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Weighted combinatorial Ricci flow and metrics defined by degenerate
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Abstract.Chow and Luo [1] in 2003 had shown that the combinatorial analogue of the Hamilton Ricci flow
on surfaces under certain conditions converges to Thruston’s circle packing metric of constant curvature.
The combinatorial setting includes weights defined for edges of a triangulation. Crucial assumption in
the paper [1] was that the weights are nonnegative. Recently we have shown that same statement on
convergence can be proved under weaker condition: some weights can be negative and should satisfy
certain inequalities, [3]. Moreover, in [6] notions of degenerate circle packing and corresponding metric
were introduced. In [6] theory of combinatorial Ricci flow for such metrics was developed, which includes
Chow–Luo theory as a partial case for nondegenerate circle packing and nonnegative weights on edges.

On the other hand, in [2] the combinatorial Yamabe flow was introduced and investigated. In [7, 8] we
developed weighted modification of Yamabe flow.

In this paper we merge ideas from these two theories and introduce weighted combinatorial Ricci flow
on metrics defined by degenerate circle packings. We prove that under certain conditions for any initial
metric the flow converges to a unique metric of constant curvature.

1. Basic definition

The combinatorial Ricci flow for triangulated surfaces was introduced by Chow and Luo in [1]. They
gave a complete description of the asymptotic behaviour of the solution to the combinatorial Ricci flow
under certain assumptions. Both the Euclidean and the hyperbolic background geometry were considered.
Brief review of their results can be found in [6].

Main results of this paper are Theorems 2.1 and 2.2. Let us describe combinatorial data used in this
paper. The setting is general enough to contain the particular cases considered in [1] and in [6].

Let X be a closed surface with a triangulation T. We assume that a lift of a closed face or an edge
to the universal cover X̃ is an embedding. Denote the sets of vertices, edges and faces of T by V, E, F
correspondingly. Divide the set of vertices into a disjoint union V = Vn ⊔ Vd, such that there is no edge
connecting two vertices from Vd. Vertices from Vn = {A1, . . . ,AM} are called nondegenerate and vertices from
Vd = {AM+1, . . . ,AN} are called degenerate. Call a cell of T (that is edge or face) nondegenerate iff all its vertices
are nondegenerate, and degenerate otherwise. Denote the set of (non)degenerate edges and faces by Ed (En)
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and Fd (Fn), correspondingly. Clearly, E = En ⊔Ed and F = Fn ⊔ Fd. Sometimes it is useful to denote a subset
of vertices and the corresponding subset of indices by the same symbol.

Also fix a weight function (a weight) w : En → (−1, 1].

1.1. Euclidean background
A (degenerate) circle packing metric is defined by a collection of numbers r = (r1, r2, . . . , rN), where r j > 0

for 1 ⩽ j ⩽ M and r j = 0 for M + 1 ⩽ j ⩽ N. This definition differs from the classical circle packing metric
where all r j are positive, see [1, 5]. For the Euclidean background the length of an edge connecting two
vertices Ai and A j is defined by the formula

l2i j = r2
i + r2

j + 2rir jwi j. (1)

For a degenerate edge one of the numbers ri or r j is zero, therefore the last summand is assumed to be zero
although the weight wi j is not defined. To be more precise, if ri = 0 then li j = r j. The curvature Ki at the
vertex Ai is defined as usual by formula

Ki = 2π −
∑

△AiA jAk∈F

∠AkAiA j. (2)

The curvature at a degenerate vertex does not depend on r and can be expressed in terms of the weight
w. Indeed, let Ai ∈ Vd and △AiA jAk ∈ F. Then A j,Ak ∈ Vn. By the cosine law cos ∠A jAiAk = −w jk, hence
∠A jAiAk = π − arccos(w jk). Therefore,

Ki = 2π −
∑

△AiA jAk∈F

(π − arccos(w jk)), i =M + 1, . . . ,N. (3)

The combinatorial Ricci flow in Euclidean background as considered in [1, 6] is the system of ODE

dri

dt
= −Kiri. (4)

Note that in degenerate vertices ri(t) = 0.
On the other hand, if one considers the edges as a kind of a reinforcing frame, then tension caused by

the curvature Ki should be (equally) distributed over all edges adjacent to vi, that is the right hand side
of (4) should be divided by the degree of the vertex Ai. This (informal) idea leads to the following flow. Fix
a collection of positive weights at nondegenerate vertices β = {β1, . . . , βM}. Then the weighted combinatorial
Ricci flow in Euclidean background is the system of ODE

dri

dt
= −

Ki

βi
ri, i = 1, . . . ,M. (5)

For i =M + 1,M + 2, . . . ,N one has ri =
dri
dt = 0, hence in (5) one can assume 1 ⩽ i ⩽ N.

For a degenerate metric define the equilibrium curvature K0
i for i = 1, . . . ,M:

K0
i =

βi

M∑
j=1
β j

2πχ(X) −
N∑

j=M+1

K j

 . (6)

The normalized combinatorial Ricci flow is the system of ODE

dri

dt
= −

1
βi

(Ki − K0
i )ri, i = 1, . . . ,M. (7)

The normalized and non-normalized Ricci flows are in certain sense equivalent.
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Lemma 1.1. Function r(t) = {ri(t)} is a solution to the flow (5) iff the function {eλtri(t)} is the solution to the flow

dri

dt
= −

(
Ki

βi
− λ

)
ri.

Moreover, there is a unique λ = 1
M∑
j=1
β j

2πχ(X) −
N∑

j=M+1
K j

 such that the last flow can have an equilibrium.

The possible equilibriums of (7) are given by such a constant functions ri(t) that Ki(r(t)) = K0
i .

Proof is by straightforward computation.
The normalized combinatorial Ricci flow has the following useful property.

Lemma 1.2. The product
M∏
j=1

r j(t)βi is a first integral for (7).

Proof is by straightforward computation.

1.2. Hyperbolic background metric

For the hyperbolic background geometry the length of the edge ei j joining vertices Ai and A j is defined
by the equation

cosh li j = cosh ri cosh r j + sinh ri sinh r jwi j. (8)

As in the Euclidean case for degenerate edge one of the radii ri or r j is zero so the last summand is assumed
to be zero though the weight wi j is undefined. Clearly for ri = 0 one has li j = r j. The curvature Ki at the
vertex Ai is defined as usual by formula (2). The curvature at a degenerate vertex Ai, M+1 ≤ i ≤ N, is given
by (3).

The weighted combinatorial Ricci flow in hyperbolic background is the system of ODE

dri

dt
= −

Ki

βi
sinh ri, i = 1, . . . ,M. (9)

For i =M + 1,M + 2, . . . ,N one has ri =
dri
dt = 0, hence in (9) one can assume 1 ⩽ i ⩽ N.

We shall see that there is no need to normalize hyperbolic flow. Its equilibrium are characterized by the
property Ki(r(t)) = 0.

1.3. Condition (W), space of metrics, and derivative of curvatures.

Fix a triple (X,T,w). Also fix a background (Euclidean or hyperbolic). Denote by Rw the set of all
r ∈ RM

× (0, . . . , 0) ⊂ RN such that for every face of the triangulation the triangle inequalities hold.

Lemma 1.3 (see [6]). Suppose any face of the triangulation satisfies one of the following conditions:
(a) the face is nondegenerate and all the weights of its edges are nonnegative;
(b) the face is nondegenerate, exactly one weight wi j of its edges is negative, two others weights wik,w jk are positive,

and wi j + wikw jk ⩾ 0;
(c) the face is degenerate and the weight of the nondegenerate edge of the face is not equal to 1.
Then for both the Euclidean and the hyperbolic background geometry one has Rw = R

M
+ .

We refer to the conditions of Lemma 1.3 as to the conditions (W).
We need equations for time derivatives of curvatures Ki provided ri satisfy one of the flows (5), (7) or

(9).
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Proposition 1.4 (see [6]). Let (X,T,w) be a closed surface X with a triangulation T and a weight function w.
Assume w satisfies the condition (W).

Suppose ri(t), i = 1, . . . ,M, satisfy the equations dri
dt = −Li(r1, . . . , rM)s(ri), where s(ri) = ri in the Euclidean case

and s(ri) = sinh ri in the hyperbolic case.
Then for the time derivatives of the curvatures Ki at the nondegenerate vertices (1 ≤ i ≤M) one has

dKi

dt
=

∑
i∽ j, j⩽M

Ci j(L j − Li) + λCiLi,

where Ci j = C ji and Ci are positive elementary functions in r1, . . . , rM, and summation is over all nondegenerate
vertices A j adjacent to Ai. Here λ = 0 for the Euclidean background and λ = −1 for the hyperbolic background.

2. Main results

Assume I ⊂ Vn is a proper subset of nondegenerate vertices. Let FI be the subcomplex formed by
simplices with vertices from I. Denote by DI the set of all degenerate vertices adjacent to a vertex from I.
Also let Lk(I) be the set of pairs (v, e), v ∈ I, e ∈ E, such that both end points of e are not in I and v, e form a
triangle.

For the Euclidean background we have the following statement.

Theorem 2.1. Suppose X is a closed surface with a triangulation T and weights w and β. Assume the condition (W)
is satisfied.

The solution to the normalized Ricci flow (7) converges for any initial metric iff for any proper subset I ∈ Vn,∑
i∈I

K0
i +

∑
j∈DI

K j > −
∑

(e,v)∈Lk(I∪DI)

(π − arccos w(e)) + 2πχ(FI∪DI ). (10)

Furthermore, if the solution converges, then it converges exponentially fast to the metric with Ki = K0
i , i = 1, . . . ,M.

Similar statement for hyperbolic background also holds provided X is a surface of negative Euler
characteristic.

Theorem 2.2. Suppose X is a closed surface of negative Euler characteristic with a triangulation T and weights w
and β. Assume the condition (W) is satisfied.

The solution to the hyperbolic Ricci (9) flow converges for any initial metric iff for any subset I ∈ Vn,∑
j∈DI

K j > −
∑

(e,v)∈Lk(I∪DI)

(π − arccos w(e)) + 2πχ(FI∪DI ). (11)

Furthermore, if the solution converges, then it converges exponentially fast to the metric with Ki = 0, i = 1, . . . ,M.

Both theorems contains main results from [1, 6] as particular cases when all βi = 1.

3. Simple properties of solutions for the weighted combinatorial Ricci flows

Results of this section are proved by arguments close to those from [6]. Therefore, we give only
statements since they have certain changes.

Let M(t) = max(K1(t)/β1, . . . ,KM(t)/βM) and M(t) = min(K1(t)/β1, . . . ,KM(t)/βM). The solution to the
weighted combinatorial Ricci flow with any given initial metric exists for all t ∈ [0,+∞). This can be proved
by the same argument as in Proposition 3.4 of [1] using the following maximum principle.



Th. Yu. Popelensky / Filomat 37:25 (2023), 8675–8681 8679

Proposition 3.1. Let r(t) = (r1(t), . . . , rM(t)) be a solution to the weighted Ricci flow (7) or (9) on an interval. Then
(1) for the Euclidean geometry the function M(t) is non-increasing and the function M(t) is non-decreasing;
(2) for the hyperboilc geometry the function max(0,M(t)) is non-increasing and the function min(0,M(t)) is

non-decreasing.

Proposition 3.2. Let r(t) = (r1(t), . . . , rM(t)) is a solution to the normalized weighted Ricci flow (7). Suppose the
curve r(t) is contained in a compact subset of RM

+ . Then r(t) converges to a point in RM
+ such that the corresponding

curvatures at nondegenerate vertices are equal to K0
i =

βi∑
j

b j
(2πχ(X) −

∑
j⩾M+1

K j). The convergence is exponentially

fast.

The proof goes along lines of the proof of Proposition 4 from [6] using function

1(t) =
M∑
j=1

1
β j

(K j(t) − K0
j )

2

and its derivative

1′(t) = −2
∑

i∽ j⩽M

Ci j(Ki/βi − K j/β j)2.

Proposition 3.3. Let r(t) = (r1(t), ..., rM(t)) be a solution to the Ricci flow (9). Suppose curve r(t) is contained in a
compact subset RM

+ . Then r(t) converges exponentially fast to a point (r1, . . . , rM) ∈ RM
+ such that the corresponding

curvatures K1, . . . ,KM vanish.

The proof is similar to the proof of Proposition 3.7 from [1].
Thus, convergence of the solution to the weighted combinatorial Ricci flow is reduced to certain com-

pactness property of the solution.

4. Ricci flow as a skew negative gradient flow

Consider the following change of variables. For the Euclidean background geometry define u j = ln r j,
and for the hyperbolic background geometry define u j = ln tanh r j/2. Then both Ricci flows (5) and (9) take
the form

du j

dt
= −

K j

β j
, j = 1, . . . ,M. (12)

Under assumption (W) for the Euclidean background u = (u1, . . . ,uM) belongs to U = RM, and for the
hyperbolic background u belongs toU = (−∞, 0)M

⊂ RM. In [1] very important equality was proved:

∂Ki

∂u j
=
∂K j

∂ui
, i, j = 1, . . .M.

Thus, the 1-form Ω =
M∑
j=1

K jdu j is closed. Since in both casesU is simply connected, there exists a function

F(u1, . . . ,uM) : U→ R such that dF = Ω.

Proposition 4.1. Assume the weight function satisfied the condition (W). Then
(a) for hyperbolic background the function F(u1, . . . ,uM) is strictly convex;

(b) for the Euclidean background the function F(u1, . . . ,uM) is strictly convex on any plane
M∑
j=1
β ju j = const .

Proof is the same as the proof of the Proposition 3.9 from [1], suitable changes are necessary for (b).
From this Proposition it easily follows that in the hyperbolic background the metric is determined by its

curvatures, and that in the Euclidian background the metric is determined by its curvatures up to a scalar
multiple. This gives us rigidity of circle packings with degenerations.
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5. Existence of an equilibrium and convergence of the flows

In this section we outline the proofs for Theorems 2.1 and 2.2.
First of all we need a condition for existence of an equilibrium.

Proposition 5.1 (see [6]). Suppose X is a closed surface with a triangulation T and a weight w, satisfying the
condition (W). Let I be a proper subset of Vn. Consider a sequence of metrics r(n) = (r(n)

i : i = 1, . . . ,M) in
the Euclidean or in the hyperbolic backgound geometry such that lim

n→∞
r(n)

i = 0 for i ∈ I and lim
n→∞

r(n)
i > 0 for

i ∈ {1, . . . ,M} \ I. Then

lim
n→∞

∑
i∈I

Ki(r(n)) +
∑
j∈DI

K j = −
∑

(e,v)∈Lk(I∪DI)

(π − arccos w(e)) + 2πχ(FI∪DI ). (13)

Moreover, for any metric r in the Euclidean or in the hyperbolic backgound geometry and any proper subset I ∈ Vn
we have∑

i∈I

Ki(r) +
∑
j∈DI

K j > −
∑

(e,v)∈Lk(I∪DI)

(π − arccos w(e)) + 2πχ(FI∪DI ). (14)

For Euclidean case consider the set metrics

Ma = {(r1, . . . , rM) | ri > 0 for all i = 1, . . . ,M and
M∏

i=1

rβi

i = a},

where a > 0. Also consider the curvature map

Ξ : Ma → R
M, Ξ(r) = (K1(r), . . . ,KM(r)).

By Proposition 4.1 the map Ξ is injective. Its image is contained in the hyperplane

Π = {(K1, . . . ,KM) ∈ RM
|

M∑
i=1

Ki = 2πξ(X) −
N∑

j=M+1

K j}.

Consider the convex open polytope PK ⊂ Π, defined by the inequalities∑
i∈I

Ki > −
∑

(e,v)∈Lk(I∪DI)

(π − arccos w(e)) + 2πχ(FI∪DI ) −
∑
j∈DI

K j,

where I runs through all proper subsets I ⊂ Vn. Then map Ξ : Ma → PK is anjective, while both Ma and
PK are homeomorphic to RM−1. By the invariance of domain theorem the map Ξ is a homeomorphism
of Ma onto im Ξ. Applying Proposition 5.1 we see that im Ξ = PK. Under assumptions of Theorem 2.1
(K0

1, . . . ,K
0
M) ∈ PK. Thus, there exists a unique r(0) = (r(0)

1 , . . . , r
(0)
m ) ∈ Ma such that Ξ(r(0)) = (K0

1, . . . ,K
0
M) ∈ PK,

that is the equilibrium of (7) and is unique up to scalar multiple.
Now we discuss convergence of the normalized Ricci flow

dui

dt
= −

1
βi

(Ki(u) − Kav). (15)

Arguing as above, we see that there exists a function G such that ∂G∂ui
= Ki(u) − K0

i . Hence, (15) is a kind of

negative skew gradient flow of G. Fix a = 1. The restriction of G on the hyperplane U0 = {u ∈ RM
|

M∑
i=1

ui = 0}

is strictly convex. By the argument in the beginning of the proof G has a unique critical point u(0)
∈ U0.

Therefore, this point is a minimum of G. Applying arguments from the end of the proof of Theorem 3 in
[6], we see that integral curves of the negative skew gradient field of G converge to u(0)

∈ U0.
The hyperbolic case is considered in similar way as in [6] and we omit the details.
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