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Surfaces defined by bending of knots
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Abstract. We consider the definition of the infinitesimal bending of a curve as a vector parametric equation
of a surface defined by two free variables: one of them is free variable u which define curve and another is
bending parameter ϵ. In this way, while being bent curve is deformed and moved through the space forming
a surface. If infinitesimal bending field is of constant intensity, deformed curves form a ruled surface that
represents a ribbon. In particular, we consider surfaces obtain by bending of knots both analytically and
graphically. We pay attention to the torus knot and possibility of its infinitesimal bending so that the surface
determined by bending is a part of the initial torus.

1. Introduction

Let us consider continuous regular curve C : r = r(u), u ∈ J ⊆ R included in a family of the curves

Cϵ : r̃(u, ϵ) = rϵ(u) = r(u) + ϵz(u), u ∈ J, ϵ ≥ 0, ϵ→ 0, (1)

where u is a real parameter and we get C for ϵ = 0 (C = C0). Family of curves Cϵ is called infinitesimal
bending of a curve C if the difference of the squares of the line elements of the initial and deformed curves
is an infinitesimal of a higher order than ϵ, i.e. if the following condition is valid

ds2
ϵ − ds2 = o(ϵ). (2)

The field z = z(u) , z ∈ C1 is corresponding infinitesimal bending field.
Infinitesimal bending problems are interesting not only from the aspect of differential geometry, but

also in many other disciplines where they can be applied. Many papers are dedicated to the theory of
infinitesimal bending. Some of them are [1]-[3], [5], [6], [8]-[16], [18]-[20].

According to [5], necessary and sufficient condition for z(u) to be an infinitesimal bending field of a
curve C is to be

dr · dz = 0, (3)
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where · stands for the scalar product in R3. An explicit expression for the infinitesimal bending field is

z(u) =
∫

[p(u)n1(u) + q(u)n2(u)] du, (4)

where p(u) and q(u), are arbitrary integrable functions and vectors n1(u) and n2(u) are respectively unit
principal normal and binormal vector fields of the curve C [19].

Under infinitesimal bending of curves each line element gets non-negative addition, which is the
infinitesimal value of the order higher than the first with respect to ϵ [18], i. e.

dsϵ − ds = o(ε) ≥ 0. (5)

A closed ribbon is a smooth mapping (or the image set) of an annulus S1
× [0, 1] into three-dimensional

Euclidean space R3, where the sets u × [0, 1] are mapped to line segments all of the same length [4]. If a
knot K (i.e. a simple closed curve) is given by a regular parametrization r = r(u), with a smooth unit vector
field e = e(u) based along K, we may define a ribbon of width R associated to the knot K and the field e as
the set of all points

r(u) + ve(u), v ∈ [0,R]. (6)

For large R, ribbons and their outer edge curves may have self-intersections. On the other hand, a thin
ribbon does not self-intersect and the ribbon itself gives an isotopy of the two boundary curves. Thin
ribbons are very important in the study of DNA [17].

It is interesting to notice: during infinitesimal bending of a knot, under the conditions ∥z∥ = 1 and
ϵ ∈ [0,R], the deformed curves form a ruled surface that represents a ribbon of width R.

2. Surfaces defined by bending of curves

Let us observe the infinitesimal bending of a regular curve

Cϵ : r̃(u, ϵ) = rϵ(u) = r(u) + ϵz(u), (7)

where z(u) is an infinitesimal bending field.
We can consider the definition of the infinitesimal bending of a curve as a vector parametric equation

of a surface defined by two free variables: one of them is free variable which define curve u and another is
bending parameter ϵ.

There is a connection between infinitesimal bending of curves and ruled surfaces. Namely, let us
consider ruled surface

S : ρ(u, v) = r(u) + ve(u), u ∈ J ⊆ R, v ∈ R, ∥e(u)∥ = 1,

with directrix C : r = r(u) and generatrices in the direction of e(u). If the directrix C is also the striction line
of ruled surface S (see [7]), then the condition

ṙ(u) · ė(u) = 0

is valid, where ”dot” denotes the derivative by u. Therefore, e(u) is infinitesimal bending field and the
family of bent curves (infinitesimal bending)

Cϵ : r̃(u, ϵ) = rϵ(u) = r(u) + ϵe(u)

belongs to the ruled surface S. Note that each curve of the family Cϵ is ”parallel” with C, i.e. the segment
of each generatrix between C and Cϵ is of the same length:

∥r̃(u1, ϵ) − r(u1)∥ = ∥ϵe(u1)∥ = ϵ = ∥ϵe(u2)∥ = ∥r̃(u2, ϵ) − r(u2)∥,
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since ∥e(u1)∥ = ∥e(u2)∥ = 1. For ϵ ∈ [0,R], corresponding knot infinitesimal bending determine a ribbon of
width R.

For characterization of a ruled surface obtained by bending with some examples we refer to [6]. In-
finitesimal bending of curves on the ruled surfaces is discussed in [11, 13].

While being bent, curve is deformed and moved through the space. In next examples we will present
some of such surfaces. We use expresion (4) for infinitesimal bending field. Bending field is defined by
integral whose sub integral function includes arbitrary functions: p and q. Knot visualization and obtaining
3D model is done by using OpenGL.

The first example is a surface obtained by bending of the trefoil knot given by r(u) = (sin(u) +
2 sin(2u), cos(y) − 2 cos(2u),− sin(3u)), see Fig. 1. Bending field is defined by Eq. (4) for p(u) = cos(3u)
and q(u) = sin(6u).

Figure 1: Surface on trefoil knot: basic and infinitesimally bent with ϵ = 2.0.

The second example is a surface obtained by bending of p3q2 torus knot, given by scalar parametric
equations: x = (cos(2u) + 2) · cos(3u), y = (cos(2u) + 2) · sin(3u), z = − sin(2u).

Bending field is defined by p(u) = cos(2u) and q(u) = sin(2u). For the bent curves see Fig. 2, obtained
surface is on Fig. 3.

3. Infinitesimal bending on the torus

We posed the question whether it is possible to infinitesimally bend the torus knot so that the surface
determined by bending is a part of the initial torus. Regarding that the following theorem holds.

Theorem 3.1. [10] Let C : r : (t1, t2) → R3 be a regular continuous curve on the torus S. There is no non-trivial
vector field z(t) that includes the given curve under infinitesimal bending into the family of curves Cϵ : rϵ = r(t)+ϵz(t),
ϵ ≥ 0, ϵ→ 0, on the torus S.
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Figure 2: p3q2 knot: basic and infinitesimally bent with ϵ = 0.6, 1.2, 1.8.

The next step is to weaken the condition from the previous theorem. Namely, let

C :
x(u) = (cos(qu) + a) · cos(pu)
y(u) = (cos(qu) + a) · sin(pu)
z(u) = − sin(qu)

(8)

be (p, q) torus knot, 0 ≤ u ≤ 2π, which lies on the torus

S : (a −
√

x2 + y2)2 + z2 = 12.

Let

Cϵ :
xϵ(u) = (cos(qu) + a) · cos(pu) + ϵz1(u)
yϵ(u) = (cos(qu) + a) · sin(pu) + ϵz2(u)
zϵ(u) = − sin(qu) + ϵz3(u)

(9)

be infinitesimal bending of C, where z(u) = (z1(u), z2(u), z3(u)) is infinitesimal bending field. If we put

F(x, y, z) = (a −
√

x2 + y2)2 + z2
− 12,

then the torus knot satisfies the implicit equation of the torus S, F(x(u), y(u), z(u)) = 0. We request that the
infinitesimal bending is approximately (with a given precision) on the torus S, i.e. we set the condition

F(xϵ(u), yϵ(u), zϵ(u)) = o(ϵ), (10)

where o(ϵ) is an infinitesimal of higher order with respect to ϵ. That means it must be valid

(a−
√

((cos(qu) + a) · cos(pu) + ϵz1(u))2 + ((cos(qu) + a) · sin(pu) + ϵz2(u))2)2 + (− sin(qu)+ ϵz3(u))2
− 1 = 0,

wherefrom, after some calculations and using Maclaurin series, one obtains

cos(pu) cos(qu)z1(u) + sin(pu) cos(qu)z2(u) − sin(qu)z3(u) = 0. (11)

Thus we proved the following theorem.
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Figure 3: Surface on p3q2 knot: basic and infinitesimally bent with ϵ = 0.6, 1.2, 1.8.

Theorem 3.2. The necessary and sufficient condition for the field z(u) = (z1(u), z2(u), z3(u)) to include (p, q) torus
knot (8) into the family of deformed curves on the torus with a given precision is that Eq. (11) is satisfied.

From Eq. (11) we obtain

z3(u) = [cos(pu)z1(u) + sin(pu)z2(u)] cot(qu). (12)

Therefore, we are looking for the field

z(u) = (z1(u), z2(u), [cos(pu)z1(u) + sin(pu)z2(u)] cot(qu))

which satisfies the necessary and sufficient condition of infinitesimal bending, i.e.

ṙ(u) · ż(u) = 0.

Since

ṙ(u) = (−q sin(qu) cos(pu) − p(cos(qu) + a) sin(pu),−q sin(qu) sin(pu) + p(cos(qu) + a) cos(pu),−q cos(qu))

ż(u) = (ż1(u), ż2(u), (−p sin(pu)z1(u) + cos(pu)ż1(u) + p cos(pu)z2(u) + sin(pu)ż2(u)) cot(qu)

+ (cos(pu)z1(u) − q sin(pu)z2(u))
1

sin2(qu)
)

using one of the functions z1(u) and z2(u) arbitrarily, for instance, z1(u), we get the other by solving the
following linear differential equation:

A(u)ż2(u) + B(u)z2(u) + C(u) = 0, (13)

where

A(u) = −q sin(qu) sin(pu) + p(cos(qu) + a) cos(pu) − q cos(qu) cot(qu) sin(pu), (14)

B(u) = −pq cos(pu) cos(qu) cot(qu) + q2 cos(qu)

sin2(qu)
sin pu, (15)

C(u) = [−q sin(qu) cos(pu) − p(cos(qu) + a) sin(pu)]ż1(u)

− q cos(qu)[−p sin(pu)z1(u) + cos(pu)ż1(u)] cot(qu) + q2 cos(qu)

sin2(qu)
cos(pu)z1(u).

(16)

Therefore, the following theorem holds.
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Theorem 3.3. Vector field

z(u) = (z1(u), z2(u), [cos(pu)z1(u) + sin(pu)z2(u)] cot(qu)), (17)

where z1(u) is arbitrary real continuous differentiable function and z2(u) is given by

z2(u) = e−
∫ B(u)

A(u) du
[
c −
∫

C(u)
A(u)

e
∫ B(u)

A(u) du du
]
, (18)

c is a constant, A(u), B(u) and C(u) are given in Eqs. (14), (15) and (16), respectively, is infinitesimal bending field
of (p, q) torus knot under which all bent curves are on the initial torus with a given precision.

Example 3.4. In particular, let z3(u) = 0. Then the condition (11) reduces to cos(pu)z1(u) + sin(pu)z2(u) = 0,
wherefrom we have z1(u) = − tan(pu)z2(u) and

z(u) = (− tan(pu)z2(u), z2(u), 0). (19)

From the condition ṙ(u) · ż(u) = 0, we obtain homogenous linear differential equation

ż2(u) +
( q sin(qu)
cos(qu) + a

+
p sin(pu)
cos(pu)

)
z2(u) = 0

whose solution is

z2(u) = c(cos(qu) + a) cos(pu), (20)

c is a constant. Finally

z(u) = (−c tan(pu)(cos(qu) + a) cos(pu), c(cos(qu) + a) cos(pu), 0). (21)

It is easy to check that this vector field satisfies the following conditions: ṙ · ż = 0 and F(xϵ(u), yϵ(u), zϵ(u)) = o(ϵ).
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