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Abstract. The paper is devoted to studying equidistant two-dimensional (pseudo-) Riemannian spaces.
Embeddings of these spaces in three-dimensional Euclidean and Minkowski spaces as revolution or helical
surfaces are given. The general solution of equidistant equations is found beyond these spaces under
minimal requirements for the differentiability of the studied objects. These vector fields are associated with
Killing vector fields on those spaces.

1. Introduction

The geometric properties of Riemann manifolds are frequently studied in connection with the existence
of certain vector fields. For completeness, we start here with a fairly general class of vector fields and will
specify it as a subclass in the sequel, which refers to the so-called equidistant manifolds, a class of (pseudo-)
Riemann spaces.

Torse-forming and concircular vector fields were introduced by K. Yano [40, 41] in 1944. Special types
of these manifolds were studied before by T. Levi-Civita, V.F. Kagan, P.A. Shirokov, H.W. Brinkmann, H.L.
Vries, A.D. Fialkow, A.S. Solodovnikov etc. The spaces in which concircular vector fields exist are called
equidistant manifolds. N.S. Sinyukov introduced this concept [36, 37], see [25, 38]. In several other papers,
these manifolds are denoted as almost warped product manifolds [6]. Most equidistant spaces and similar
spaces with a dimension greater than two were studied, e.g. [2–6, 8–23, 25, 26, 31–35, 42].

Some properties also carry over to dimension two, but due to the specificity of this dimension, we
devote this paper to its study. Equidistant two-dimensional spaces are closely related to rotational and
helical surfaces as well as to Killing vector fields. The differentiability of metrics plays an important role
in studying these spaces. Among other things, precedents for the bifurcation of geodesics have been
established for these spaces [27–30].

In the article, we deal with the question of the general solution of equidistant fields in a two-dimensional
(pseudo-) Riemannian space under minimal conditions of differentiability of the metric. The achieved
results and methods are carried out locally.
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2. Equidistant space

An n-dimensional (pseudo-) Riemannian space Vn with a metric tensor 1 is called equidistant (N.S. Si-
nyukov [36], see [38, p. 92], [25, p. 168]) if there exists in it a linear form φ , 0 satisfying the equations

∇φ = ρ 1, (1)

where ρ is a function and ∇ is a connection onVn. Since the form φ is necessarily a locally gradient (locally,
there exists a function Φ for which φ(X) = ∇XΦ), it defines a normal congruence in Vn, which we will call
equidistant. The origin of this the term will be explained next.

Spaces satisfying conditions (1) were encountered by H.W. Brinkmann [2] in the study of conformal
mappings of Riemannian spaces. Later also, e.g. A. Fialkov, H.L. Vries, K. Yano etc. [4, 16, 25, 38, 40]. The
special significance of equidistant spaces in the theory of geodesic and HP- mappings was discovered by
N.S. Sinyukov [36–38], J. Mikeš [17–23, 25], I. Shandra [31–34], and others [3, 8–15, 26].

Among equidistant Riemannian spaces, there are some cosmological models. Modern cosmological
models are based on the so-called Copernican principle (Bondi [1], 1960), stating that no position in the
universe is distinguished in any way. A suitable concrete realization of this principle is the assumption
of spatial homogeneity. At a sufficiently large scale, the universe’s structure is essentially the same ev-
erywhere. Such a space is invariant under translations. The latter forms an isometry group, i.e., a group
of transformations that leaves the metric invariant. A further interpretation of the Copernican principle
is isotropy – the universe appears in every direction approximately the same. The associated isometry
group is the group of rotations. Isotropy at every point ascertains homogeneity. The reverse is not true.
Homogenous and isotropic models are the simplest cosmological models characterized by constant spatial
curvature. They were introduced and studied by Friedmann, Lemaı̂tre, Robertson and Walker.

The vector field ξ, which is associated with the equidistant fieldφ: 1(ξ,X) = φ(X) for all tangent vector X,
will also be called equidistant. This vector field is a special case of torse-forming and concircular vector fields
introduced by K. Yano [40, 41]. Torse-forming vector fields ξ are characterized by the following equation
∇ξ = a ·ξ+ρ · Id, where a is a linear form, and ρ is a function onVn. In the case that a is a gradient, the vector
field ξ is called concircular. We note that for any concircular vector field ξ, there exists a function f on Vn
such that f ·ξ is equidistant. Therefore, equidistant and concircular vector fields are often equated. In detail
are the torse-forming, concircular and equidistant vector fields described in monographs [25, p. 168]. A
lot of work is devoted to the above vector fields in various directions, for example, [3, 5, 11, 26, 31, 34, 35].
The majority of these works concern with spaces of dimension n > 2. We devote our work to the study of
equidistant 2-dimensional spacesV2.

Next, we will supose that equidistant vector field ξ is not isotropic, i.e. lenght ||ξ|| , 0. For these
equidistant space there exists local coordinate system x = (x1, x2, . . . , xn) for which metric form of Vn has
the following form (see [38, p. 96], [25, p. 179]): ds2 = dx12

+ f (x1) · ds̃2, where f is a differentiable function
of x1 and ds̃2 is a metric form ds̃2 = 1̃αβ(x2, . . . , xn) dxαdxβ of (n−1)-dimensional (pseudo-) Riemannian space
Vn−1. We can consider the metrics ds2 and −ds2 to be equivalent.

The metric of 2-dimensional equidistant spaceV2 has the form

ds2 = du2 + f (u) · dv2. (2)

For clarity, here and hereafter u ≡ x1 and v ≡ x2.
In local coordinate system equation (1) of equidistant field φ have the following shape

φi, j = ρ · 1i j, (3)

where φi and 1i j are components of φ and 1 and “ , ” denotes a covariant derivative. In detail, the left-hand
side of equation (3) is ∂ jφi −φαΓαi j = ρ 1i j, where Γh

ij = Γi jα1
αh, Γi jk =

1
2 (∂i1 jk + ∂ j1ik − ∂k1ik) are the Christoffel

symbols, ||1i j
|| = ||1i j||

−1, and ∂i ≡ ∂/∂xi.
By direct substitution, we make sure that φ = c · (

√
| f (u)| , 0, 0, . . . , 0), c – const, is a particular solution

of the equations (1) and therefore φ is an equidistant vector field.
In the later Sections 5 and 6, we proved the following theorem.
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Theorem 2.1. InV2 ∈ C1 of non-constant curvature the general solution of the equation (1) has at most one linearly
independent solution φ. IfV2 ∈ Ck, k ≥ 1, then φi(x) ∈ Ck holds and the general solution has the form const ·φ.

This theorem holds globally even if V2 has local regions with constant curvature. Furthermore, we can
assume a priori that φi(x) are differentiable functions, and ϱ(x) is continuous. Higher differentiability of
φi(x) and ϱ(x) follows from the results of I. Hinterleitner and J. Mikeš [12], see [25, p. 171].

3. Surfaces of revolution

It is known that the surfaces of revolution S2 on Euclidean space E3 can be described by the equation in
Cartesian coordinates (x, y, z) in this way:

x = r(u) · cos v, y = r(u) · sin v, z = z(u), (4)

where r(u) (≥ 0) and z(u) are functions of parameter u ∈ R, and v ∈ R. These functions and parameters
fulfill additional natural conditions.

The first quadratic form of S2 (when r(u) and z(u) are differentiable functions) has the following form

ds2 = (r′2 + z′2) du2 + r2 dv2. (5)

After reparametrization of parameter u we can get the mentioned form of (2). In this case, f (u) > 0
and metric (2) defines a two-dimension equidistant Riemannian space V2. It is natural that the metrics
in the form (2) have surfaces locally isometric to the surfaces of revolution. It is very easy to see that
r(u) =

√
f (u) and z(u) =

∫ √
1 − r′(u)2 du.However, these formulas can only be implemented if 1−r′2 ≥ 0.

This means that the positive function f must also satisfy the following inequality f ′2 ≥ 4 f . For the inequality
f ′2 < 4 f , there are no surfaces of revolution in Euclidean space.

On the other hand, for f (u) > 0 and without any additional requirements there are surfaces of revolu-
tion (4), where r(u) =

√
f (u) and z(u) =

∫ √
1 + r′(u)2 du, in Minkowski space with metric ds2 = dx2+dy2

−dz2

has metric form (2).
In the case f (u) < 0, metric (2) defines the two-dimensional pseudo-Riemannian space V2. In this case,

this metric is realized on the surface S2 embedded in the Minkowski space with metric ds2 = dx2 + dy2
− dz2.

The equations of this surface have the form (5) at r(u) =
√
− f (u) and z(u) =

∫ √
1 + r′(u)2 du.

The above means that equidistant spaces V2 can be realized locally as surfaces of revolution. For
example, even a helix is equidistant space because it is isometric to a catenoid, which is the surface of
revolution.

In a Minkowski space with metric ds2 = ±dx2
∓ dy2 + dz2, resp. ds2 = ±dx2

∓ dy2
− dz2, the equa-

tions x = r(u) · cosh v, y = r(u) · sinh v, z = z(u), generate also equidistant spaces V2 with metric
ds2 = (∓r′2 + z′2) du2

± r2 dv2, resp. ds2 = (∓r′2 − z′2) du2
± r2 dv2. After reparametrization of parameter u we

can also get the mentioned form (2) of the metric. Analogously, we can find above surfaces for metrics (2).
From the general theory of surfaces, there are surfaces S2 ⊂ E3 with metric (2) and the inequality

f ′2 ≤ 4 f does not apply everywhere. To construct surface S2 with metric (2), it is sufficient to find the
second quadratic form II = bi j dxidx j, that holds the Gauss and Peterson-Codazzi equations

R1212 = b11b22 − b2
12, ∇2b11 = ∇1b12, ∇2b21 = ∇1b22, (6)

where Rhijk = 1hαRαi jk and Rh
ijk = ∂kΓ

h
ij + Γ

α
i jΓ

h
αk − ∂ jΓ

h
ik + Γ

α
ikΓ

h
α j are components of curvature tensor ofV2.

We verify that for the metric (2), components b11 = K · f/b22, b12 = 0, b22 = ±1/2
√

c f − f ′2,

are a particular solution of equations (6), where K = −
f ′′

2 f
+

(
f ′

2 f

)2

is the Gaussian curvature and c is
constant for which c f − f ′2 > 0.

We note that above are the general solution of the equations (6) at b12 = 0. Under this assumption from
the Gaussian equation, b11 = K · f/b22 holds, and the Peterson-Codazzi equations have the form of the
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Bernoulli equations for the function b22(u): 2 ∂1b22 = b22 f ′/ f − K f ′/b22. Since 112 = b12 = 0, the coordinate
system (u, v) of the searched surfaces S2 is normal.

The embedding ofV2 as surface S2 : r = r(u, v) is realized by solving Gaussian and Weiengarten equations

∂ir = ri, ∂ jri = Γ
k
i j rk + bi j m, ∂im = −bk

i rk, (7)

where ri (i = 1, 2) are tangent vectors of S2 and m is unit normal vector of S2, bk
i = 1

kjbi j, and ∥1i j
∥ = ∥1i j∥

−1.
If the conditions (7) are met at the point x0 = (u0, v0), then the equations (6) have a local solution in the

neighborhood of x0 for the initial conditions r(x0) = r0, ri(x0) = r0
i , m(x0) = m0. Clearly r0

i · r
0
j = 1i j(x0), and

m0 = r0
1 × r0

2/|r
0
1 × r0

2|, where × is vector product.
Therefore, for any value of c that is bounded by the natural condition c > f ′2/ f (i.e. c f − f ′2 > 0),

a surface S(c)
2 can be constructed in the above manner. All these surfaces are mutually isometric. Above

surfaces S(c)
2 exists for parameter c that lies on some interval I ∈ R and defines a one-parameter isometric

deformation of these surfaces that is not a mere motion of the surface in Euclidean spaceE3. If the interval I
contains 4, then these surfaces are isometric to surfaces of revolution, since S(4)

2 can be realized as a surface (4)
with r =

√
f (u) .

4. Equidistant and Killing vector fields

Isometric mappings of a (pseudo-) Riemannian spaceVn= (M, 1) onto itself are called isometric transfor-
mations onVn or motions ofVn. A vector field ξ onVn is called an infinitesimal isometry or a Killing vector field
if for each point p ∈M there is a neighborhood U of p such that the local one-parameter group ft determined
by the vector field preserves the metric, that is, the mapping ft: M→M is an isometric transformation. In a
special coordinate system (xi) in which ξ = ∂1, the isometric transformation is characterized by ∂11i j(x) = 0.

It is known [25, p. 228], vector field ξ is the Killing vector field on Vn if it satisfies the Killing equations:
Lξ1i j = ξi, j + ξ j,i = 0, where Lξ is the Lie derivation with respect to ξ, ξi = 1iαξα, and ξh are components of ξ.

Since the metric tensor 1 in the metric (2) does not depend on the variable v, the vector field ξ = ∂v
is Killing on V2. Therefore, equidistant spaces V2, and also surfaces of revolution S2 admit Killing vector
fields. It is easy to prove the following Theorem forV2.

Theorem 4.1. Let ξ be a Killing vector field then Fξ is an equidistant vector field.
Let φ be a equidistant vector field then Fφ is an Killing vector field.

Here F is an operator for which its components Fh
i = 1

hαεαi, and εi j are components of discriminant
tensor onV2 for which ε11 = ε22 = 0, ε12 = −ε21 =

√
|111122 − 112

2| , see [25, p. 159]. For this operator is true
F2 = ε · Id, 1iαFαj + 1 jαFαi = 0, Fh

i, j = 0. For definite form ds2 we lay ε = −1, and for indefinite ε = +1.

Proof. We will perform the proof at a fixed point x0 ∈ V2 in which the metric 1 has the form 1i j = diag {1,−ε}.
Let ξ be the Killing vector field. Therefore, from Killing equation follows ξ1,1 = ξ2,2 = 0 and ξ1,2 = −ξ2,1.
We will put φ = Fξ, i.e. φh = Fh

αξ
α, from which follows φi = εiβ1

αβξα. Then φi, j = εiβ1
αβξα, j and by direct

calculation we get φ1,2 = φ2,1 = 0, φ1,1 = ε12 · (−ε) · ξ2,1 and φ2,2 = ε21 · ε · ξ1,2. Hence the formula (3) is true
when ϱ = ε · ε12 · ξ1,2.

Finaly, let φ be the equidistant vector field. We will put ξ = Fφ, i.e. ξh = Fh
αφ
α, from which follows

ξi = εiβ1
αβφα. Based on formula (3) it is true ξi, j = ϱ · εi j. Because discriminant tensor εi j is skew the Killing

equation is fulfilled.

Evidently, there exist two Criteria of isomery ofV2 with surfaces of “revolution” with metric (2):
1. onV2 there exists the equidistant vector field;
2. onV2 there exists the Killing vector field.

Let us remind that, in addition to surfaces of revolution, metric (2) have also helical surfaces. Interesting
properties of these surfaces were studied, for example, in [39]. These surfaces are defined inE3 by equations
x = u · cos v, y = u · sin v, z = q(u) +mv, where q(u) is a function and m is non zero constant. The metric
form of these surfaces does not depend on coordinate v, so there is a Killing vector on them.
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5. General solution of equation of equidistant vector field inV2 ∈ Ck, k = 3, 4

We will search general solution of equation of equidistant vector field in V2 ∈ Ck, k = 3, 4. It is well-
known that in V2 the Gauss formula holds: Rhijk = K · (1hj1ik − 1hk1i j), where K is the Gauss curvature. We
will first assume that V2 ∈ C4, i.e. 1i j(x) are differentiable functions of class C4 (1i j(x) ∈ C4). From this it
follows that Γh

ij(x) ∈ C3, and the Gauss curvature K is two differentiable.
Let φ be an equidistant field for which (1), and, locally, (3): φi, j = ϱ 1i j holds. Now, we calculate the

integrability conditions: φαRαi jk = φi, jk − φi,kj. From this and (3) it follows K · (φ j1ik − φk1i j) = ϱ,k1i j − ϱ, j1ik.

After contraction with 1i j, we find out that ϱ,k = −K · φk. It yields that integrability conditions of (3) are
identically fulfilled. From the previous, we have the following system of equations:

φi, j = ϱ 1i j, ϱ,k = −Kφk. (8)

This system is a complete system of linear equations respective unknown functions φi(x) and ϱ(x). It
means that it has only one solution with initial conditions φi(x0) = φ0

i and ϱ(x0) = ϱ0. Thus, the general
solution (8) depends only on 3 real parameters. The integrability conditions of the second equation of (8)
has the form ϱ,kl = ϱ,lk, i.e. after using (8), we find

K,lφk − K,kφl = 0. (9)

If K,l ≡ 0, i.e. K is constant, then conditions (9) are identically fulfilled. In this case, equations (8) are
completely integrable, therefore in space of constant curvature K these equations have solution for arbitrary
initial conditions.

We differentiate equation (9) and on the base of equations (3) we have: ϱ(Kl1km−Kk1lm)+Kl,mφk−Kk,mφl = 0.
If K,l , 0, from this, we can see that ϱ can be linearly expressed via components φ1, φ2. From (9), the one
component φi is expressed via the second one. The initial condition φi, ϱ linearly depends on one real
parameter. In this way, we have confirmed with standard methods that the Theorem 2.1 for k = 4 is true.

Moreover, with a simple modification of the proof, Theorem 2.1 also holds for V2 ∈ C3. Under these
conditions, the integrability conditions (9) apply. If K is non constant, for example K,1 , 0, then from (9)
implies φ1 = c · φ2, where c = K,2/K,1. Since φi(x) satisfies the equations of (3), the function c must
be differentiable. Furthermore, substituting into these equations shows that the function ϱ(x) is linearly
expressed in terms of φi(x). This means that ϱ(x) will also be expressed ϱ(x) = c̃ · φ2, where c̃ is a function
onV2. Therefore, the initial conditions at point x0 depend on one real parameter and therefore the general
solution φi(x) of equations (1) depends on only one parameter.

6. General solution of equation of equidistant field inV2 with minimal differentiability conditions

As we have already mentioned, in the space V2 in which equidistant vector fields exist, there is a
coordinate system (3): ds2 = du2 + f (u) dv2, f (u) , 0. If f ∈ C3, then based on Theorem 2.1 the general
solution is the previously announced solutionφi = const · (

√
| f (u)|, 0) in the space of non-constant curvature.

The above calculations were performed under the assumption of sufficient differentiability of the studied
functions. We suppose that f (u) ∈ C1. In this case, there may be no Gaussian curvature and the methodology
from the previous Section 5 is inapplicable.

Equation of equdistant field (3): φi, j = ϱ1i j we can write in expanded form ∂ jφi − φαΓαi j = ρ 1i j. The
minimum requirements for differentiability in equation (3) are as follows φi ∈ C1 and ϱ ∈ C0.

From equations (3) for i = 2 and j = 1 we obtain ∂1φ2 = 1/2φ2 · f ′/ f . After integration,φ2 = A(v)·
√
| f (u)|,

where A(v) is a function of parameter v.
From equations (3) for i = j = 1 we have ∂1φ1 = ϱ and for i = j = 2 we have ∂2φ2 = − 1/2φ1 · f ′+ϱ· f . From

this we have ∂1φ1 = 1/2 φ1 f ′/ f − ∂2φ2/ f . Substituting φ2 here and then integrating respective unknown
function φ1, we obtain φ1 = −A′(v)

√
| f |

∫
(1/ f ) du + B(v)

√
| f |, where B(v) is a function of parameter v.

Finaly, from equations (3) for i = 1 and j = 2 we get ∂2φ1 = 1/2 φ2 · f ′/ f . We will substitute the functions
φ1 and φ2, and after division

√
| f (u)|we obtain −A′′ ·

∫
(1/ f ) du + B′ = f ′/(2 f ) · A.
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If A(v) , 0 for some v, then the above formula for v implies f ′ = α f
∫

(1/ f ) du + β f , where α, β are
constant. It is obvious that the solution of this differential-integral equation is analytical. This case is fully
processed in the previous Section, and expressed in Theorem 2.1. Apparently, it is enough to assume that
A(v) ≡ 0. Evidently, B′ = 0, i.e. B is constant. It follows from the above that the general solution in this case
is φi = const (

√
| f |, 0). This means that the Theorem 2.1 also holds forV2 ∈ C2.
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[23] J. Mikeš, Holomorphically projective mappings and their generalizations, J. Math. Sci. 89:3 (1998) 1334–1353.
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[30] L. Rýparová, J. Mikeš, A. Sabykanov, On geodesic bifurcations of product spaces, J. Math. Sci. (N.Y.) 239:1 (2019) 86–91.
[31] I. G. Shandra, Geodesic mappings of equidistant spaces and Jordan algebras of spaces Vn(K), Diff. geom. mnogoobr. figur,

Kaliningrad (1993) 104–111.
[32] I. G. Shandra, On concircular tensor fields and geodesic mappings of pseudo-Riemannian spaces, Russ. Math. 45:1 (2001) 52–62.
[33] I. G. Shandra, Concircular vector fields on semi-Riemannian spaces, J. Math. Sci. (N.Y.) 142(5) (2007) 2419–2435.
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