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Abstract. In this paper, we investigate infinitesimal bends of two-connected surfaces of revolution on
which are given conditions that allow the points of one of the boundary parallels to move only along a
given constant direction. We formulated the obtained results in the form of a theorem.

1. Introduction

With the development of the theory of bending of surfaces, studies of infinitesimal bends of higher
orders are very important since they are closely related to the problem of the continuation of infinitesimal
bends into continuous (in particular, analytical) bending of surfaces. This task, set by S. Cohn-Vossen in
1929 [4, 5], has not yet received a final solution. This is explained by the fact that the study of infinitesimal
bends of higher orders leads to the study of rather cumbersome systems of partial differential equations.

Among the results obtained in this area, the result of N. V. Efimov deserves particular attention [6, 7].
He proved that the rigidity of the first and second orders of surfaces implies its analytical rigidity. In this
regard, the question naturally arises about the possibility of continuing infinitesimal bends into continuous
bends, provided that certain connections are imposed on the surface.

The great interest shown in the theory of infinitesimal bends of surfaces is explained, on the one hand,
by deep connections with such branches of mathematics as the theory of differential and integral equations,
the theory of generalized analytic functions, etc. On the other hand, the important applications that this
theory has received in mechanics, especially in the theory of thin shells, since it is known that every non-
trivial infinitesimal bending of the middle surface of the shell corresponds to an infinite stress state of this
shell, unloaded by surface load, and per revolution, every momentarily stressed state of an unloaded shell
corresponds to a field of rotation of an infinitesimal bending.

Important results in the theory of infinitesimal bends were obtained in the works of W. Blaschke [2], E.
Rembs [25, 26], T. Minagawa, T. Rado [19], K.P. Grotemeyer [8], S. Hellwing [9], S. Baudoin-Gohier [3], A.V.
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L. Rýparová et al. / Filomat 37:25 (2023), 8561–8567 8562

Pogorelov [22, 23], E.G. Poznyak [24], V.I. Mihailovskii and others [12–16]. Nowadays, e.g., Lj.S. Velimirović
and others [1, 11, 20, 21, 28]. Recently, more general infinitesimal transformations have been studied, for
example, in works by J. Mikeš and others [10, 17, 18, 27]. Many above results are devoted to the rigidity of
surfaces under different conditions, which are of great practical importance.

The work of these scientists greatly stimulated the further development of the theory of bending surfaces.
Thus, it follows from the above that this article is of interest, both from the point of view of its deep geometric
content and from the point of view of applications. Therefore it is one of the very relevant topics of modern
differential geometry. At the same time, it should be noted that, at present, there are few papers in this field
in which boundary value problems for infinitesimal bends of higher orders have been studied.

In our work, we continue to study the bending of surfaces of revolution and their rigidity under
interesting non-standard boundary conditions.

2. Main Theorem

In the proposed work, we investigate infinitesimal bends of the first and second orders of two-connected
regular surfaces of revolution Φ, on which connections are imposed that allow moving points of one of the
boundary parallels only along a given constant direction v.

Theorem 2.1. Let Φ be an arbitrary regular two-connected surface of revolution (of differentiability class C2), whose
meridian has no points, whose tangents are perpendicular to the axis of rotation, and γ0 is one of the two parallels
bounding it. If we impose connections on such a surface that allow the movement of parallel points γ0 only in the
same constant direction v, then the surface Φ in such a class of deformations will have rigidity no higher than the
second order, and therefore will be analytically rigid.

As is known [14], if the vector v is not parallel to the axis of rotation, then the surface Φ in the class of
deformations under consideration has a rigidity of the first order, and therefore [6, 7], is analytically rigid.
If the vector v is parallel to the axis of rotation, then the surface remains non-rigid, i.e. admits non-trivial
infinitesimal bends of the first order. We prove that these infinitesimal first-order bends of the surface Φ
cannot be continued into non-trivial infinitesimal second-order bends. Hence, according to the theorem of
N.V. Efimov [6, 7], it follows that the surface Φ in the deformation class under consideration is analytically
rigid.

3. Infinitesimal bending of the second order

Let x = x(u, v), (u, v) ∈ D, be a regular parametrization of the surface Φ.
Assume that the surfaceΦ in the process of infinitesimal deformation of the second order to go to the surface

Φ∗ [6]:

x∗(u, v, t) = x(u, v) + 2ε
1z(u, v) + 2ε2 2z(u, v), (1)

where
1z(u, v) and

2z(u, v) are regular vector functions, ε is a deformation parameter of the surface Φ.
In order for

1z(u, v) and
2z(u, v) to be some fields that define an infinitesimal second-order bending of

the surface Φ, it is necessary and sufficient that the vector functions
1z(u, v) and

2z(u, v) satisfy the system of
equations [7]:

(a) (dx, d 1z) = 0, (b) (dx, d 2z) + d 1z2 = 0. (2)

As you know [7] that the vector-functions
1z(u, v) and

2z(u, v) correspond to these vector functions
1y(u, v)

and
2y(u, v), there are equalities:

d 1z = [
1y, dx] and d 2z = [

2y, dx] + [
1y, d 1z]. (3)



L. Rýparová et al. / Filomat 37:25 (2023), 8561–8567 8563

The system of vector fields
1y(u, v) and

2y(u, v) is uniquely determined by the system of vector fields
1z(u, v) and

2z(u, v). Conversely, if there is a set of functions
1y(u, v) and

2y(u, v) satisfying equations (3), then
equations (2) will be also fulfilled and, consequently, the deformation (1) will be infinitesimal the second
order bends of the surface Φ. If it follows from system (3) for the surface Φ that

1y = const, then the surface
Φ has a rigidity of the second order. Then it follows [6, 7] that the surface Φ in the class of deformations under
consideration will be analytically rigid.

It is not difficult to show that in order for
1z(u, v) and

2z(u, v) to be bending fields of the surface Φ on
which connections are imposed that allow the points of the curve to move on the surface Φ, only in a given
constant direction v, it is necessary and sufficient that the systems of differential equations (2) and the
following boundary conditions are satisfied

1z(u, v)|1 = λ1v and
2z(u, v)|1 = λ2v, (4)

where λ1, λ2 are arbitrary functions of the points of the line 1.
So, let the vector v be parallel to the axis of rotation and the surface of revolution Φ is given by the

equation [5]:

x(u, v) = u k + ϱ(u) a(v), 0 ≤ u ≤ b, 0 ≤ v ≤ 2π, (5)

with respect to the moving frame k,a(v),a′(v), where k is unit vector field of the axis of rotation, a(v) is a
unit vector field perpendicular to the axis of rotation, which with the change in v defines a circle of radius
one. The vectors k and a(v) define the meridian plane, and ϱ = ϱ(u) is the equation of the meridian of the
surface of revolution Φ. The lines u = const are parallels, and the lines v = const are meridians.

4. Proof of Theorem 1

We consider surfaces of revolution Φ with respect to infinite small bending of the second order (1),
which are defined by the vector fields

1z(u, v) and
2z(u, v) in the moving frame k,a(v),a′(v):

(a)
1z =

1
φ (u, v) k +

1
ψ (u, v) a(v) +

1
χ (u, v) a′(v), (b)

2z =
2
φ (u, v) k +

2
ψ (u, v) a(v) +

2
χ (u, v) a′(v), (6)

where
1
φ (u, v),

1
ψ (u, v),

1
χ (u, v) and

2
φ (u, v),

2
ψ (u, v),

2
χ (u, v) are coordinate functions in this frame.

If the system of equations (2), which describes the infinitesimal bendings of the second order for surfaces
of revolution (5), is equivalent to the system of differential equations of the first order of this type [5, 17, 24]:

1
φu(u, v) + ϱ′(u)

1
ψu(u, v) = 0,

1
ψ (u, v)+

1
χ v(u, v) = 0,

1
φ v(u, v) + ϱ′(u) [

1
ψ v(u, v)−

1
χ (u, v)] + ϱ(u)

1
χu(u, v) = 0,

(7)

2
φu(u, v) + ϱ′(u)

2
ψu(u, v) = −[

1
φ 2

u(u, v)+
1
ψ 2

u(u, v)+
1
χ 2

u(u, v)],
2
ψ (u, v)+

2
χ v(u, v) = − 1

ϱ(u)

[
2
φ 2

v(u, v) + (
1
ψ v(u, v)−

1
χ (u, v))2

]
,

2
φ v(u, v) + ϱ′(u) [

2
ψ v(u, v)−

2
χ (u, v)] + ϱ(u)

2
χu(u, v) =

−2
[

1
φu(u, v)

1
φ v(u, v)+

1
ψu(u, v) (

1
ψ v(u, v)−

1
χ (u, v))

]
.

(8)

As for surfaces of revolution Φ functions
i
φ (u, v),

i
ψ (u, v),

i
χ (u, v) (i = 1, 2) are periodic functions with

respect to 2π, the solution of (7) can be found in the form of Fourier series:
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1
φ (u, v) =

∞∑
m=0

[
1
φm1(u) cos mv+

1
φm2(u) sin mv],

1
ψ (u, v) =

∞∑
m=0

[
1
ψm1(u) cos mv+

1
ψm2(u) sin mv],

1
χ (u, v) =

∞∑
m=0

[
1
χm1(u) cos mv+

1
χm2(u) sin mv].

Then from (7) for the Fourier coefficients
1
φmi(u),

1
ψmi(u),

1
χmi(u) (i = 1, 2; m = 0, 1, 2, . . . ) of these functions

we obtain the following system of ordinary differential equations (for m = 0, 1, 2, . . . ):

1
φ ′m1(u) + ϱ′(u)

1
ψ ′m1(u) = 0,

1
ψm2(u) +m

1
χm2(u) = 0,

m
1
φm1(u) + ϱ′(u) [m

1
ψm1(u)+

1
χm2(u)] − ϱ(u)

1
χ ′m2(u) = 0,

1
φ ′m2(u) + ϱ′(u)

1
ψ ′m2(u) = 0,

1
ψm2(u) −m

1
χm1(u) = 0,

m
1
φm2(u) + ϱ′(u) [m

1
ψm2(u)−

1
χm1(u)] − ϱ(u)

1
χ ′m1(u) = 0.

(9)

The solution to this system, corresponding to the number m, determines the infinitesimal bending
1zm =

1
φm(u, v) k+

1
ψm(u, v) a(v)+

1
χm(u, v) a′(v) of a surface of revolution Φ. Here, by

1
φm(u),

1
ψm(u),

1
χm(u) are

denoted

1
φm(u, v) =

1
φm1(u) cos mv+

1
φm2(u) sin mv,

1
ψm(u, v) =

1
ψm1(u) cos mv+

1
ψm2(u) sin mv,

1
χm(u, v) =

1
χm1(u) cos mv+

1
χm2(u) sin mv.

(10)

Any infinitesimal bending of the first class of surface Φ is represented as a linear combination of

fundamental infinitesimal bends. Excluding from the system (9) for each fixed m the functions
1
φ mi(u),

1
ψ

mi(u), we obtain the differential equation

ϱ(u)
1
χ ′′mi(u) + (m2

− 1) ϱ′′(u)
1
χmi(u) = 0. (11)

It is known [5] that every non-identically zero solution of equation (11) for integer m ≥ 2 corresponds to
a non-trivial bending field of the surface under consideration.

In the case when equation (11) does not admit limited non-trivial solutions for integer values m ≥ 2, the
corresponding surface of revolution will be rigid with respect to infinitesimal bends of the first order.

If equation (11) admits a non-trivial regular solution on the interval 0 ≤ u ≤ b, only for m = n (m ≥ 2)
and does not allow for such solutions when m , n, then the solution of the system (8) can be sought in the
form of Fourier polynomials consisting of the free term and members containing trigonometric functions
of order 2n [5, 24]:

2
φn(u, v) =

2
φ 2n,1(u) cos 2nv+

2
φ 2n,2(u) sin 2nv,

2
ψn(u, v) =

2
ψ 2n,1(u) cos 2nv+

2
ψ 2n,2(u) sin 2nv,

2
χn(u, v) =

2
χ 2n,1(u) cos 2nv+

2
χ 2n,2(u) sin 2nv.

(12)
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Then from the system (8), taking into account (10), (12) to determine the functions
2
φ 2n,i(u),

2
ψ 2n,i(u),

2
χ 2n,i(u),

2
φ 0(u),

2
ψ 0(u),

2
χ 0(u) (i = 1, 2), we obtain the following system of equations:

2
φ ′2n,1 + ϱ

′
2
ψ ′2n,1 = −

1
2

[
1
φ ′n1

2+
1
ψ ′n1

2+
1
χ ′n1

2
−

1
φ ′n2

2
−

1
ψ ′n2

2
−

1
χ ′n2

2

]
,

2
ψ 2n,1 + 2n

2
χ 2n,2 = −

1
2ϱ

[
−n2 1

φ 2
n1 − n2

1
ψ 2

n1 − 2n
1
ψn1

1
χn2−

1
χ 2

n2 + n2 1
φ 2

n2 + n2
1
ψ 2

n2 − 2n
1
ψn2

1
χn1+

1
χ 2

n1

]
,

−2n
2
φ 2n,1 − ϱ

′(2n
2
ψ ′2n,1+

2
χ 2n,2) + ϱ

2
χ ′2n,2 = −

[
−n

1
φn1

1
φ ′n1+

n
1
φn2

1
φ ′n2 − n

1
ψn1

1
ψ ′n1 + n

1
ψn2

1
ψ ′n2−

1
χn1

1
ψ ′n2−

1
ψ ′n1

1
χn2

]
,

2
φ ′2n,2 + ϱ

′
2
ψ ′2n,2 = −

[
1
φ ′n2

1
φ ′n1+

1
ψ ′n2

1
ψ ′n1+

1
χ ′n2

1
χ ′n1

]
,

2
ψ 2n,2 − 2n

2
χ 2n,1 = −

1
ϱ

[
n2 1
φn1

1
φn2 − n2

1
ψn1

1
ψn2 + n

1
χn1

1
ψn1 − n

1
ψn2

1
χn2+

1
χn1

1
χn2

]
,

2n
2
φ 2n,2 − ϱ

′(2n
2
ψ ′2n,2−

2
χ 2n,1) + ϱ

2
χ ′2n,1 = −

[
n

1
φ ′n2

1
φn1+

n
1
ψ ′n2

1
ψn1+

1
ψ ′n2

1
χn2 + n

1
φ ′n1

1
φn2 + n

1
ψ ′n1

1
ψn2−

1
ψ ′n1

1
χ ′n1

]
.

(13)

2
φ ′0 + ϱ

′
2
ψ ′0 = −

1
2

(
1
φ ′n1

2+
1
ψ ′n1

2+
1
χ ′n1

2+
1
φ ′n2

2+
1
ψ ′n2

2+
1
χ ′n2

2

)
,

2
ψ 0 = −

1
2ϱ

(
n2 1
φ 2

n1 + n2
1
ψ 2

n1 + 2n
1
ψn1

1
χn2+

1
χ 2

n2 + n2 1
φ 2

n2 + n2
1
ψ 2

n2 − 2n
1
ψn2

1
χn1+

1
χ 2

n1

)
,

ϱ
2
χ ′0 + ϱ

′
2
χ 0 = n

1
φn1

1
φ ′n2 + n

1
ψn1

1
ψ ′n2+

1
χn2

1
ψ ′n2 − n

1
φn2

1
φ ′n1 − n

1
ψn2

1
ψ ′n1+

1
ψn1

1
χ ′n1,

(14)

Excluding the functions
2
φ 2n,i(u),

2
ψ 2n,i(u) from the system (13), we obtain the differential equations

ϱ
2
χ ′′2n,i + (4n2

− 1) ϱ′′
2
χ 2n,i = Ri (i = 1, 2), (15)

where

R1 = 2nϱ′′(
1
φn2

1
ψ ′n1+

1
φn1

1
ψ ′n2)

and

R2 = 2nϱ′′(
1
φn2

1
ψ ′n2−

1
φn1

1
ψ ′n1).

If equations (14) and (15) have a regular solution on the interval 0 ≤ u ≤ b, then the corresponding
surface of revolution admits a non-trivial infinitesimal bending of the second order, which is a continuation
of the fundamental infinitesimal bending

1zn(u, v) of the first order [5, 24].
So, let the vector v be parallel to the axis of rotation and the surface Φ is given by equation (6). Without

loss of generality, we assume that v = k and the parallel γ0 is described by equation u = 0, then the radius
vector x(0, v) of an arbitrary parallel point γ0 can be written as:

x(0, v) = ϱ(0) a(v), 0 ≤ v ≤ 2π. (16)

The vector functions
1z(u, v) and

2z(u, v) will be bending fields of the surface Φ in the specified class of
deformations if and only if they are solutions of the system of equations (2) and along the parallel γ0 satisfy
the conditions (4). These conditions for the case under consideration will be written as follows:

1z(0, v) = λ1(v) k, 0 ≤ v ≤ 2π, (17)
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2z(0, v) = λ2(v) k, 0 ≤ v ≤ 2π, (18)

where λ1(v) and λ2(v) are arbitrary differentiable functions.
Since equality (18) must be fulfilled for all v ∈ [0, 2π], then for all v from the same interval, the following

equality will be fulfilled:

d 2z(0, v) = dλ2(v) k, 0 ≤ v ≤ 2π. (19)

Then from equation (2b), given the equalities (16) and (19), we find
(d 1z(0, v))2 = 0, 0 ≤ v ≤ 2π, hence it follows that

1z(0, v) = c, 0 ≤ v ≤ 2π, (20)

where c is an arbitrary constant vector.
Comparing formulas (17) and (20), we get

1z(0, v) = c k, 0 ≤ v ≤ 2π, (21)

where c is the length of the vector c in (20).
Let the bending field

1z(u, v) of the surface Φ in the basis k,a(v),a′(v) has expression (6a). Then along

the parallel γ0, if we take into account (21), we obtain the following restrictions for the functions
1
φ (u, v),

1
ψ (u, v),

1
χ (u, v):

1
φ (0, v) = c,

1
ψ (0, v) = 0,

1
χ (0, v) = 0.

Hence, taking into account the decomposition of the functions
1
φ (u, v),

1
ψ (u, v),

1
χ (u, v) into Fourier series

and the system of differential equations (9), which connects the Fourier coefficients of these functions, we
obtain

1
χmi(0) = 0,

1
χ ′mi(0) = 0, (m ≥ 2; i = 1, 2). (22)

Since the meridian of the surface of revolution Φ has no points whose tangents are perpendicular to the
axis of rotation, then, as is known, the only regular solution of equation (11) that satisfies condition (22) is
1
χmi(u) = 0.

Then, as is known, [5],
1y(u, v) = const on the entire surface Φ. Thus, for the considered class of

deformations of the surface Φ, it follows from the system of equations (3) that
1y(u, v) = const, which

means that the surface Φ in the specified class of deformations has second-order rigidity, and therefore is
analytically rigid. Therefore, the theorem is fully proved.

5. Conclusion

Investigating the infinitesimal bendings of regular unfolding surfaces and doubly connected regular
surfaces of revolution, which are fixed along a curve on a surface with respect to a point and a plane, we
came to the conclusion that these surfaces under analytic boundary conditions are analytically rigid.
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L. Rýparová et al. / Filomat 37:25 (2023), 8561–8567 8567

[6] N.V. Efimov, Qualitative problems of the theory of deformation of surfaces, (Russian) Uspehi Matem. Nauk 3:2(24) (1948) 47–158.
[7] N.V. Efimov, Some propositions on rigidity and nondeformability, (Russian) Uspehi Matem. Nauk 7:5(51) (1952) 215–224.
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[27] L. Rýparová, J. Mikeš, Infinitesimal rotary transformation, Filomat 33(4) (2019) 1153–1157.
[28] M. Sherkuziyev, S. Mahmasaidova, K. Djumaniyozova, The rigidity and analytical inflexibility of single-connected conves

surfaces related to a point and a plane along the edge, Turkish Online J. Qualitative Inquiry (TOJQTI) 12(7) (2021) 4776–4782.


