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Abstract. I. Mihai obtained an inequality relating intrinsic normalised scalar curvature and extrinsic
squared mean curvature and normalised normal curvature of Legendrian submanifolds Mn in Sasakian
space forms M̃2n+1(c). In this paper, for the class of generalised Wintgen ideal Legendrian submanifolds Mn

of Sasakian space form M̃2n+1(c), we study relationship between some properties concerning their Deszcz
symmetry and their Roter type.

1. Preliminaries ([2], [3], [16], [17])

Let Mn be an n-dimensional Riemannian manifold with metric tensor 1 (1 is positive definite (0, 2)-
tensor). With R we denote (0, 4)-Riemann–Christofel curvature tensor and with S the (0, 2)-Ricci tensor on
Mn. The Ricci tensor S is symmetric and all its eigenvalues are real and S determines an orthogonal set of
eigendirections on Mn, which are the intrinsic (Ricci) principal directions on Mn.

For two (0, 2) tensors t and r, we denote with ∧ Nomizu–Kulkarni product defined by

(t ∧ r)(X,Y,Z,W) = t(X,W)r(Y,Z) + t(Y,Z)r(X,W) − t(X,Z)r(Y,W) − t(Y,W)r(X,Z),

whereby X, Y, Z, W are tangent vector fields on Mn. Now, for plane π spanned by tangent vector fields X
and Y, the sectional curvature K(π) is given by

K(π) =
R(X,Y,Y,X)

1
2 (1 ∧ 1)(X,Y,Y,X)

.

Riemannian manifold with constant sectional curvature c, K = c, is called a real space form of curvature
c, denoted with Mn(c).

If Ricci tensor S is proportional to metric tensor 1 on manifold Mn (S = λq, λ is some function), we say
that Mn is an Einstein space and every 3-dimensional Einstein space has constant sectional curvature. If the
Ricci tensor S has an eigenvalue of multiplicity ≥ n − 1 on Mn, we say that Mn is quasi-Einstein.
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The Weyl conformal curvature tensor C is defined by

C = R −
(

1
n − 2

1 ∧ S +
τ

(n − 1)(n − 2)
1 ∧ 1

)
.

For manifold Mn, n = 3, it is known that C ≡ 0. If C ≡ 0 for n ≥ 4, we say that Mn is conformally flat.
A Riemannian manifold Mn (n ≥ 3) is called a Roter space when its Riemann–Christofel curvature tensor

R satisfies the equality

R = λ̃ (1 ∧ 1) + µ̃ (1 ∧ S) + ν̃ (S ∧ S), (1)

for some functions λ̃, µ̃, ν̃ : Mn
→ R, [9]. The Roter spaces, from an algebraic point of view, may be

considered as the simplest Riemannian manifolds, which are the next to the real space forms [5].
It is obvious that the real space forms Mn(c) are Roter spaces for which λ̃ = c

2 and µ̃ = ν̃ = 0. Einstein
Roter spaces are real space forms. Also, all 3-dimensional Riemannian manifolds and all conformally flat
Riemannian manifolds Mn (n ≥ 4) are Roter spaces for which

λ̃ =
τ

2(n − 1)(n − 2)
, µ̃ =

1
n − 2

, ν̃ = 0.

The Deszcz symmetric spaces, from a geometric point of view, may be considered to be the simplest
Riemannian manifolds next to the real space form [5]. The Riemannian spaces Mn (n ≥ 3) are Deszcz
symmetric if (0, 6)-tensors R ◦ R and Q(1,R) are proportional, i.e.,

R ◦ R = L Q(1,R), (2)

for some function L : Mn
→ R, [8]. (0, 6)-tensor R ◦ R is defined by

(R ◦ R)(X1,X2,X3,X4; X,Y) = (R(X,Y) ◦ R)(X1,X2,X3,X4)
= −R(R(X,Y)X1,X2,X3,X4) − R(X1,R(X,Y)X2,X3,X4)
−R(X1,X2,R(X,Y)X3,X4) − R(X1,X2,X3,R(X,Y)X4),

and Tachibana (0, 6)-tensor Q(1,R) is given by

Q(1,R)(X1,X2,X3,X4; X,Y) = ((X∧1Y)◦)R)(X1,X2,X3,X4)
= −R((X∧1Y)X1,X2,X3,X4) − R(X1, (X∧1Y)X2,X3,X4)
−R(X1,X2, (X∧1Y)X3,X4) − R(X1,X2,X3, (X∧1Y)X4),

where ∧1 is metric endomorphisam defined by

(X∧1Y)Z = 1(Y,Z)X − 1(X,Z)Y.

For Riemannian manifold Mn (n ≥ 3) we say that it is Ricci pseudo-symmetric if

(R ◦ S)(p) = Ls(p) Q(1,S)(p), ∀p ∈Mn,

where R ◦ S and Q(1,S) are (0, 4)-tensors given by

(R ◦ S)(X,Y,Z,W) = −S(R(Z,W)X,Y) − S(X,R(Z,W)Y),

Q(1,S) = −S((Z∧1W)X,Y) − S(X, (Z∧1W)Y),

for X,Y,Z,W ∈ TMn.
Similarly, Riemannian manifold Mn (n ≥ 4) has pseudo-symmetric Weyl tensor C if

C ◦ C = LC Q(1,C),

for some functions LC : Mn
→ R (on the open part of Mn where Q(1,C) , 0) for (0, 6)-tensors C ◦ C and

Q(1,C).
It is known ([6], [11], [10], [13], [14]) that:
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a) the open submanifold U of a Riemannian manifold Mn of Roter type is Deszcz symmetric and has
pseudo-symmetric Weyl conformal tensor C;

b) the open submanifold U of a Deszcz symmetric space with pseudo-symmetric Weyl tensor C is a
space of Roter type.

Let Mn be n-dimensional Riemannian submanifold in (m + n)-dimensional real space form M̃n+m(c),
and let 1, ∇ and 1̃, ∇̃ be the metric (Riemannian) and the corresponding Levi–Civita connection on Mn

and M̃n+m(c), respectively. Let X,Y,Z, . . . be the tangent vector fields on Mn and ξ, η, . . . be the normal
vector fields on M̃n+m(c). Then we have the formula of Gauss (∇̃XY = ∇XY + h(X,Y)) and Weingarten
(∇̃Xξ = −Aξ(x)+∇⊥Xξ) which decompose the vector fields ∇̃XY and ∇̃Xξ on their tangential (∇XY and Aξ(X))
and normal (h(X,Y) and ∇⊥Xξ) components along Mn in M̃n+m(c), respectively. With h and Aξ we denote the
second fundamental form and the shape operator of Mn with respect to ξ (normal vector field), such that

1(h(X,Y), ξ) = 1(Aξ(X),Y).

∇
⊥ denote the connection in the normal bundle.

Let {E1,E2, . . . ,En, ξ1, . . . , ξm} be any local orthonormal frame field on Mn in M̃n+m(c). Then the mean
curvature vector field of Mn in M̃n+m(c) is defined by

H⃗ =
1
n

tr h =
1
n

n∑
i=1

h(Ei,Ei) =
1
n

m∑
α=1

(tr Aα) ξα.

For submanifold Mn in M̃n+m(c) we say that it is:

(i) totally geodesic when h = 0,
(ii) totally umbilical when h = 1H⃗,

(iii) minimal when H⃗ = 0,
(iv) pseudo-umbilical when AH⃗ = λId (where Id denote identity operator on TM andλ is some real function

on Mn).

The normalised scalar curvature od Mn is given by

ρ =
2

n(n − 1)

n∑
i< j

R(Ei,E j,E j,Ei),

where

R(X,Y,Z,W) = 1̃(h(Y,Z), h(X,W)) − 1̃(h(X,Z), h(Y,W)) + c(1(Y,Z) 1(X,W) − 1(X,Z) 1(Y,W))

is Riemann–Christofel curvature tensor of Mn in M̃n+m(c).
The normalised normal scalar curvature function of Mn at a point p is given by

ρ⊥(p) =
2

n(n − 1)

√√√ n∑
i< j

m∑
α<β

R⊥(Ei,E j, ξα, ξβ)2,

where R⊥ is the curvature tensor of normal space and {ξ1, . . . , ξm} is an orthonormal frame field of that
space, R⊥(X,Y; ξ, η) = 1([Aξ,Aη]X,Y), whereby [Aξ,Aη] = Aξ Aη − Aη Aξ.

We further will be concerned with Wintgen ideal submanifolds. The original inequality is obtained for
surfaces M2 in E4 by Wintgen in 1979. He proved that, intrinsic invariant of M2, Gauss curvature K and
extrinsic invariants, the squared of mean curvature H2 and normal curvature K⊥, satisfy the inequality
K ≤ H2

− K⊥, and also characterised equality case [21]. After that, Rouxel [19], Rodriguez–Guadalupe [15],
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De Smet, Dillen, Verstraelen and Vrancken [7] gave some generalizations of this results. And, finally, Choi
and Lu [4] and Ge–Tang [12] proved that for submanifolds Mn in a real space form M̃n+m(c) holds inequality

ρ ≤ H2
− ρ⊥ + c. (3)

They also proved that equality in inequality (3) holds if the shape operators of the submanifold take the
special forms for suitable adapted orthonormal frame {E1, . . . ,En, ξ1, . . . , ξm} on Mn in M̃n+m(c).

The submanifolds Mn in M̃n+m(c) for which hold equality in inequality (3) are called Wintgen ideal
submanifolds. In [5] the authors studied Wintgen ideal submanifolds Mn (n ≥ 4) in real space forms
M̃n+m(c) which are Roter spaces and proved that such submanifold is Deszcz symmetric if and only if it is
Roter space.

2. Generalised Wintgen inequality for Legendrian submanifolds

A (2m + 1)-dimensional Riemannian manifold (M̃2m+1(c), 1) is Sasakian manifold if the triple (ϕ, ξ, η) (ϕ
is an endomorphism of tangent bundle of TM̃2m+1(c); η is 1-form and ξ is vector field called characteristic
vector field) satisfy:

ϕ2 = −Id + η ⊗ ξ, η(ξ) = −1, ϕ ξ = 0, η ◦ ϕ = 0,

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y), η(X) = 1(X, ξ),

(∇̃X ϕ)Y = −1(X,Y) ξ + η(Y)X, ∇̃Xξ = ϕX,

where X and Y are vector fields on M̃2m+1(c) and ∇̃ denotes the Riemannian connection with respect to 1.
If a plane π is spanned by X and ϕX, then a plane section π in Tp M̃2m+1 is called a ϕ-section, where X is
a unit tangent vector which is orthogonal to ξ. The sectional curvature of a ϕ-section is called ϕ-sectional
curvature and a Sasakian manifold with constant ϕ-sectional curvature c is called a Sasakian space form
M̃2m+1(c). On a Sasakian space form M̃2m+1(c) the curvature tensor R̃ is given by, [1]

R̃(X,Y)Z =
c + 3

4

{
1(Y,Z)X − 1(X,Z)Y

}
+

c − 1
4

{
η(X)η(Z)Y − η(Y)η(Z)X +

+1(X,Z)η(Y)ξ − 1(Y,Z)η(X)ξ + 1(ϕY,Z)ϕX − 1(ϕX,Z)ϕY − 21(ϕX,Y)ϕZ
}
,

for the tangent vector fields X,Y,Z on M̃2m+1(c).
Let Mn be an n-dimensional submanifold of a Sasakian space form M̃2m+1(c). Then the Gauss equation

is given by
R̃(X,Y,Z,W) = R(X,Y,Z,W) + 1(h(X,W), h(Y,Z)) − 1(h(X,Z), h(Y,W)),

whereby R and h are the Riemann curvature tensor and second fundamental form, respectively, of Mn, and
X,Y,Z,W are vectors tangent to Mn. For every p ∈Mn, the mean curvature is given by

H(p) =
1
n

n∑
i=1

h(Ei,Ei),

where {E1,E2, . . . ,En, . . . ,E2m+1} is an orthonormal basis of Tp M̃2m+1.
C-totally real submanifold is a submanifold Mn normal to ξ in a Sasakian manifold, i.e. ϕ(Tp Mn) ⊂

T⊥p Mn, for every p ∈Mn. If m ≡ n, then Mn is called Legendrian submanifold.

Let Mn be an n-dimensional Legendrian submanifold of a Sasakian space form M̃2n+1(c) and {E1, . . . ,En}

an orthonormal frame on Mn and {En+1, . . . ,E2n,E2n+1 = ξ} an orthonormal frame in the normal bundle
T⊥ Mn. The Gauss equation is given by

R(X,Y,Z,W) =
c + 3

4

{
1(X,Z)1(Y,W) − 1(Y,Z)1(X,W)

}
+

+1(h(X,Z), h(Y,W)) − 1(h(X,W), h(Y,Z)).
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I. Mihai in [18] established a generalised Wintgen inequality for Legendrian submanifolds in Sasakian
space forms.

Theorem 2.1 ([18]). Let Mn be an n-dimensional Legendrian submanifold of a Sasakian space form M̃2n+1(c). Then

(ρ⊥)2
≤

(
||H||2 − ρ +

c + 3
4

)2

+
4

n(n − 1)

(
ρ −

c + 3
4

) c − 1
4
+

(c − 1)2

8n(n − 1)
, (4)

and equality holds if and only if with respect to suitable orthonormal frames {E1, . . . ,En} and {En+1, . . . ,E2n,E2n+1 = ξ},
the shape operators of Mn in M̃2n+1(c) are given by:

AEn+1 =


λ1 µ 0 · · · 0
µ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...
. . .

...
0 0 0 · · · λ1


, AEn+2 =


λ2 + µ 0 0 · · · 0

0 λ2 − µ 0 · · · 0
0 0 λ2 · · · 0
...

...
...
. . .

...
0 0 0 · · · λ2


,

AEn+3 =


λ3 0 0 · · · 0
0 λ3 0 · · · 0
...

...
...
. . .

...
0 0 0 · · · λ3

 , AEn+4 = · · · = AE2n = AE2n+1 = 0,

whereby λ1, λ2, λ3 and µ are real functions on Mn.

Legendrian submanifolds Mn in a Sasakian space forms M̃2n+1(c) satisfying equality in generalised Wint-
gen inequality (4) are called generalized Wintgen ideal Legendrian submanifolds. A frame {E1,E2, . . . ,En,En+1, . . . ,E2n+1}

from Theorem 2.1 is called Choi–Lu frame on such Mn in M̃2n+1(c).

3. Main result

From Theorem 2.1, using Gauss equation, we obtain, [20], that all components of (0, 4) curvature tensor
R of generalised Wintgen ideal Legendrian submanifold Mn of a Sasakian space form M̃2n+1(c) are zero,
except these:

R1221 = 2µ2
− c1, R1kk1 = −λ2µ − c1, k ≥ 3, R2kk2 = λ2µ − c1, k ≥ 3,

R1kk2 = −λ1µ, k ≥ 3, Rkllk = −c1, k , l, k, l ≥ 3,

whereby c1 =
c+3

4 + λ
2
1 + λ

2
2 + λ

2
3.

The nontrivial components of (0, 2)-Ricci tensor S of such submanifold are, [20]:

S11 = 2µ2
− (n − 1)c1 − (n − 2)λ2µ,

S22 = 2µ2
− (n − 1)c1 + (n − 2)λ2µ,

S12 = −(n − 2)λ1µ,

Skk = −(n − 1)c1, k ≥ 3.

The equation (1) in local components looks like:

Ri jkl = λ̃(1il1 jk − 1ik1 jl) + µ̃(1ilS jk + 1 jkSil − 1ikS jl − 1 jlSik) + ν̃(SilS jk − SikS jl). (5)
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The condition (5) for Mn to be a Roter space is equivalent to the following system of linear equations:

2µ2
− c1 = λ̃ − 2(n − 1)c1µ̃ + ((2µ2

− (n − 1)c1)2
− (n − 2)2µ2(λ2

1 + λ
2
2))̃ν,

−λ2µ − c1 = λ̃ + (2µ2
− 2(n − 1)c1 − (n − 2)λ2µ)µ̃+

+(n − 1)c1(−2µ2 + (n − 1)c1 + (n − 2)λ2µ)̃ν,
λ1µ = −(n − 2)λ1µµ̃ + (n − 1)(n − 2)λ1µc1ν̃,

λ2µ − c1 = λ̃ + (2µ2
− 2(n − 1)c1 + (n − 2)λ2µ)µ̃+

+(n − 1)c1(−2µ2 + (n − 1)c1 − (n − 2)λ2µ)̃ν,

−c1 = λ̃ − (n − 1)c1µ̃ + (n − 1)2c2
1ν̃.


(6)

For the Deszcz symmetric generalised Wintgen ideal Legendrian submanifold Mn in a Sasakian space
form M̃2n+1(c) the system (6) of linear equations is valid if and only if

(i) µ = 0 or
(ii) µ , 0 and λ1 = λ2 = 0.

In case (i), we have that Mn is itself a space form and hence a Roter space. In case (ii) from system (6), we
obtain

λ̃ =
(c + 3

4
+ λ2

3

) (
2µ2
− (n − 1)2

(c + 3
4
+ λ2

3

))
, µ̃ =

(n − 1)
(

c+3
4 + λ

2
3

)
2µ2 , ν̃ = −

1
4µ2 ,

as its unique solution. We thus obtained the following result:

Theorem 3.1. Let Mn be a generalised Wintgen ideal Legendrian submanifold of a Sasakian space form M̃2n+1(c),
n ≥ 4. Then Mn is Deszcz symmetric if and only if it is a Roter space.
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