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Abstract. In our work we presented the modified field equations generated by action with unspecified
function f (R). Assuming spherical symmetry, we used the corresponding static Schwarzschild-like metric
in the weak field limit. Also we considered geodesic equations of motion describing orbits and orbital
speeds which can be measured in galactic environment. We solved geodesic equations in the case of a
power-law f (R) theories, that is we set f (R) = f0nRn.

1. Introduction

The modified theories of gravity have been proposed like alternative approaches to Einstein theory of
gravity [1–5]. In this work we consider power-law fourth-order theories of gravity [6, 7]. f (R) gravity is a
straightforward extension of General Relativity (GR) where, instead of the Hilbert-Einstein action, linear in
the Ricci scalar R, one considers a power-law f (R) = f0nRn in the gravity Lagrangian [1, 6–11]. In the weak
field limit, a gravitational potential may be written as [6, 7]:

Φ (r) = −
GM
2r

[
1 +

( r
rc

)β]
, β =

12n2
− 7n − 1 −

√

36n4 + 12n3 − 83n2 + 50n + 1
6n2 − 4n + 2

, (1)

where rc is the scale-length parameter and it is related to the boundary conditions and the mass of the
system and β is a universal parameter related to the power n [7]. For the case n = 1, we obtain β(n = 1) = 0,
and the GR is recovered.

In this paper we considered geodesic equations for spherically symmetric static (SSS) metric and power-
law fourth-order theories of gravity f (R) = f0nRn. In Section 2 we presented basic properties of SSS metric,
in Section 3 we presented field equations in unspecified f (R) gravity, while in Section 4 we find geodesic
equations in case of power-law fourth-order theories of f (R) gravity, using procedure as proposed in

2020 Mathematics Subject Classification. Primary 83-XX; Secondary 83C10, 83C15, 83C25.
Keywords. Relativity and gravitational theory; Equations of motion; Exact solutions; Approximation procedures; Weak fields.
Received: 08 December 2022; Accepted: 31 January 2023
Communicated by Zoran Rakić and Mića Stanković
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references [12–16]. The calculations of orbits and periods in Rn gravity are presented in Section 5, then,
Section 6 provides comparison between our numerical results with astronomical observations, while Section
7 is devoted to concluding remarks.

2. General properties in case of SSS metric

We assume metric for static spherical symmetric space [12]:

ds2 = A(r)dt2
− B(r)dr2

− r2dθ2
− r2 sin2 θdφ2, (2)

where: 100 = A, 111 = −B, 122 = −r2, 133 = −r2 sin2 θ, 1µµ =
1
1µµ

, 1 = 100111122133 = −ABr4 sin2 θ.

Cristoffel symbols are [12]: Γαεν =
1
2
1ασ

(
1σε,ν + 1σν,ε − 1εν,σ

)
and Γαµα,ν =

∂Γαµα
∂xν

and 1µν,α =
∂1µν
∂xα

.

Crystoffel symbols Γαεν different from zero are: Γ1
00 =

1
2B

dA
dr
, Γ0

10 = Γ
0
01 =

1
2A

dA
dr
, Γ1

11 =
1

2B
dB
dr
,

Γ1
22 = −

r
B
, Γ1

33 = −
r
B

sin2 θ, Γ2
12 = Γ

3
13 =

1
r
, Γ2

33 = − sinθ cosθ, Γ3
23 = Γ

3
32 = ctgθ.

Ricci tensor Rµν and Ricci scalar R are expressed:

Rµν = Γαµα,ν − Γ
α
µν,α + Γ

α
ενΓ
ε
µα − Γ

ε
µνΓ
α
εα, R00 = −

1
2B

d2A
dr2 +

1
4B2

dA
dr

dB
dr
+

1
4AB

(
dA
dr

)2

−
1

rB
dA
dr
,

R11 =
1

2A
d2A
dr2 −

1
4A2

(
dA
dr

)2

−
1

4AB
dA
dr

dB
dr
−

1
rB

dB
dr
, R22 =

1
B
+ r

1
2AB

dA
dr
− r

1
2B2

dB
dr
− 1, R33 = R22 sin2 θ,

R = 1µνRµν = −
1

AB
d2A
dr2 +

1
2BA2

(
dA
dr

)2

+
1

2AB2

dA
dr

dB
dr
+

2
r2

(
1 −

1
B

)
+

2
rB2

dB
dr
−

2
rAB

dA
dr
. (3)

3. Field equations and geodesic equations in unspecified f (R) gravity

As an alternative to Einstein-Hilbert action, we assume action in the form: S =
∫

d4x f (R)
√
−1, where

f (R) is a function of Ricci scalar R. The field equations of unspecified f (R) gravity are [13]: Rµν −
1
2
1µν

f
h
=(

h;µν − 1µνhλ;λ
) 1

h
, R =

2 f
h
−

3
h

hλ;λ, h =
d f
dR
, h;µν =

∂2h
∂xµ∂xν

− Γλµν
∂h
∂xλ
, hλ;λ =

1
√
−1
∂µ

(√
−11µν∂νh

)
,

h;11 =
∂2h
∂r2 − Γ

1
11
∂h
∂r
=
∂2h
∂r2 −

1
2B
∂B
∂r
∂h
∂r
, hλ;λ =

(
−

1
2AB

dA
dr
+

1
2B2

dB
dr
−

2
rB

)
dh
dr
−

1
B
∂2h
∂r2 , where h;λ is covariant

derivate.
After some mathematical manipulation given in paper by Sobouti [13] we obtain four field equations [13]:

1
A

dA
dr
+

1
B

dB
dr
= −

r
h

d2h
dr2 +

r
2h

dh
dr

(
1
A

dA
dr
+

1
B

dB
dr

)
,

1
A

d2A
dr2 −

1
2

(
1
A

dA
dr
+

2
r

) (
1
A

dA
dr
+

1
B

dB
dr

)
−

2
r2 +

2B
r2 =

2
h

d2h
dr2 −

(
1
B

dB
dr
+

2
r

)
1
h

dh
dr
,

1
A

d2A
dr2 −

1
2A2

(
dA
dr

)2

−
1

2AB
dA
dr

dB
dr
−

2
r

1
B

dB
dr
= −B

f
h
− 2

(
1

2A
dA
dr
+

2
r

)
1
h

dh
dr
,

R =
2 f
h
+

3
B

[(
1

2A
dA
dr
−

1
2B

dB
dr
+

2
r

)
1
h

dh
dr
+

1
h

d2h
dr2

]
. (4)



N. Dj. Lazarov et al. / Filomat 37:25 (2023), 8575–8581 8577

4. Geodesic equations in Rn gravity

We are solving relativistic equations of motion for massive particles in Rn gravity with assumption given
in the paper by Capozziello et al. [7]: AB = 1, h ≃ 1.

Geodesic equations for the metric (2) are:
d2xµ

dp2 + Γ
µ
αβ

dxα

dp
dxβ

dp
= 0. These equations provide differential

equations for the four space-time components: xµ = (t(p), r(p), θ(p), φ(p)), where p is parameter describing
the trajectory. Since, the metric is symmetric about θ0 =

π
2

, the coordinate system may be oriented so that

the orbit of the particle lies in that plane, and fix the θ =
π
2

[12]. These equations become:

d2t
dp2 +

1
A

dA
dr

dr
dp

dt
dp
= 0,

d2r
dp2 +

1
2B

dA
dr

(
dt
dp

)2

+
1

2B
dB
dr

(
dr
dp

)2

−
r
B

(
dφ
dp

)2

= 0,
d2φ

dp2 +
2
r

dr
dp

dφ
dp
= 0. (5)

From the first equation we get:
dt
dp
=

1
A

. From the third equation we obtain: J = r2 dφ
dp
= const. =

√
GML =

√
GMa(1 − e2), and using the second equation we finally have:(

dr
dφ

)2

+
r2

B

(
1 +

Er2

J2

)
=

c2r4

ABJ2 ,

(
dr
dτ

)2

= −
c2

B
+

c4

ABE
−

c2 J2

Er2B
,

(
dr
dt

)2

= −
A2

B
E +

Ac2

B
−

J2A2

r2B
, (6)

where E and J are constants of the motion and τ is proper time [12].

Also, ds2 = c2dτ2
= Edp2,where angleφ(r) is given by expression: φ(r) = φ(r−)+

∫ r

r−

√
Bdr

r2

√
−

E
J2 +

Bc2

J2 −
1
r2

,

and r± = (1 ± e) a ∧ L =
(
1 − e2

)
a, where a - semimajor axis, L - semilatus rectum, e - eccentricity. The angle

of orbital precession per revolution is [12]: ∆φ = 2|φ(r+) − φ(r−)| − 2π.

In case of Rn gravity, taking into account the following equations: A = 1+
2Φ
c2 andΦ = −

GM
2r

[
1 +

( r
rc

)β]
,

we obtain expressions for functions A and B in Rn gravity: A = 1 −
GM
rc2

[
1 +

( r
rc

)β]
, B = 1/A.

We also obtained angular velocityω in Rn gravity: ω =
dφ
dt
=

JA
r2 =

J
r2 −

JGM
r3c2 −

JGMrβ

r3c2rβc
, and orbital velocity:

dr
dt
= A

√
c2 − A

(
E +

J2

r2

)
= vorb. (7)

4.1. The case of Newtonian limit

In polar coordinates (r, φ), and with respect to the center of mass, we obtain the following EoM:

d2r
dt2 = −∇Φ(r),

d
dt

[
r2 dφ

dt

]
= 0⇒ r2 dφ

dt
= J = const. (8)

The total energy of the system can be written using the reduced mass µ [14]:

Eu =
1
2
µ

(dr
dt

)2

+ r2

(
dφ
dt

)2 − GmM
r
, µ =

mM
m +M

, m≪M⇒ µ ≈ m, (9)
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2Eu

m
=

(dr
dt

)2

+ r2

(
dφ
dt

)2 − 2GM
r
,

dr
dt
=

dr
dφ

dφ
dt
=

dr
dφ

J
r2 , φ(r) =

∫ r

r−

dr

r2

√
2Eu

mJ2 +
2GM

J2r
−

1
r2

. (10)

It can be shown [17] that the angle of orbital precession per revolution in Newtonian case is: ∆φ =
2|φ(r+) − φ(r−)| − 2π = 0.

4.2. The case β = 0 or the case of Schwarzschild metric
In order to calculate φ and ∆φ to first order in MG/r we need B(r) to the second order, whereas A(r) will

be needed only to first order [12]. After mathematical manipulations we obtain following relations:

A = 1 −
2GM
rc2 , B = 1 +

2GM
rc2 +

4G2M2

r2c2 , ∆φ (0) = 6π
G2M2

J2c2 , (11)

1
r
=

1 + e (0) cos
[
φ

[
1 −

3G2M2

J2c2

]]
L (0)

,
e (0)2

L (0)2 =
c2
− E
J2
0

+
G2M2

J4
0

, (12)

1
L (0)

=
GM
J2
0

, 2ε (0) = c2
− E, J2

0 = J2

(
1 −

4G2M2

c2 J2

)
, L (0) = L − 2rs, (13)

where rs =
2GM

c2 (rs - Schwarzschild radius).

5. The calculations of orbits and periods in Rn gravity

We consider a test particle bound in an orbit around the massive central object. Test particle reaches
its minimum and maximum values r− and r+ at periapsis and apoapsis, respectively. At both points dr/dφ
vanishes, so we obtain equations:

dr
dφ

(r±) = 0⇒
1

r±2 −
c2

J2A(r±)
= −

E
J2 . (14)

From these two equations we obtain two constants of motion:

J2

c2 =

1
A (r+)

−
1

A (r−)
1

r+2 −
1

r−2

=
r+2r−2 (A (r−) − A (r+))
A(r+)A(r−) (r−2 − r+2)

,
E
c2 =

r+2

A(r+)
−

r−2

A(r−)
r+2 − r−2 =

A (r−) r+2
− A(r+)r−2

A(r+)A(r−) (r+2 − r−2)
. (15)

After integration of expression (7) and taking into account constants of motion (15) we obtain the period
of revolution and the angle of orbital precession per revolution in Rn gravity given by the Eq. (16):

T =
2
J

∫ r+

r−

√

B3dr√
−

E
J2 +

Bc2

J2 −
1
r2

=
2
J

∫ r+

r−

dr

A

√
−

AE
J2 +

c2

J2 −
A
r2

,

φ(r+) − φ(r−) = ±
∫ r+

r−

dr

r2

√
−

AE
J2 +

c2

J2 −
A
r2

∧ ∆φ = 2|φ(r+) − φ(r−)| − 2π. (16)
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5.1. The case β = 0

Here we have: r± =
L (0)

1 ∓ e(0)
,
√

B3 = c1+
c2

r
,

1
r
=

1 + e(0) cos k
L(0)

.Let us mention here that e(β = 0) = e(0)

is given by Eqs. (12). Now, we solve integrals I1 and I2 [18]:

I1 =

∫ k

0

c2L (0)
(1 + e (0) cos k)

dk =
∫ r

r−

dr

r

√(
e (0)
L (0)

)2

−

(
1
r
−

1
L (0)

)2
=

2c2L (0)√
1 − e (0)2

arctan

 1 − e (0)√
1 − e (0)2

tan
k
2

 , (17)

I2 =

∫ k

0

c1L (0)2

(1 + e (0) cos k)2 dk =
∫ r

r−

dr√(
e (0)
L (0)

)2

−

(
1
r
−

1
L (0)

)2
= −

1

1 − e (0)2

[
c1L (0)2e (0) sin k

1 + e (0) cos k
− I1

]
, (18)

Jt =
(
1 +

rs

L

)
(I1(k) + I2(k)) , J

(T
2
− 0

)
=

(
1 +

rs

L

) (
I1(k = π) + I2(k = π) − I1(k = 0) − I2(k = 0)

)
. (19)

The period of revolution in case β = 0 is given by the following expression:

T =
2

√
GML

(
1 +

rs

L

) L(0)2 π√(
1 − e (0)2

)3
+

3rs

2
L(0)

π√
1 − e (0)2

 . (20)

6. Comparison between calculations and some astronomical observations

In this section we compare our calculations with some astronomical observations for S-stars. Tables 1,
2 and 3 present period of revolution (T) and orbital precession (∆φ) for S-stars (S2, S38 and S55), estimated
for the following three values of β: β = 0.00001, β = 0.001 and β = 0.01. Value for parameter rc is taken to be
1, 102 and 104 AU, respectively. The observed orbital elements and their uncertainties are taken from Table
3 of [19]:
S2: a = 1044.2 ± 7.5 (AU); e = 0.8839 ± 0.0019; Pobs = 16.00 ± 0.02 (yr);
S38: a = 1178.1 ± 1.7 (AU); e = 0.8201 ± 0.0007; Pobs = 19.2 ± 0.02 (yr);
S55: a = 896.9 ± 8.3 (AU); e = 0.7209 ± 0.0077, Pobs = 12.80 ± 0.11 (yr).

Recently, the GRAVITY Collaboration claimed that they detected orbital precession of the S2 star around
the Galactic Center [20] and found that it is close to the corresponding GR prediction which for S2 star is
∆φ = 0◦.201 per orbital period. Also, according to data analysis in the framework of Yukawa gravity model
in the paper [21], the orbital precessions of the S38 and S55 stars are close to the corresponding prediction
of GR for these stars, which are 0◦.119 and 0◦.106 per orbital period, respectively.

Table 1: Period of revolution (T) in (yr.) and orbital precession (∆φ) in (◦ per orbital period) for S-stars (S2, S38 and S55), estimated for
the following three values of β: β = 0.00001, β = 0.001 and β = 0.01. Value for parameter rc is taken to be 1 AU. The observed orbital
elements and their uncertainties are taken from Table 3 of [19].

Name Period of revolution (T) (in yr.) Precession (∆φ) (in ◦)
of star β = 0.00001 β = 0.001 β = 0.01 β = 0.00001 β = 0.001 β = 0.01
S2 16.04 16.01 15.77 0.189 0.078 -1.045
S38 19.43 19.40 19.10 0.107 0.004 -1.049
S55 12.91 12.89 12.69 0.096 0.00002 -0.978

From the Tables 1, 2 and 3 we can see that period of revolution and orbital precession for S-stars (S2,
S38 and S55) are in good agreement with astronomical observations for very small values of gravitational
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Table 2: The same as in Table 1, but value for parameter rc is taken to be 102 AU.
Name Period of revolution (T) (in yr.) Precession (∆φ) (in ◦)
of star β = 0.00001 β = 0.001 β = 0.01 β = 0.00001 β = 0.001 β = 0.01
S2 16.04 16.03 15.96 0.189 0.079 -1.022
S38 19.43 19.42 19.32 0.108 0.004 -1.026
S55 12.91 12.90 12.84 0.096 0.00002 -0.957

Table 3: The same as in Table 1, but value for parameter rc is taken to be 104 AU.
Name Period of revolution (T) (in yr.) Precession (∆φ) (in ◦)
of star β = 0.00001 β = 0.001 β = 0.01 β = 0.00001 β = 0.001 β = 0.01
S2 16.04 16.05 16.14 0.189 0.078 -0.999
S38 19.43 19.44 19.55 0.107 0.004 -1.002
S55 12.91 12.92 12.99 0.096 0.00002 -0.935

parameter β < 0.001. For larger value of β > 0.001 precession takes negative sign, i.e. it is opposite to the GR
precession. Gravitational parameter rc has smaller influence on period of revolution and orbital precession
for S-stars (S2, S38 and S55) and values of rc are in the range from 1 to 104 AU, which is in agreement with
our earlier findings [10, 11].

7. Conclusions

In this work we presented the modified field equations and solved geodesic equations in the case of a
power-law f (R) theories, i.e. f (R) = f0nRn. We assume spherical symmetry and we used the corresponding
static Schwarzschild-like metric in the weak field limit. Also, using geodesic equations of motion we
describe the stellar orbits around Galactic Center, which are measured by observational facilities. We
obtain for β = 0 that the GR is recovered. We show that both parameters β and rc affect the obtained orbital
periods and precessions of S-stars. However, for the studied range of parameters, the influence of β is more
noticeable.

Also, our calculations showed a good agreement with the corresponding astronomical observations of
several S-stars. We hope that using this method with geodesics, we can evaluate parameters of alternative
models for a gravitational potential at the Galactic Center with higher accuracy.
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