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Abstract. In this article we prove some properties of the isometry groups of manifold S3
× S3, both with

respect to the standard Euclidean product metric ⟨·, ·⟩ and nearly Kähler metric 1. We also investigate the
action of these isometries on certain classes of hypersufaces of S3

× S3.

1. Introduction

A nearly Kähler manifold is one of the 16 different almost Hermitian manifolds whose covariant deriva-
tive of its almost complex structure J is skew symmetric, namely G = ∇J satisfies G(X,Y) = −G(Y,X), or
equivalently, G(X,X) = (∇X J)X = 0. Since the Kähler manifolds are defined by the condition G ≡ 0, a
non-Kähler nearly Kähler manifold (i.e. G does not vanish identically) is called strict. The interest in
nearly Kähler manifolds has increased since these manifolds are examples of geometries with torsion, and
therefore they have applications in mathematical physics. The lowest dimension in which a strict nearly
Kähler manifold can exist is six. Moreover, the case of 6−dimensional strict nearly Kähler manifolds is of
particular importance since they are building blocks of arbitrary nearly Kähler manifolds and their research
leads to better understanding of the whole class of manifolds. It is known that the only homogeneous,
complete, strict nearly Kähler manifolds in dimension 6 are compact spaces: unit sphere S6, product of unit
spheres S3

× S3, complex projective space CP3 and the flag manifold F1,2(C3), where the last three are not
endowed with the standard metric.

In several classification theorems for submanifolds of S3
× S3, see for example [7], the authors have

obtained three isometric examples. Therefore, it is of interest to investigate isometries of the homogeneous
nearly Kähler manifold S3

×S3, initiated in [8], [9]. Moreover, the classical symmetry approach in differential
geometry has been based on the isometry group of a manifold. In fact, beginning from 1870, it became
clear that the principle organizing geometry ought to be the study of its symmetry groups. In his inaugural
lecture at the University of Erlangen in 1872, which later became known as the “Erlanger Programm”, Felix
Klein said: Let a manifold and on it a transformation group be given; the objects belonging to the manifold ought to
be studied with respect to those properties which are not changed by the transformations of the group.

In this article we investigate the action of the isometry groups of manifold S3
× S3, both with respect to

the standard Euclidean product metric ⟨·, ·⟩ and nearly Kähler metric 1 and we prove some properties of
these isometries on certain classes of hypersufaces of S3

× S3.
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M. B. Djorić, M. Djorić / Filomat 37:25 (2023), 8651–8660 8652

2. Preliminaries

Let us shortly present the nearly Kähler structure on S3
× S3 (see [1] for more details). Considering S3

in R4 as the set of all unit quaternions inH, we conclude that the sphere S3 has a Lie group structure with
respect to the standard quaternionic multiplication and it is isomorphic to the group SU(2) or Sp(1), with
left and right translations being ordinary quaternionic multiplication from left and right. Its Lie algebra
T1(S3) is isomorphic to su(2) � Im(H), so the tangent space Tp(S3) is identified with p Im(H), meaning that a
tangent vector in TpS3 can be expressed as pα, where α is an arbitrary imaginary quaternion. The fixed basis
[i, j,k] of T1(S3) (i, j,k denote the imaginary units ofH) is sent via left translation to the basis [pi, pj, pk] of
Tp(S3), defining one global moving orthonormal frame on S3.

For an arbitrary Lie group G and its closed subgroup H, which is of course a Lie subgroup, quotient
space G/H has the Lie group structure because there is a naturally defined right action of a group H
on G. Furthermore, quotient mapping π : G → G/H is a smooth submersion, and ordered quadruple
(G,G/H,H, π) is a smooth bundle, with a total space G, base space G/H and fibers H. This action also
preserves the fibers, acting on it freely and transitively, so (G,G/H,H, π,H) has a principal bundle structure.

In this way, by taking G = S3
×S3
×S3, H = S3, we obtain that S3

×S3 is both a Lie group and a homogeneous
manifold. Namely, if we consider the product of three unit spheres S3

× S3
× S3, with the usual structure

induced fromH3, then for tangent vector fields V = (11V1, 12V2, 13V3), W = (11W1, 12W2, 13W3) at the point
(11, 12, 13), where V1,V2,V3,W1,W2,W3 are imaginary quaternions, we have the following induced metric
(the set of imaginary quaternions is identified with R3)

⟨(11V1, 12V2, 13V3), (11W1, 12W2, 13W3)⟩ =
3∑

i=1

Re(1iViWi1̄i) =
3∑

i=1

⟨Vi,Wi⟩. (1)

Furthermore, an ordered triple of unit quaternions (11, 12, 13) acts on S3
× S3 in the following way:

((11, 12, 13), (p, q)) 7→ (11p1−1
3 , 12q1−1

3 ) = (11p1̄3, 12q1̄3).

This action of S3
× S3

× S3 on S3
× S3 is transitive and the stabilizer of a unit element (1, 1) is a group of

all ordered triples (h, h, h), where h is a unit quaternion. If we denote this isotropy subgroup with SU(2)△,
using the orbit-stabilizer theorem we obtain that S3

× S3 is a smooth homogeneous manifold and Lie group,
diffeomorphic to (SU(2) × SU(2) × SU(2))/SU(2)△. The quotient mapping π : S3

× S3
× S3

→ S3
× S3 is then

given with
π : (11, 12, 13) 7→ (p, q) = (111̄3, 121̄3).

Hence, it is clear that π(11, 12, 13) = π(1′1, 1
′

2, 1
′

3) if and only if (1′1, 1
′

2, 1
′

3) = (11a, 12a, 13a), for some unit
quaternion a ∈ S3, meaning that the fibres are precisely the spheres S3. The mapping π is a smooth
submersion from S3

× S3
× S3 = SU(2) × SU(2) × SU(2) onto

S3
× S3 = (SU(2) × SU(2) × SU(2))/SU(2)△,

since it is easily shown that it holds

dπ(11,12,13)(11α, 12β, 13γ) = (111̄3(13(α − γ)1̄3), 121̄3(13(β − γ)1̄3)) = (11(α − γ)1̄3, 12(β − γ)1̄3).

This also implies the definition of vertical and horizontal distribution given in [8], as a kernel of dπ and
its orthogonal complement, respectively. Therefore, π is also a Riemannian submersion, since π preserves
the fibres and respects the horizontal and vertical distributions. The metric ⟨·, ·⟩ on horizontal distribution
defines via π a metric 1s on S3

× S3, which is shown to be a nearly Kähler metric.
It is enough to define a nearly Kähler structure on S3

× S3 first at (1, 1), and then to transfer it via left
translations over the whole S3

× S3. By the natural identification T(p,q)(S3
× S3) � TpS3

⊕ TqS3, we will write
a tangent vector at (p, q) as X(p,q) = (pU(p,q), qV(p,q)) for imaginary quaternions U,V, or simply X = (pU, qV),
when there is no risk of confusion. The almost complex structure J on S3

× S3 is defined by
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J(pU, qV) =
1
√

3
(p(2V −U), q(−2U + V)), (pU, qV) ∈ T(p,q)(S3

× S3). (2)

The standard product metric ⟨·, ·⟩ on S3
× S3 is not compatible with the almost complex structure J.

Corresponding nearly Kähler metric 1 is defined, up to a scalar multiplication, as the mean of ⟨·, ·⟩ and
⟨J·, J·⟩

1(Z,Z′) =
1
2

(⟨Z,Z′⟩ + ⟨JZ, JZ′⟩) =
4
3

(⟨U,U′⟩ + ⟨V,V′⟩) −
2
3

(⟨U,V′⟩ + ⟨U′,V⟩), (3)

where Z = (pU, qV) and Z′ = (pU′, qV′), and ⟨·, ·⟩ stands for both the usual Euclidean product metric on
S3
×S3 and the usual Euclidean metric on S3. It is a direct check that this metric is the same as the previously

defined metric 1s, up to a scalar multiplication 1 = 21s.
Using definitions (2) and (3), the almost complex structure J is compatible with the metric 1. It is now

straightforward to check that the (1, 2)-tensor G = ∇J, where ∇ is the Levi-Civita connection of 1 on S3
× S3,

is skew-symmetric. Consequently, S3
× S3 equipped with 1 and J, is a nearly Kähler manifold.

Every linear mapping of the tangent bundle of S3
× S3

× S3 which preserves the metric, horizontal and
vertical distributions and fibers of submersion π, induces linear mapping of the tangent bundle of S3

× S3.
In this way we can define not only the almost complex structure, but also the existence of an almost product
structure P, which is a property that is characteristic specifically for S3

× S3 and not for the whole class of
nearly Kähler manifolds, with

PZ = (pV, qU), Z = (pU, qV) ∈ T(p,q)(S3
× S3). (4)

This definition is, similar to the definition of the almost complex structure, compatible with the Lie group
structure of S3

×S3. It is straightforward to show directly that the symmetric endomorphism P is compatible
with the metric 1 and that it anticommutes with J (see [1] for more details).

This almost product structure P is not integrable, so it is not a product structure. Transformations P̃i,
i = 1, 2, 3, of S3

× S3
× S3, given with

P̃1(11V1, 12V2, 13V3) = (11V2, 12V1, 13V3),

P̃2(11V1, 12V2, 13V3) = (11V3, 12V2, 13V1),

P̃3(11V1, 12V2, 13V3) = (11V1, 12V3, 13V2),

actually define three different almost product structures on S3
×S3, we will denote this set byP = {P1,P2,P3}.

The almost product structures P1 = P, P2 = −
1
2 P −

√
3

2 JP, P3 = −
1
2 P +

√
3

2 JP are also not integrable. Almost
product structures on S3

× S3 have been extensively studied in [8], where the authors classified the called
nearly productlike structures on S3

× S3. They showed that the only possible nearly productlike structures
on S3

× S3 are precisely the following ones

Pl+1 = cos
(

2πl
3

)
P − sin

(
2πl
3

)
JP, l = 0, 1, 2. (5)

3. Isometry group of S3 × S3

It is clear that each isometry of S3
× S3

× S3 with respect to ⟨·, ·⟩, defined by (1), which preserves the
horizontal and vertical distribution and the fibres of submersion π, induces the isometry of S3

× S3. The
isometry group of S3 can be identified with the group O(4) of all orthogonal 4 × 4 matrices. Nevertheless,
the isometry group of the product manifold S3

× S3
× S3 is larger than the product of isometry groups

O(4)×O(4)×O(4) since there is also an action of symmetry group S3 on S3
× S3
× S3 obtained by permuting
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the 3 components, so the isometry group of S3
×S3
×S3 has (O(4)×O(4)×O(4))⋊S3 as a subgroup. The authors

are not familiar with the proof whether this isometry group is actually equal to (O(4) ×O(4) ×O(4)) ⋊ S3.
Recall the structure of Lie group SO(4), the special orthogonal group of order 4 of all the rotations in

E4 which fix the origin. For each such rotation R ∈ SO(4), there is at least one pair of orthogonal 2-planes
each of which is invariant under R and whose direct sum is the entire space (they have only one point in
common, the origin). Hence, R operating on either of these planes produces an ordinary rotation of that
plane, with the angles of these rotations determined up to a sign since there are two possible choices of
orientations in these planes that are (jointly) consistent with the orientation of the whole space. If exactly
one of the rotations is an identity transformation, then such rotation R is called a simple rotation, else it
is called a double rotation. In the case of a double rotation, the angles of two rotations in the orthogonal
planes can be either equal, up to a sign, or distinct. If the rotation angles of a double rotation are equal,
then there are infinitely many invariant planes instead of just two, while in the case od distinct angles,
these planes are unique. Such rotations with equal angles (up to a sign) are called isoclinic or equiangular
rotations. Furthermore, isoclinic rotations with the same angles are denoted as left-isoclinic; those with
opposite angles are right-isoclinic. The left and right isoclinic rotations are represented respectively by left
and right multiplication by unit quaternions. Therefore, all left-isoclinic rotations form a noncommutative
subgroup isomorphic to the multiplicative group of unit quaternions S3

L, which is a subgroup of SO(4). The
same holds for the group S3

R of right isoclinic rotations and both these subgroups are maximal subgroups
of SO(4). Their intersection consists of the identity transformation I and the so-called central inversion
−I, with {I,−I} being the center of SO(4) and both S3

L, S3
R. Each left-isoclinic rotation commutes with each

right-isoclinic rotation and the conjugation with a reflection transforms a left-isoclinic rotation into a right-
isoclinic rotation and vice versa. Hence, distinct subgroups S3

L, S3
R are conjugate to each other in O(4), but

not in SO(4). This is a special property of SO(4) among rotation groups in general: all even-dimensional
rotation groups SO(2n), n ⩾ 2, contain isoclinic rotations, but unlike SO(4), in all higher even-dimensional
rotation groups any two isoclinic rotations through the same angle are conjugate. The set of all isoclinic
rotations is even not a subgroup of SO(2n), n ⩾ 3, let alone a normal subgroup. Each rotation R ∈ SO(4)
can be transformed in two ways into the product of left and right isoclinic rotations, which are together
determined up to the central inversion, i.e. when both are multiplied by the central inversion, their product
is R again. This implies that S3

L × S
3
R is the universal covering group of SO(4) and it is its unique double

cover. Also, S3
L, S3

R are the normal subgroups of SO(4) and it holds

S3
L/{I,−I} � SO(3), S3

R/{I,−I} � SO(3), (S3
L × S

3
R)/{I,−I} � SO(4).

With respect to any orthonormal basis, every element R of SO(4) is represented by a 4 × 4 orthogonal
matrix A with a determinant equal to +1, so that X′ = AX, where X,X′ represent the columns of coordinates
of the point P(x1, x2, x3, x4) and its image P′(x′1, x

′

2, x
′

3, x
′

4) under R. The isoclinic decomposition of the rotation
matrix A is given with:

A = ALAR =


a −b −c −d
b a −d c
c d a −b
d −c b a




p −q −r −s
q p s −r
r −s p q
s r −q p

 .
The first factor in this decomposition is a left-isoclinic rotation X 7→ ALX, while the second factor is a

right-isoclinic rotation X 7→ ARX and the factors are determined up to the negative 4 × 4 identity matrix,
i.e. the central inversion. Namely, there are exactly two sets of a, b, c, d and p, q, r, s, opposite to each other,
such that decomposition holds and a2 + b2 + c2 + d2 = 1, p2 + q2 + r2 + s2 = 1. In the quaternionic language,
this means that

x′1 + x′2i + x′3j + x′4k = (a + bi + cj + dk)(x1 + x2i + x3j + x4k)(p + qi + rj + sk).

From the formula (1), it is clear that every isometry of S3
× S3

× S3 that belongs to the subgroup
O(4) × O(4) × O(4) consists of three isometries of S3 on each of the components. Consequently, among all
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the isometries of S3
× S3

× S3, the most natural ones to investigate are the direct isometries that consist of
the direct isometries of S3 on each component.

According to the isoclinic decomposition, we can express such isometry as F̃a′a′′b′b′′c′c′′ : S3
× S3

× S3
→

S3
× S3

× S3, coming from the left and right quaternionic multiplication on each component

F̃a′a′′b′b′′c′c′′ (11, 12, 13) = (a′11a′′, b′12b′′, c′13c′′), a′, a′′, b′, b′′, c′, c′′ ∈ S3.

Since for arbitrary unit quaternion d we have

π(F̃a′a′′b′b′′c′c′′ (11d, 12d, 13d)) = π(a′11da′′, b′12db′′, c′13dc′′) = (a′11da′′c̄′′d̄1̄3c̄′, b′12db′′c̄′′d̄1̄3c̄′),

the fibers are preserved iff π(F̃a′a′′b′b′′c′c′′ (11d, 12d, 13d)) = π(F̃a′a′′b′b′′c′c′′ (11, 12, 13)), namely a′′ = b′′ = c′′ = 1.
In that way we obtain the well known isometries (see [9]) Fabc : S3

× S3
→ S3

× S3 of S3
× S3, given by

Fabc(p, q) = (apc̄, bqc̄), a, b, c ∈ S3,

coming from the isometries F̃abc : S3
× S3

× S3
→ S3

× S3
× S3, given by

F̃abc(11, 12, 13) = (a11, b12, c13),

where π((11, 12, 13)) = (p, q). Let us denote by F the subgroup of all isometries Fabc of S3
× S3:

F = {Fabc | a, b, c ∈ S3
}.

Notice that the triplets of unit quaternions (a, b, c) and (−a,−b,−c) induce the same isometryFabc. Hence,
using the above study, we have proved the following proposition.

Proposition 3.1. The only isometries of S3
× S3

× S3 that belong to SO(4) × SO(4) × SO(4) and define an isometry
of S3

× S3 via submersion π are precisely the isometries F̃abc. The corresponding isometries Fabc of S3
× S3 form the

subgroup F of the group of all isometries of nearly Kähler S3
× S3, isomorphic to (S3

× S3
× S3)/{I,−I}.

Remark 3.2. The group F is in the literature frequently taken to be isomorphic to S3
× S3

× S3, which is not correct,
having in mind Proposition 3.1.

Moreover, if arbitrary isometry F̃ of S3
× S3
× S3 has indirect part ofO(4) on some component, it will not

preserve the fibres. It is enough to prove this for the conjugation, since every indirect isometry of O(4) is a
composition of the conjugation and the element of SO(4). If we take conjugation F̃ (11, 12, 13) = (1̄1, 1̄2, 1̄3)
on each component, we derive

π(F̃ (11d, 12d, 13d)) = π(d̄1̄1, d̄1̄2, d̄1̄3) = (d̄1̄113d, d̄1̄213d).

By permuting the components of S3
× S3

× S3, we define the isometries F̃i : S3
× S3

× S3
→ S3

× S3
× S3,

i = 1 . . . , 5

F̃1(11, 12, 13) = (12, 11, 13), F̃2(11, 12, 13) = (13, 12, 11), F̃3(11, 12, 13) = (13, 11, 12),

F̃4(11, 12, 13) = (12, 13, 11), F̃5(11, 12, 13) = (11, 13, 12),

which induce isometries Fi : S3
× S3

→ S3
× S3, i = 1 . . . , 5, given by

F1(p, q) = (q, p), F2(p, q) = (p̄, qp̄), F3(p, q) = (q̄, pq̄),
F4(p, q) = (qp̄, p̄), F5(p, q) = (pq̄, q̄).

Lemma 3.3. The set
G = {E,F1, . . . ,F5},

where E denotes the identity transformation on S3
× S3, is a subgroup of the isometry group of S3

× S3, isomorphic to
the group S3. Moreover, the groups G and F commute.
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Proof. From the defining relations, we obtain all the compositions of Fi, presented in the following table:

◦ E F1 F2 F3 F4 F5

E E F1 F2 F3 F4 F5

F1 F1 E F4 F5 F2 F3

F2 F2 F3 E F1 F5 F4

F3 F3 F2 F5 F4 E F1

F4 F4 F5 F1 E F3 F2

F5 F5 F4 F3 F2 F1 E

. (6)

Now it is clear that the set G is a subgroup of order 6 of the isometry group of S3
× S3. Moreover, using

relations F 2
1 = F

2
2 = (F1 ◦ F2)3 = F 3

4 = E, we conclude that this group is isomorphic to the group S3, which
is expected, since their definition comes from the S3 action on S3

× S3
× S3.

Also, since it holds

Fabc ◦ F1 = F1 ◦ Fbac, Fabc ◦ F2 = F2 ◦ Fcba, Fabc ◦ F3 = F3 ◦ Fcab,

Fabc ◦ F4 = F4 ◦ Fbca, Fabc ◦ F5 = F5 ◦ Facb,
(7)

the groups F and G commute.

Using (6) it is straightforward to prove the following lemma, which is needed for the results that follow.

Lemma 3.4. Differentials of the elements of the groups F and G are given with

dFabc(pα, qβ) = (apc̄(cαc̄), bqc̄(cβc̄)), dF1(pα, qβ) = (qβ, pα),
dF2(pα, qβ) = (p̄(p(−α)p̄), qp̄(p(β − α)p̄)), dF3(pα, qβ) = (q̄(q(−β)q̄), pq̄(q(α − β)q̄)),
dF4(pα, qβ) = (qp̄(p(β − α)p̄), p̄(p(−α)p̄)), dF5(pα, qβ) = (pq̄(q(α − β)q̄), q̄(q(−β)q̄)).

(8)

Similar to the situation with the isometries of S3
×S3
×S3 with respect to the standard Euclidean product

metric, the group of isometries of S3
× S3 with respect to the standard Euclidean product metric ⟨·, ·⟩ is at

least (O(3)×O(3))⋊S2. Now a natural question arises: which of these are the isometries of both (S3
×S3, ⟨·, ·⟩)

and (S3
× S3, 1)?

Those isometries from the subgroup O(3) ×O(3), which are indirect on one of the components, are not
isometries of S3

× S3 with respect to nearly Kähler metric 1. This can be illustrated for the transformation
F̄ : S3

× S3
→ S3

× S3, F̄ (p, q) = (p̄, q̄), by using (3) and the following formula for the differential

dF̄ (pα, qβ) = (p̄(pᾱp̄), q̄(qβ̄q̄)).

Also, all the isometries of (S3
×S3, ⟨·, ·⟩) that belong to SO(3)×SO(3), are given withFabcd : S3

×S3
→ S3

×S3,
Fabcd(p, q) = (apc̄, bqd̄), due to isoclinic decomposition. These mappings are also isometries of (S3

× S3, 1) if
and only if c = d, which directly follows from (3) and the following relation

dFabcd(pα, qβ) = (apc̄(cαc̄), bqd̄(dβd̄)).

In this way we obtain the already mentioned family of isometries Fabc, so they are compatible both with
Euclidean product metric ⟨·, ·⟩ and nearly Kähler metric1. For example, mapping ((x1, x2, x3, x4), (y1, y2, y3, y4)) 7→
((x2, x3, x1, x4), (y2, y1, y3, y4)), is the isometry of (S3

×S3, ⟨·, ·⟩), but not of (S3
×S3, 1), while ((x1, x2, x3, x4), (y1, y2, y3, y4)) 7→

((x2, x3, x1, x4), (y2, y3, y1, y4)) is the isometry of both (S3
× S3, ⟨·, ·⟩) and (S3

× S3, 1).

Also, from the S2 action on S3
× S3 by permuting the components, we obtain one more isometry of both

(S3
× S3, ⟨·, ·⟩) and (S3

× S3, 1): it is the (previously defined) isometry F1. Using Lemma 3.4, we can check
that other isometries Fi, i = 2, 3, 4, 5, of (S3

× S3, 1) from G are not isometries of (S3
× S3, ⟨·, ·⟩). Hence, we

have proved the following theorem.
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Theorem 3.5. The only isometries of (S3
× S3, 1) that belong to the group (O(3) × O(3)) ⋊ S2 of isometries of

(S3
× S3, ⟨·, ·⟩) are precisely the isometries from the group F. The only isometries of (S3

× S3, ⟨·, ·⟩) that belong to either
of isometry subgroups F and G of (S3

× S3, 1) are the isometry F1 and the isometries from the group F.

Having in mind that F1 is the isometry of both (S3
× S3, ⟨·, ·⟩) and (S3

× S3, 1), we consider the geodesic
lines of both (S3

× S3, ⟨·, ·⟩) and (S3
× S3, 1).

Proposition 3.6. The only geodesic lines of both (S3
× S3, ⟨·, ·⟩) and (S3

× S3, 1) are given by

γ(t) = (cos(∥a∥t) + sin(∥a∥t)a, cos(∥a∥t) ± sin(∥a∥t)a), t ∈ R, (9)

for arbitrary unit imaginary quaternion a.

Proof. Using the definition of geodesic lines ∇E
γ′γ
′ = ∇γ′γ′ = 0 and formula

∇
E
XY = ∇XY +

1
2

(JG(X,PY) + JG(Y,PX))

relating the Levi-Civita connections ∇E and ∇ of metrics ⟨·, ·⟩ and 1, respectively, we can obtain relation (9).
For more details see [3].

However, on this occasion we point out that there is another proof. Using the general form of the
geodesic lines of (S3

× S3, ⟨·, ·⟩)

γ(t) = (cos(∥a∥t) + sin(∥a∥t)a, cos(∥ã∥t) + sin(∥ã∥t)ã), t ∈ R,

where a, ã are arbitrary unit imaginary quaternions, it follows that the only geodesic lines γ that are invariant
under F1 are the ones where a, ã are collinear, i.e. ã = ±a. Now it is easy to check that these lines are really
geodesic for both metrics.

Furthermore, it is interesting to see whether almost complex and almost product structures are compat-
ible with these isometries.

Proposition 3.7. For the differentials of the isometries Fabc,F1, . . . ,F5, the almost complex structure J and almost
product structures P1,P2,P3, the following relations hold

dFabc ◦ J = J ◦ dFabc, dF1 ◦ J = −J ◦ dF1, dF2 ◦ J = −J ◦ dF2,

dF3 ◦ J = J ◦ dF3, dF4 ◦ J = J ◦ dF4, dF5 ◦ J = −J ◦ dF5,

dFabc ◦ P1 = P1 ◦ dFabc, dF1 ◦ P1 = P1 ◦ dF1, dF2 ◦ P1 = P3 ◦ dF2,

dFabc ◦ P2 = P2 ◦ dFabc, dF1 ◦ P2 = P3 ◦ dF1, dF2 ◦ P2 = P2 ◦ dF2, (10)
dFabc ◦ P3 = P3 ◦ dFabc, dF1 ◦ P3 = P2 ◦ dF1, dF2 ◦ P3 = P1 ◦ dF2,

dF3 ◦ P1 = P3 ◦ dF3, dF4 ◦ P1 = P2 ◦ dF4, dF5 ◦ P1 = P2 ◦ dF5,

dF3 ◦ P2 = P1 ◦ dF3, dF4 ◦ P2 = P3 ◦ dF4, dF5 ◦ P2 = P1 ◦ dF5,

dF3 ◦ P3 = P2 ◦ dF3, dF4 ◦ P3 = P1 ◦ dF4, dF5 ◦ P3 = P3 ◦ dF5.

Proof. The proof follows directly from formulae (8) and relations (2), (5).

Corollary 3.8. The set P is obviously invariant under each of the isometries Fi, i = 1, . . . , 5, since they only permute
three almost product structures. Consequently, in many known classification theorems regarding submanifolds of
S3
× S3, there are 3 different isometric examples, with similar almost product structures. From the compatibility with

almost complex structure (up to a sign), it also follows that both groups of isometries preserve holomorphic planes.
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4. Hypersurfaces of S3 × S3 and isometries

In the paper [4], the authors introduced the notions ofP−principal andP−isotropic vector fields on S3
×

S3, motivated by the similar notions ofA−principal andA−isotropic vector fields on the complex quadrics.
Namely, since the distributionDZ = span{Z, JZ,PZ, JPZ} of T(S3

× S3) is J−invariant and P−invariant, it has
even dimension 2 or 4, for an arbitrary tangent vector field Z ofS3

×S3. The corresponding tangent vector field
Z in the former case is P−principal, while in the latter case it is P−isotropic, with an additional condition
in the latter case that all the vectors inDZ are mutually orthogonal. The authors have given several useful
characterisations of these vector fields, for example: Z is P−principal if and only if PZ = cosθZ + sinθJZ,
for smooth angle function θ; Z is P−isotropic if and only if there exist orthonormal vector fields X,Y such
that PX = X, PY = Y, Z = X+JY

√
2

. Moreover, the holomorphic sectional curvature of the holomorphic plane
span{Z, JZ} is minimal possible and equal to 0 if Z is P−principal, while it is maximal possible and equal to
2
3 if Z is P−isotropic.

Let Z be an arbitrary unit tangent vector field on S3
× S3. We will decompose PZ along the holomorphic

planeΠZ = span{Z, JZ} and its orthogonal complementΠ⊥Z . If we denote by Z⊥ the unit vector field collinear
with the orthogonal projection of the vector field PZ onto the subspace Π⊥Z , then both Z⊥ and J(Z⊥) are
orthogonal to ΠZ and we can write

PZ = aZ + bJZ + cZ⊥, a2 + b2 + c2 = 1,

where a, b, c are smooth functions on S3
× S3. There exist smooth angle functions φ, θ, defined along the

trajectories of Z, such that a = sinφ cosθ, b = sinφ sinθ, c = cosφ, so it holds

PZ = sinφ cosθZ + sinφ sinθ JZ + cosφZ⊥. (11)

Let M be a hypersurface of S3
× S3 with unit normal vector field ξ. If ν is one unit vector field collinear

with the projection of Pξ onto the orthogonal complement in T(S3
× S3) of the holomorphic plane spanned

with ξ and Jξ, then it holds

Pξ = aξ + bJξ + cν = sinφ cosθξ + sinφ sinθ Jξ + cosφν. (12)

Besides the general characterisations ofP−principal andP−isotropic vector fields, it is also true that the
vector field ξ is:

• P−principal iff c = 0, i.e. φ = π2 ;

• P−isotropic iff a = b = 0, i.e. φ = 0.

In [4] the authors classified all the hypersurfaces with P−isotropic normal vector field. Also, in [2] the
author investigated the hypersurfaces of S3

× S3 such that Pξ is collinear with ξ or Jξ, i.e. ξ is a special
P−principal vector field. We call a hypersurface M of S3

×S3 aP−slant hypersurface if the angle φ between
Pξ and holomorphic plane spanned by ξ and Jξ is constant. Even though the angle functions θ and φ are
not always constant, most of the known examples of hypersurfaces of S3

× S3 actually have constant angle
functions.

The first explicit examples of hypersurfaces of S3
×S3 appeared in [6] and are defined by the immersions

fi,r : S3
× S2

→ S3
× S3, i = 1, 2, 3, r ∈ (0, 1]. The parametrisations of Mi,r = fi,r(S3

× S2) are:

• f1,r(x,y) = (x, (ry1, ry2, ry3,
√

1 − r2)), x ∈ S3, y = (y1, y2, y3) ∈ S2;

• f2,r(x,y) = ((ry1, ry2, ry3,
√

1 − r2), x), x ∈ S3, y = (y1, y2, y3) ∈ S2;

• f3,r(x,y) = (x̄, (ry1, ry2, ry3,
√

1 − r2)x̄), x ∈ S3, y = (y1, y2, y3) ∈ S2.
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These hypersurfaces of S3
× S3 are immersions of the product of S3 and the sphere S2, as the simplest

hypersurface of S3. If we replace S2 with Clifford tori S1
× S1 embedded in S3 (see [7]), we obtain three more

families Mi,k,l = fi,k,l(S3
× S1

× S1), i = 1, 2, 3, of hypersurfaces of S3
× S3, defined by the immersions fi,k,l,

fi,k,l : S3
× S1

× S1
→ S3

× S3, i = 1, 2, 3, k2 + l2 = 1, 0 < k, l < 1:

• f1,k,l(x,y) = (x,y), x ∈ S3, y = (y1, y2, y3, y4) ∈ S1(k) × S1(l) ⊂ S3;

• f2,k,l(x,y) = (y, x), x ∈ S3, y = (y1, y2, y3, y4) ∈ S1(k) × S1(l) ⊂ S3;

• f3,k,l(x,y) = (x̄,yx̄), x ∈ S3, y = (y1, y2, y3, y4) ∈ S1(k) × S1(l) ⊂ S3.

The families Mi,r and Mi,k,l, i = 1, 2, 3, have many similar properties - they are all Hopf, they have
constant principal curvatures (3 for Mi,r and 5 for Mi,k,l) and the almost product structure P satisfies one of
the following relations: Pξ = 1

2ξ+
√

3
2 Jξ, Pξ = 1

2ξ−
√

3
2 Jξ or Pξ = −ξ. Therefore, all these hypersurfaces have

P−principal normal vector field, with constant angle functions θ = π3 , θ = −π3 or θ = π. Actually, it holds
that arbitrary hypersurface M with P−principal normal belongs to one of the following three sets, whose
normal ξ behaves in the same manner under the action of the almost product structure P as it was in the
examples above (see the preprint [5]). LetM1,M2,M3 denote the sets of hypersurfaces with P−principal
normal, satisfying Pξ = 1

2ξ +
√

3
2 Jξ, Pξ = 1

2ξ −
√

3
2 Jξ, Pξ = −ξ, respectively. Observe that all these three

families are fixed under the action of the group F, since F is compatible with the structures J and P (see
Proposition 3.7). Also, these three families are either fixed or mutually isometric under the action of the
group G. Namely, the following lemma holds:

Lemma 4.1.

F1(M1) =M2, F2(M1) =M3, F3(M1) =M2, F4(M1) =M3, F5(M1) =M1,

F1(M2) =M1, F2(M2) =M2, F3(M2) =M3, F4(M2) =M1, F5(M2) =M3,

F1(M3) =M3, F2(M3) =M1, F3(M3) =M1, F4(M3) =M2, F5(M3) =M2.

(13)

Proof. We will illustrate the proof of F2(M1) =M3 and F3(M3) =M1.
Let M ∈ M1 be an arbitrary hypersurface with the normal ξ such that Pξ = 1

2ξ+
√

3
2 Jξ and let M′ = F2(M)

be its image under the isometry F2. Then ξ′ = dF2(ξ) is a unit normal vector field of M′. Using formulae

(10), we obtain Pξ′ = dF2

(
−

1
2 Pξ +

√
3

2 JPξ
)
= −ξ′, so a hypersurface M′ satisfies M′

∈ M3. Similarly, if

M̃ ∈ M3 is an arbitrary hypersurface with the normal ξ̃ which satisfies Pξ̃ = −ξ̃ and M′′ = F2(M̃) its
image under isometry F −1

2 = F2, then ξ′′ = dF2(ξ̃) is its unit normal. Analogously as for M′, we derive

Pξ′′ = dF2

(
−

1
2 Pξ̃ +

√
3

2 JPξ̃
)
= 1

2ξ
′′ +

√
3

2 Jξ′′, so a hypersurface M′′ satisfies M′′
∈ M1.

For arbitrary hypersurface M ∈ M3 with the normal ξ such that Pξ = −ξ, let M′ = F3(M). Using

formulae (10), for ξ′ = dF3(ξ), we obtain Pξ′ = dF3

(
−

1
2 Pξ −

√
3

2 JPξ
)
= 1

2ξ
′ +

√
3

2 Jξ′, namely M′
∈ M1. Also,

for a hypersurface M̃ ∈ M1 and its normal ξ̃which satisfies Pξ̃ = 1
2 ξ̃ +

√
3

2 Jξ̃, we conclude that for its image
M′′ = F4(M̃) under the isometry F4 = F

−1
3 , its unit normal is ξ′′ = dF4(ξ̃). Analogously as for M′, we derive

Pξ′′ = dF4

(
−

1
2 Pξ̃ +

√
3

2 JPξ̃
)
= −ξ′′, so a hypersurface M′′ satisfies M′′

∈ M3.

Consequently, in order to classify certain hypersurfaces of S3
×S3 withP−principal normal, it is enough

to do that with one of the setsMi, i = 1, 2, 3, since using Lemma 4.1, the following proposition holds.

Proposition 4.2. The set of all hypersurfaces of S3
× S3 withP−principal normal is preserved under the action of the

groups F and G.

Now we will study the behaviour of the angle functions on arbitrary hypersurface M of S3
× S3, under

the action of the groups F and G.
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Theorem 4.3. Let M be a hypersurface of S3
× S3 with unit normal vector field ξ. The angle functions defined in

(12) are preserved under the action of the group F on M, while under the action of the group G the angle function φ
is preserved (up to a sign) and the angle function θ changes in the following way:

F1 : θ 7→ −θ, F2 : θ 7→
4π
3
− θ, F3 : θ 7→

4π
3
+ θ, F4 : θ 7→

2π
3
+ θ, F5 : θ 7→

2π
3
− θ. (14)

Proof. We will illustrate the proof for M′ = F5(M), where M is an arbitrary hypersurface with a unit
normal ξ and ξ′ = dF5(ξ) is a unit normal vector field of M′. From (10), we have dF5 ◦ J = −J ◦ dF5 and
dF5 ◦ P1 = P2 ◦ dF5, so we can compute dF5(P1ξ), using (12) and P1 = P, in two ways:

dF5(Pξ) = −
1
2

Pξ′ −
√

3
2

JPξ′ = aξ′ − bJξ′ + cν̃, (15)

where ν̃ = dF5(ν). Applying J on (15), we obtain

Pξ′ =
(
−

1
2

a +
√

3
2

b
)
ξ′ +

( √
3

2
a +

1
2

b
)

Jξ′ + c
(
−

1
2
ν̃ +

√
3

2
Jν̃

)
.

It is obvious that ν′ = − 1
2 ν̃ +

√
3

2 Jν̃ is a unit vector field orthogonal to the holomorphic plane span{ξ′, Jξ′}
and the following relation holds

Pξ′ = sinφ cos
(2π

3
− θ

)
ξ′ + sinφ sin

(2π
3
− θ

)
Jξ′ + cosφν′.

The proof of Theorem 4.3 can be adapted to an arbitrary holomorphic plane, not only to the span{ξ, Jξ}.
Therefore, computing how the angle functions θ,φ defined in (11) change, we conclude that the angle
function φ is preserved and obtain the following corollary.

Corollary 4.4. The set of all P−slant hypersurfaces of S3
× S3 is preserved under the action of the groups F and G.

Specially, the set of hypersurfaces of S3
× S3 with P−isotropic normal is also preserved under these isometries.

Since in the Corollary 3.8 we have already mentioned that the holomorphic planes are preserved under
the isometries, using the formula

H(Z) =
2
3
−

2
3

(12(PZ,Z) + 12(JPZ,Z)) =
2
3

cos2 φ

derived in [2], we obtain the next corollary.

Corollary 4.5. Holomorphic sectional curvature of arbitrary holomorphic plane of S3
× S3 is preserved under the

action of the groups F and G.
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[5] M. B. Djorić, M. Djorić, Hypersurfaces of the homogeneous nearly Kähler S3

× S3 with P−principal normal vector field, submitted.
[6] Z. Hu, Z. Yao, Y. Zhang, On some hypersurfaces in the homogeneous nearly Kähler S3

× S3, Math. Nachr. 291 (2018), 343–373.
[7] Z. Hu, Z. Yao, On Hopf hypersurfaces of the homogeneous nearly Kähler S3

× S3, Ann. Mat. Pura Appl. 199 (2020), 1147–1170.
[8] M. Moruz, L. Vrancken, Properties of the nearly Kähler S3

× S3, Publ. Inst. Math., N. S. 103 (117) (2018), 147–158.
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