open set M \ Σ, (k − 1)(p − 1) ≥ 1 and ∥H1 + H⊥1 + H2 + H⊥2 + H3 + H⊥3 ∥ ∈ Lp(M, 1)
then (for Qi given in Lemma 2.3)

−
1
2

∫
M

(Q1 +Q2 +Q3) d vol1 ≤
1
3

∫
M
∥ H̄ ∥2 d vol1 + δ̄+m(n1,n2,n3) Vol(M, 1).

Proof. This follows from (4), (15) and the Divergence-type theorem in Remark 2.5.

Remark 4.8. In conditions of Corollary 4.7, if hi = h⊥i = 0 (i = 1, 2, 3), then such a compact manifold (M, 1)
does not admit minimal isometric immersions in a Riemannian manifold (M̄, 1̄) with δ̄+m(n1,n2,n3) < 0.

Example 4.9. Let Di (i = 1, 2, 3) be 1-dimensional distributions orthogonal to three pairwise orthogonal
codimension-one foliations Fi on (M3, 1), see Example 2.4. If f : (M3, 1;D1,D2,D3)→ (M̄, 1̄) is an isometric
immersion, then τ ≤ 1

3 ∥ H̄ ∥2 + δ̄+m(1, 1, 1). Note that δ̄+m(1, 1, 1)(x) = max{τ̄(V) : V ⊂ TxM̄, dim V = 3}.
Moreover, if foliations Fi (i = 1, 2, 3) are minimal and not totally geodesic, then (M3, 1) does not admit
minimal isometric immersions in a Euclidean space.
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Next, we consider the case when a distributionD is represented as the sum of two orthogonal distribu-
tions of ranks ni > 0: D = D1 ⊕D2, thus, n1 + n2 = d.

An isometric immersion f : (M, 1;D1,D2)→ (M̄, 1̄) is called mixed totally geodesic onD if

h̄(X,Y) = 0 for all X ∈ D1, Y ∈ D2 .

Theorem 4.10. Let f : (M, 1;D)→ (M̄, 1̄; D̄) be an adapted isometric immersion andD = D1 ⊕D2. Then

S m(D1,D2) ≤
1
4
∥ H̄D ∥2 + δ̄+m,D̄(n1,n2) . (15)

The equality in (15) holds at a point x ∈M if and only if f is mixed totally geodesic onDx, H̄1(x) = H̄2(x) (the mean
curvature vectors ofD1 andD2) and S̄ m(D1(x),D2(x)) = δ̄+

m,D̄
(n1,n2)(x).

Proof. The proof of (15) is similar to the proof of Theorem 4.2. We take Vi = Di(x). The proof of the second
assertion follows directly from the cases of equality, as in the proof of Theorem 4.2.

Remark 4.11. Let f : (M, 1;D)→ (M̄, 1̄; D̄) be an adapted isometric immersion andD = D1 ⊕D2. The fol-
lowing counterpart of (15) is a special case of [14, Eq. (19)]:

S mix(D1,D2,D
⊥) ≤

1
3
∥ H̄ ∥2 + δ̄+m(n1,n2, d⊥) . (16)

Corollary 4.12 (for (i) see [14, Corollary 6]). Let (M, 1;D) be a sub-Riemannnian manifold withD = D1 ⊕D2.
(i) if S m(D1,D2) > 0, then (M, 1;D) does not admitD-minimal isometric immersions in a Euclidean space.
(ii) if S mix(D1,D2,D⊥) > 0, then (M, 1;D) does not admit minimal isometric immersions in a Euclidean space.

Proof. This follows directly from (15) for (i) and from (16) for (ii).

Corollary 4.13. In conditions of Theorem 4.10, letD1 be spanned by a unit vector field N. Then

RicN,N ≤
1
4
∥ H̄D ∥2 + r̄d−1 | D̄ , (17)

where d = dimD and r̄d−1 | D̄ is the supremum of the (d − 1)-th Ricci curvature of (M̄, 1̄) along D̄. The equality in
(17) holds if and only if f is mixed totally geodesic alongD, H̄1(x) = H̄2(x) and RicN,N = r̄d−1 at each point x ∈M.

Applying (5) to (15) on a compact manifold M, gives the following

Corollary 4.14. In conditions of Theorem 4.10, letD3 = D
⊥. If M is compact and allDi are defined on an open set

M \ Σ, (k − 1)(p − 1) ≥ 1 and ∥H1 +H⊥1 +H2 +H⊥2 −H3 −H⊥3 ∥ ∈ Lp(M, 1), then (for Qi given in Lemma 2.3),∫
M

(Q3 −Q1 −Q2) d vol1 ≤
1
4

∫
M
∥ H̄D ∥2 d vol1 + δ̄+m,D(n1,n2) Vol(M, 1).

Proof. This follows from (5), (15) and the Divergence-type theorem in Remark 2.5.

Finally, we apply δD-invariants (8) to isometric immersions of sub-Riemannian manifolds.

Theorem 4.15. Let f : (M, 1;D)→ (M̄, 1̄, D̄) be an adapted isometric immersion. Then for eny k-tuple (n1, . . . ,nk) ∈
S(d) we get the inequality

δD(n1, . . . ,nk) ≤
d + k − 1 −

∑
i ni

2(d + k −
∑

i ni)
∥ H̄D ∥2 +

1
2

(
d(d − 1) −

∑
i
ni(ni − 1)

)
max K̄ | D̄. (18)

Proof. This is similar to the proof of [4, Theorem 13.3].

The case of equality in (18) is similar to [4, Theorem 13.3: (a), (b)]. Extremal immersions in Euclidean
space in terms of δD-invariants are the sub-Riemannian analogue of Chen’s “ideal immersions”.

Corollary 4.16. A sub-Riemannnian manifold (M, 1;D) with δD(n1, . . . ,nk) > 0 for some (n1, . . . ,nk) ∈ S(d, k) does
not admitD-minimal isometric immersions in a Euclidean space.

Proof. This follows directly from (18).
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