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Abstract. Hybrid numbers are a new non-commutative number system which is a generalization of the
complex (i2 = −1), dual (ε2 = 0), and hyperbolic numbers (h2 = 1). In this article, firstly we define a
new quaternion system called hybrid quaternions by taking the coefficients of real quaternions as hybrid
numbers. This new quaternion system is a combination of complex quaternions (biquaternions), hyperbolic
(perplex) quaternions, and dual quaternions, and it can be viewed as a generalization of these quaternion
systems. Then, we present the basic properties of hybrid quaternions including fundamental operations,
conjugates, inner product, vector product, and norm. Finally, we give a schematic representation of numbers
and quaternions.

1. Introduction

Quaternions, which are an extension of complex numbers, are referred to the Hamiltonian quaternions
or real quaternions. They are applied to mechanics in three-dimensional space and used in many areas of
science such as computer and graphics technologies. Real quaternions are defined as follows:

H = {q = w0 + w1i + w2 j + w3k : w0,w1,w2,w3 ∈ R} (1)

where i, j, k are the units of quaternions satisfying

i2 = j2 = k2 = −1, i jk = −1. (2)

The set of real quaternions forms a 4-dimensional real vector space. Furthermore, 1, i, j, k denote the
basis elements of H and unit real quaternions represent a rotation in Euclidean 3-space. The most striking
feature of real quaternions is having non-commutativity in multiplication. Additionally, H is a member of
a non-commutative division algebra [9, 13].

There are some significant extensions of quaternions in the literature, such as complex, dual, and
hyperbolic quaternions. These quaternions are obtained by replacing the coefficient of quaternion units.
That is, for a quaternion q = w0 + w1i + w2 j + w3k, if the coefficients are complex numbers (a + ib, i2 = −1),
dual numbers (a+εb, ε2 = 0), and hyperbolic numbers (a+hb, h2 = 1), then it is called a complex quaternion,
dual quaternion, and hyperbolic quaternion, respectively1).
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1)The italic “ i ” denotes the first of the three quaternion units and the bold “ i ” denotes complex numbers’ unit.
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Complex numbers are an extension of the real numbers(R), with imaginary unit i2 = −1. They are
described as C = R[x]/⟨x2+ 1⟩ or C ≡ R[i] in algebra [11, 30]. Complex quaternions, HC, are an extension of
complex numbers that uses the coefficients of quaternions as complex numbers rather than real numbers.
Complex quaternions belong to the Clifford algebra and are isomorphic to the Clifford algebra Cl3,0. They
are known as biquaternions2) or complexified quaternions. Additionally, they have a wide range of appli-
cations. For example, the ring complex quaternions are recognized as a strong representing instrument in
formulating physical laws. Moreover, they have many useful properties in the theorems of modern algebra
[1, 23, 27].

Dual numbers were first defined by W.K. Clifford as a tool for his geometrical investigation. They have
been efficiently developed over time. They are systematically applied to line geometry and kinematics.
Dual numbers, D ≡ R[ε], are the extension of the real numbers that include the imaginary unit ε with the
property ε2 = 0. Additionally, in abstract algebra, dual numbers are described as D = R[x]/⟨x2

⟩ [2, 29].
Dual quaternions, HD, are an extension of dual numbers, where the coefficients of real quaternions are
dual numbers. Dual quaternions are still used by many scientists today and are applied in various areas
of science. For example, they are used in animation, robotics, computer vision applications, theoretical
kinematics, and as a tool for expressing and analyzing the physical properties of rigid bodies [12, 15, 24].

There is another number system in the literature which is called hyperbolic numbers [30]. They are
also known as perplex numbers, duplex numbers, double numbers, or split-complex numbers. Hyperbolic
numbers,H ≡ R[h], include the imaginary unit h with the property h2 = 1. Additionally, hyperbolic num-
bers are described asH = R[x]/⟨x2

− 1⟩ in abstract algebra [11, 16, 21, 25]. Hyperbolic quaternions, HH, are
an extension of hyperbolic numbers whereby the coefficients of real quaternions are hyperbolic numbers.3)

These quaternions are also known as perplex quaternions or split biquaternions. Hyperbolic quaternions
are suitable algebraic tools for expressing Lorentz space-time transformations. Further information on
hyperbolic numbers and hyperbolic quaternions can be found in [3, 4, 10, 17, 19, 26, 28, 31].

The last number system we will mention here is the hybrid numbers, K, defined by Özdemir [18].
Because of a generalization of dual, hyperbolic, and complex numbers, they are called hybrid numbers.
Additionally, i,h, ε are hybrid units and they satisfy ih = −hi = ε + i.

It is known in the literature that the term norm is defined with the property of the triangle inequality∥∥∥q + p
∥∥∥ ≤ ∥∥∥q∥∥∥ + ∥∥∥p∥∥∥. But when it comes to the complex generalization of this notion, it is not possible to

apply the triangle inequality to a norm with a complex value, since there is no order in complex numbers.
Instead of inventing new terms, the term seminorm is then used [23]. In this work, we denote both the
term norm and semi-norm with

∥∥∥q∥∥∥. In addition, a similar situation applies to the inner product. The inner
product should satisfy the properties of symmetry, bilinearity, and positive definite. Although the third
feature cannot be applied to a complex-valued inner product, the same inner product term is used.

In this study, we will investigate hybrid quaternions. Firstly in Section 2, we present fundamental
information and properties of both number systems and quaternions to provide the necessary background
for hybrid quaternions. Then in Section 3, we introduce the set of hybrid quaternions as an extension
of hybrid numbers, where the elements of the real quaternions are hybrid numbers. Additionally, after
introducing hybrid quaternions, we give some definitions and properties about them, including inner
product, vector product, and norm. Finally, in Section 5, number systems including hybrid quaternions are
examined using Venn diagrams.

2. Number Systems

2.1. Real Quaternions
In the previous section the set of real quaternions is defined as in (1). A real quaternion can be given in

the form q = w0 + w1i + w2 j + w3k where i, j, k are units of quaternions and they provide equation (2). As

2)The name biquaternion was first given by Hamilton.
3)In the literature, there is another type of quaternions called hyperbolic quaternions with the same name. This type of hyperbolic

quaternions was defined by Scottish physicist A. Macfarlane and unlike real quaternions they are obtained by taking i2 = j2 = k2 = 1.
Note that these quaternions do not have the property of associativity [6, 14].
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mentioned above, the real quaternion algebra H is associative, i.e. (i j)k = i( jk), but not commutative, that
is i j , i j. For any q ∈ H, scalar part and vector part of q is Sq = w0 and Vq = w1i + w2 j + w3k, respectively.
Moreover, the addition of two quaternions is defined componentwise. For the quaternions p = Sp +Vp and
q = Sq + Vq, the addition is defined as q + p = (Sq + Sp) + (Vq + Vp). Also, the quaternionic multiplication of
p = z0 + z1i + z2 j + z3k and q = w0 + w1i + w2 j + w3k is defined as:

pq = SpSq − ⟨Vp,Vq⟩ + SpVq + SqVp + Vp ∧ Vq, (3)

where ⟨Vp,Vq⟩ = z1w1 + z2w2 + z3w3 and Vp ∧ Vq = (z2w3 − z3w2)i − (z1w3 − z3w1) j + (z1w2 − z2w1)k.
The conjugate of q is defined by q = w0 − w1i − w2 j − w3k. Furthermore, the inner(scalar) product of the

real quaternions q and p is defined as

⟨q, p⟩ =
1
2

(qp + pq) =
1
2

(qp + pq). (4)

Additionally, it can also be defined using a element-wise product for q = w0 + w1i + w2 j + w3k and p =
z0 + z1i + z2 j + z3k as follows:

⟨q, p⟩ = w0z0 + w1z1 + w2z2 + w3z3, ⟨q, p⟩ ∈ R. (5)

Another way to define the inner product of two real quaternions is ⟨q, p⟩ = Sqp = Spq. The vector product of
the real quaternions q and p is given by

q × p =
1
2

(qp − pq) =
1
2

(qp − pq). (6)

It is obvious that following equations are satisfied for real quaternions:

qp + pq = 2⟨q, p⟩ = 2SqSp + 2⟨Vq,Vp⟩, (7)
qp − pq = 2(q × p) = −2SqVp + 2SpVq − 2Vq ∧ Vp, (8)

The norm of a quaternion q is given by as follows:∥∥∥q∥∥∥ = qq = qq = w2
0 + w2

1 + w2
2 + w2

3,
∥∥∥q∥∥∥ ∈ R. (9)

Non-zero quaternions have a multiplication inverse defined by q−1 = q/
∥∥∥q∥∥∥. For further details about the

basics of real quaternions, see [8, 9].

2.2. Complex Numbers and Complex Quaternions (Biquaternions)

It is well known that complex numbers are at the form w = a + ib, where a and b are real numbers and i
is the complex unit satisfying i2 = −1. All complex numbers can be formed with the base {1, i}. Thus, the
set of these numbers can be defined as C = {w = a + ib : a, b ∈ R, i2 = −1}. The set of complex numbers
is a field and 2-dimensional vector space over the real numbers. The conjugate of a complex number w
is denoted by w∗ and defined by w∗ = a − ib. The modulus |w| is defined by |w| =

√
ww∗ =

√

a2 + b2. This
modulus corresponds to the distance in Euclidean plane4).

The set of complex quaternions is an extension of real quaternions by complex numbers and it is defined
as follows:

HC = {Q = w0 + w1i + w2 j + w3k : w0,w1,w2,w3 ∈ C} (10)

4)Euclidean plane is defined with the Euclidean inner product: for the vectors x⃗ = (a1, b1), y⃗ = (a2, b2) ∈ R2, ⟨x⃗, y⃗⟩ = a1a2 + b1b2. Note
that complex numbers (C) are isomorphic to Euclidean plane, E2, [30].
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where 1, i, j, k are the quaternion units. Complex unit i commutes with the quaternion units ii = ii, i j = ji,
ik = ki. As a result of this commutativity, complex quaternions can be written in the following form:

Q =(a0 + ib0) + (a1 + ib1)i + (a2 + ib2) j + (a3 + ib3)k = (a0 + a1i + a2 j + a3k) + i(b0 + b1i + b2 j + b3k)
=qa + iqb = qa + qbi

for n = 0, 1, 2, 3 and wn = an + ibn ∈ C, where qa, qb ∈ H. Therefore, complex quaternions can also be
written as Q = qa + iqb = qa + qbi. As a consequence of this representation we can rewrite the set of complex
quaternions as follows:

HC = {Q = qa + iqb : qa, qb ∈ H, i2 = −1}. (11)

Basis elements of complex quaternions are 1, i, j, k, i, ii, ji, ki, and HC is 8-dimensional vector space over
the R. For any Q = w0 + w1i + w2 j + w3k ∈ HC, we define the complex scalar part as SQ = w0, and vector
part as VQ = w1i + w2 j + w3k. Thus, the complex quaternions can be represented as Q = SQ + VQ. Also, for
complex quaternions Q = qa + iqb and P = pa + ipb, addition and multiplication are defined as follows

Q + P = qa + pa + i(qb + pb), (12)
QP = qapa − qbpb + i(qapb + qbpa). (13)

where the products between qa and qb are the real quaternionic products. Unlike real quaternions, there are
three different conjugate definitions for complex quaternions [26]. For a complex quaternion Q = qa + iqb =
SQ + VQ, different conjugate types are defined as follows:

i) Quaternion conjugate: Q = qa + iqb = SQ − VQ,

ii) Complex conjugate: Q∗ = qa − iqb = S∗Q + V∗Q,

iii) Total conjugate: Q† = (Q)∗ = (Q∗) = qa − iqb = S∗Q − V∗Q.

The inner product of complex quaternions is defined similarly to the inner product of real quaternions
and the result is complex-valued. For complex quatenions Q = qa + iqb and P = pa + ipb the inner product
is given by

⟨Q,P⟩ =
1
2

(QP + PQ) = ⟨qa, pa⟩ − ⟨qb, pb⟩ + i
(
⟨qa, pb⟩ + ⟨qb, pa⟩

)
. (14)

There are different definitions for the norm of complex quaternions in the literature. Classically, the
term norm is real-valued and positive defined (non-negative), but when we mention the norm for complex
quaternions it has a complex value. Furthermore, because there is no ordering in complex numbers, triangle
inequality does not hold as mentioned in the introduction. Therefore, the term semi-norm arises. The semi-
norm5) of the complex quaternion Q = w0 + w1i + w2 j + w3k = qa + iqb is defined in terms of the complex
components:

∥Q∥ = QQ = QQ = w2
0 + w2

1 + w2
2 + w2

3 = qaqa − qbqb + i(qaqb + qbqa) =
∥∥∥qa

∥∥∥ − ∥∥∥qb

∥∥∥ + 2i⟨qa, qb⟩. (15)

Note that even though the result is complex-valued, ∥Q∥ ∈ C, still satisfy QQ = QQ. Another definition
made for complex quaternions is real valued given by:

∥Q∥ = Sqa(qb)∗ =
∥∥∥qa

∥∥∥ + ∥∥∥qb

∥∥∥ = a2
0 + a2

1 + a2
2 + a2

3 + b2
0 + b2

1 + b2
2 + b2

3. (16)

Q is called unit complex quaternion, if ∥Q∥ = 1. The modulus of a complex quaternion Q is |Q| =
√
∥Q∥.

It is known that every nonzero real quaternion has a multiplicative inverse but this is not true for
complex quaternions. Because, complex quaternions have zero divisors [22]. These zero divisors have no
multiplicative inverse. Hence, the complex quaternion algebra HC is not a division algebra. If Q ∈ HC is
non-zero and not a zero divisor, then the inverse Q−1 is a complex quaternion and satisfies QQ−1 = Q−1Q = 1.

More details about complex quaternions can be found in [9, 22, 23, 27].

5)Some authors prefer to use the term “norm” instead term “semi-norm”.
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2.3. Dual Numbers and Dual Quaternions
A dual number is written in the form w = a+ εb, where a and b are real numbers and dual unit ε satisfies

ε2 = 0. All dual numbers can be formed with the base {1, ε}. The set of dual numbers can be defined as
D = {w = a+εb : a, b ∈ R, ε2 = 0}. The set of dual numbers is 2-dimensional vector space over real numbers.
It is easy to see that (D,+, .) is a commutative ring with unity. Dual numbers without real part such as
εa and εb are zero divisors. That is, (εa)(εb) = ε2(ab) = 0. The conjugate of a dual number is defined by
w∗ = a − εb. Moreover, the modulus |w| is defined by |w| =

√
ww∗ =

√

a2 = |a|. This modulus corresponds to
the distance in 2-dimensional Galilean plane6).

Dual quaternions are an extention of real quaternions by dual numbers and the set of dual quaternions
is defined as follows

HD = {Q = w0 + w1i + w2 j + w3k : w0,w1,w2,w3 ∈ D} (17)

where 1, i, j, k are the quaternion units. Note that, dual unit ε commutes with the basis elements i, j, k, that
is, εi = iε, ε j = jε, εk = kε. As a result of this commutativity, dual quaternions can also be written as
Q = qa + εqb = qa + qbε, where qa = a0 + a1i+ a2 j+ a3k, qb = b0 + b1i+ b2 j+ b3k ∈ H. So, we can rewrite the set
of dual quaternions as follows:

HD = {Q = qa + εqb : qa, qb ∈ H, ε2 = 0}. (18)

Basis elements of dual quaternions are 1, i, j, k, ε, iε, jε, kε, and HD are 8-dimensional vector space over
R. For any Q = w0 + w1i + w2 j + w3k ∈ HD, dual scalar part and vector part of Q is defined as SQ = w0 and
VQ = w1i + w2 j + w3k, respectively. Q is called as pure dual quaternion if SQ = 0. Additionally, for dual
quaternions Q = qa + εqb and P = pa + εpb, addition and multiplication are defined as

Q + P = qa + pa + ε(qb + pb), (19)
QP = qapa + ε(qapb + qbpa). (20)

Just like complex quaternions, there are three different conjugate definitions for dual quaternions. For
Q = qa + εqb = SQ + VQ, we have the following:

(a) Quaternion conjugate: Q = qa + εqb = SQ − VQ,

(b) Dual conjugate: Q∗ = qa − εqb = S∗Q + V∗Q,

(c) Total conjugate: Q† = (Q)∗ = (Q∗) = qa − εqb = S∗Q − V∗Q.

The inner product of dual quaternions is defined similar to the inner product of real quaternions and
the result is dual-valued. For dual quatenions Q = qa + εqb and P = pa + εpb the inner product is defined as

⟨Q,P⟩ =
1
2

(QP + PQ) = ⟨qa, pa⟩ + ε
(
⟨qa, pc⟩ + ⟨qc, pa⟩

)
. (21)

The semi norm of a dual quaternion Q = w0 + w1i + w2 j + w3k = qa + εqb can be defined as:

∥Q∥ = QQ = QQ = w2
0 + w2

1 + w2
2 + w2

3 = (a2
0 + a2

1 + a2
1 + a2

3) + 2ε(a0b0 + a1b1 + a2b2 + a3b3)

= qaqa + ε(qaqb + qbqa) =
∥∥∥qa

∥∥∥ + 2ε⟨qa, qb⟩. (22)

Note that the norm is dual-valued. Furthermore, if qa = 0 then ∥Q∥ = 0 and hence Q has no inverse. Thus,
if Q = qa + εqb ∈ HD is non-zero and also qa , 0, then the inverse Q−1 is a dual quaternion and satisfies
QQ−1 = Q−1Q = 1. For more details about the basics of dual quaternions, see [12, 15, 24].

6)Galilean plane is defined with the Galilean inner product: for the vectors x⃗ = (a1, b1), y⃗ = (a2, b2) ∈ R2, ⟨x⃗, y⃗⟩ = a1a2.Note that dual
numbers (D) are isomorphic to Galilean plane, G2, [5, 30, 31].
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2.4. Hyperbolic Numbers and Hyperbolic(Perplex) Quaternions
Hyperbolic numbers are at the form w = a + hb, together with real numbers a,b and hyperbolic unit h

satisfies h2 = 1. All hyperbolic numbers can be written with the base {1,h}. The set of these numbers can
be defined as H = {w = a + hb : a, b ∈ R, h2 = 1}. The set of hyperbolic numbers is 2-dimensional vector
space over the field of real numbers. The conjugate of a hyperbolic number is defined by w∗ = a − bh. In
addition, the modulus |w| is defined as |w| =

√
ww∗ =

√
|a2 − b2|. This modulus corresponds to the distance

in the Minkowski plane7).
The set of hyperbolic quaternions is an extension of real quaternions by hyperbolic numbers and it is

defined as

HH = {Q = w0 + w1i + w2 j + w3k : w0,w1,w2,w3 ∈H}, (23)

where 1, i, j, k are the quaternion units. Furthermore, hyperbolic unit h commutes with the basis elements
i, j, k, namely, hi = ih, h j = jh, hk = kh. As a result of this commutativity, hyperbolic quaternions can also
be written as Q = qa + hqb = qa + qbh, where qa = a0 + a1i + a2 j + a3k, qb = b0 + b1i + b2 j + b3k ∈ H. So, we can
rewrite the set of hyperbolic quaternions as follows:

HH = {Q = qa + hqb : qa, qb ∈ H, h2 = 1}. (24)

Basis elements of hyperbolic quaternions are are 1, i, j, k,h,hi,h j,hk, and hyperbolic quaternions are
form an 8-dimensional vector space over the R. For any Q = w0 + w1i + w2 j + w3k ∈ HH, the hyperbolic
scalar part and vector part of Q are SQ = w0 and VQ = w1i + w2 j + w3k, respectively. If SQ = 0, then Q is
called a pure hyperbolic quaternion. Furthermore, for hyperbolic quaternions Q = qa+hqb and P = pa+hpb,
addition and multiplication are given by

Q + P = qa + pa + h(qb + pb) , (25)
QP = qapa + qbpb + h(qapb + qbpa). (26)

There are three different conjugate definitions for hyperbolic quaternions. For a hyperbolic quaternion
Q = qa + hqb = SQ + VQ, we have

(a) Quaternion conjugate: Q = qa + hqb = SQ − VQ ,

(b) Hyperbolic conjugate: Q∗ = qa − hqb = S∗Q + V∗Q ,

(c) Total conjugate: Q† = (Q)∗ = (Q∗) = qa − hqb = S∗Q − V∗Q .

The inner product of hyperbolic quaternions is defined similar to the inner product of real quaternions
and the result is hyperbolic-valued. For hyperbolic quatenions Q = qa + hqb and P = pa + hpb the inner
product is defined as

⟨Q,P⟩ =
1
2

(QP + PQ) = ⟨qa, pa⟩ + ⟨qd, pd⟩ + h
(
⟨qa, pd⟩ + ⟨qd, pa⟩

)
. (27)

The semi norm of a hyperbolic quaternion Q = w0 + w1i + w2 j + w3k = qa + hqb can be defined as:

∥Q∥ = QQ = QQ = w2
0 + w2

1 + w2
2 + w2

3, ∥Q∥ ∈H

= (a2
0 + a2

1 + a2
1 + a2

3) + (b2
0 + b2

1 + b2
1 + b2

3) + 2h(a0b0 + a1b1 + a2b2 + a3b3)

= qaqa + qbqb + h(qaqb + qbqa) =
∥∥∥qa

∥∥∥ + ∥∥∥qb

∥∥∥ + 2h⟨qa, qb⟩ (28)

For further details, see [3, 4, 10, 19, 28, 31].

7)In the literature, Minkowski plane is also known as Lorentzian plane. Minkowski plane is defined with the Minkowski inner
product: for the vectors x⃗ = (a1, b1), y⃗ = (a2, b2) ∈ R2, ⟨x⃗, y⃗⟩ = a1a2 − b1b2. Note that hyperbolic numbers (H) are isomorphic to
Minkowski plane, R2

1, [17, 20].
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2.5. Hybrid Numbers

A general element of hybrid numbers has the form w = a+ ib+ εc+ hd, where a, b, c, d are real numbers,
and {1, i, ε,h} are the standart basis elements. The set of hybrid numbers is defined by:

K =
{
w = a + ib + εc + hd : a, b, c, d ∈ R,h2 = 1, i2 = −1, ε2 = 0, ε + i = ih = −hi

}
. (29)

The addition of hybrid numbers is done component-wise and satisfies the commutative property and
associativity. Also, the additive inverse of any hybrid number is −w. Multiplication of hybrid numbers is
easily found by using the properties of hybrid units. In addition, it is clear that the multiplication operation
is not commutative but associative. For a hybrid number w = a + ib + εc + hd, the conjugate of w is defined
by w∗ = a − ib − εc − hd. Additionally, according to the hybridian product it is easy to see that ww = ww.
The character of a hybrid number w is defined as C(w) = ww∗ = w∗w = a2 + (b − c)2

− c2
− d2 where C(w) is a

real number. Moreover, the modulus of a hybrid number |w| is defined by |w| =
√
C(w). This definition of

the modulus is a generalized modulus of complex, dual and hyperbolic numbers. That is, if c = d = 0, then
|w| =

√

a2 + b2; if b = d = 0, then |w| =
√

a2; if b = c = 0, then |w| =
√
|a2 − d2|. For more details, see [7, 18].

3. Hybrid Quaternions

The set of hybrid quaternions that we will describe in this section is a generalization of the complex,
dual, and hyperbolic quaternions found in the literature. Therefore, it includes these three quaternion
systems and provides their properties completely in special cases.

Hybrid quaternions are an extension of real quaternions by hybrid numbers (K). The set of hybrid
quaternions is denoted by HK and defined as

HK = {Q = w0 + w1i + w2 j + w3k : w0,w1,w2,w3 ∈ K} (30)

where i, j and k are the quaternion units and they satisfy i2 = j2 = k2 = −1, i jk = −1. Additionally, for hybrid
coefficients w0,w1,w2,w3 the hybrid units i, ε,h satisfy ε2 = 0, i2 = −1, h2 = 1, ε + i = ih = −hi and they
commute with the quaternion units:

ii = ii, i j = ji, ik = ki, εi = iε, ε j = jε, εk = kε,hi = ih,h j = jh,hk = kh.

For the coefficients wn = an+ ibn+εcn+hdn ∈ K, n = 0, 1, 2, 3, any hybrid quaternion Q = w0+w1i+w2 j+w3k
can be written as

Q =(a0 + ib0 + εc0 + hd0) + (a1 + ib1 + εc1 + hd1)i + (a2 + ib2 + εc2 + hd2) j + (a3 + ib3 + εc3 + hd3)k
=qa + iqb + εqc + hqd = qa + qbi + qcε + qdh

where qa, qb, qc, qd ∈ H and an, bn, cn, dn ∈ R. As a consequence of this representation we can rewrite the set
of hybrid quaternions as follows:

HK =
{
Q = qa + iqb + εqc + hqd : qa, qb, qc, qd ∈ H, ε2 = 0, i2 = −1,h2 = 1, ih = −hi = ε + i

}
.

Hybrid quaternions form a 16-dimensional real vector space and the basis elements are 1, i, j, k, i, ii, i j, ik,
ε, εi, ε j, εk, h,hi,h j,hk. With the help of multiplication rules of the hybrid numbers, multiplication table for
the basis elements of hybrid quaternions can be established easily.

Definition 3.1. For any Q = w0 +w1i +w2 j +w3k ∈ HK, we define the hybrid scalar part of Q as SQ = w0, hybrid
vector part of Q as VQ = w1i + w2 j + w3k. If SQ = 0, then Q is called 1st type pure hybrid quaternion. Here, note
that the hybrid vector part consists of hybrid coefficients.
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Definition 3.2. For any Q = qa + iqb + εqc + hqd ∈ HK, scalar part and quaternion vector part of Q are defined by
S̃Q = qa and ṼQ = iqb + εqc + hqd, respectively. Q is called 2nd type pure hybrid quaternion, if S̃Q = 0. Here the
coefficients(qa, qb, qc, qd) are real quaternions. Additionally, two hybrid quaternions are equal if all of their components
are sequentially equal.

Remark 3.3. Let us have the matrices X =
[
1 i j k

]T
and Y =

[
1 i ε h

]T
which are formed by the quaternion

units and the hybrid units, respectively. Additionally, for the 4×4 matrix M which consists the coefficients of a hybrid
quaternion Q as

M =


a0 a1 a2 a3
b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

 (31)

then, the equations Q = XTMY and Q = YTMTX are hold. Note that Q = QT and (XTMY)T = YTMTX.

Definition 3.4. The sum of two hybrid quaternions is defined by summing their components. Let Q = qa + iqb +
εqc + hqd and P = pa + ipb + εpc + hpd be any elements of HK, the sum of Q and P is

Q + P = (qa + iqb + εqc + hqd) + (pa + ipb + εpc + hpd) = (qa + pa) + i(qb + pb) + ε(qc + pc) + h(qd + pd).

Addition of hybrid quaternions is both commutative and associative. Zero is the null element and the
inverse element of Q is −Q. This properties signifies that (HK,+) is an Abelian group.

Definition 3.5. The multiplication of hybrid quaternions Q = qa + iqb + εqc + hqd and P = pa + ipb + εpc + hpd can
be given as follows

QP = (qapa − qbpb + qbpc + qcpb + qdpd) + i(qapb + qbpa + qbpd − qdpb)
+ ε(qapc + qcpa + qbpd − qdpb + qdpc − qcpd) + h(qapd + qdpa + qcpb − qbpc). (32)

It is obvious that the multiplication of hybrid quaternions is not commutative. But it satisfies the
property of associativity. The set of hybrid quaternions, HK, constitutes a non-commutative ring with
addition, multiplication, and the identity element. Furthermore, hybrid quaternions form a 16-dimensional
non-commutative associative algebra over R.

Remark 3.6. For Q = qa + iqb + εqc + hqd, P = pa + ipb + εpc + hpd ∈ HK, the multiplication QP, which is obtained
above, is a generalization of multiplication of complex, dual, and hyperbolic quaternions. Thus, under the special
cases, we can obtain the multiplication of complex, dual, and hyperbolic quaternions from the equation (32), as follows:

i) If qc = qd = pc = pd = 0, then QP = qapa − qbpb + i(qapb + qbpa),

ii) If qb = qd = pb = pd = 0, then QP = qapa + ε(qapc + qcpa),

iii) If qb = qc = pb = pc = 0, then QP = qapa + qdpd + h(qapd + qdpa).

Here, the results obtained from the first, second, and third cases exactly correspond to the equations achieved by the
multiplication of the two complex, dual, and hyperbolic quaternions in (13),(20), and (26), respectively. In other
cases, it can be found the multiplication of a complex and a dual quaternion or a complex and a hyperbolic quaternion
or a dual and a hyperbolic quaternion.

Remark 3.7. Since the multiplication of the two general Hybrid quaternions means the product of two sixteen-
component numbers, it is not easy to deal with this multiplication manually and it is very likely to make mistakes.
We overcame this difficulty by writing a software program in C++ to multiply the hybrid quaternions.

Definition 3.8. Three different conjugates can be defined for a hybrid quaternion. For a hybrid quaternion Q =
qa + iqb + εqc + hqd, following definitions for conjugates can be given:
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(a) Quaternion conjugate: Q = qa + iqb + εqc + hqd.

(b) Hybrid conjugate: Q∗ = qa − iqb − εqc − hqd

(c) Total conjugate: Q† = (Q)∗ = (Q∗) = qa − iqb − εqc − hqd.

Theorem 3.9. For any Q = qa + iqb + εqc +hqd,P = pa + ipb + εpc +hpd ∈ HK the following properties are satisfied:

(1) (Q) = (Q†)† = (Q∗)∗ = Q,

(2) Q + P = Q + P, (Q + P)∗ = Q∗ + P∗, (Q + P)† = Q† + P†

(3) Q = Q iff Q ∈ K, Q∗ = Q iff Q ∈ H, Q† = Q iff Q ∈ R.

Proof. Straightforward.

Some important properties are resulted from the non-commutativity of hybrid quaternions. Before
giving a corollary covering these essential properties, we observe them in the following example.

Example 3.10. Let Q = (2− i)+ (1− j)i+ (3− k)ε and P = (1− k)i+ (2−3i)ε+ (1+2k)h be two hybrid quaternions.
Then,

1) Q = (2 + i) + (1 + j)i + (3 + k)ε

2) Q∗ = (2 − i) − (1 − j)i − (3 − k)ε

3) Q† = (2 + i) − (1 + j)i − (3 + k)ε

4) P = (1 + k)i + (2 + 3i)ε + (1 − 2k)h

5) P∗ = −(1 − k)i − (2 − 3i)ε − (1 + 2k)h

6) P† = −(1 + k)i − (2 + 3i)ε − (1 − 2k)h

7) QQ = 9 + 4i + 12ε + (2i + 6 j − 2k)h

8) QQ = 9 + 4i + 12ε + (2i − 6 j + 2k)h

9) QQ∗ = (−3 − 4i − 4 j + 2k) + (−2k)i + (2 j)ε + (2i)h

10) Q∗Q = (−3 − 4i − 4 j + 2k) + (2k)i + (−2 j)ε + (2i)h

11) QQ† = 1 + (2i − 4 j + 2k)i + (6i − 2 j − 4k)ε + (−2i − 6 j + 2k)h

12) Q†Q = 1 + (2i − 4 j − 2k)i + (6i + 2 j − 4k)ε + (−2i + 6 j − 2k)h

13) QP = (3 − 4i − j − 6k) + (3 − 3i − 2 j)i + (−3 − 10i − j − 3k)ε + (2 + 2i + 4 j + 3k)h

14) PQ = (3 − 2i − j) + (1 − 3i + 2 j − 4k)i + (5 − 10i + j + 3k)ε + (2 − 4i − 4 j + 11k)h

15) QP = (3 + 4i + j + 6k) + (3 + 3i + 2 j)i + (−3 + 10i + j + 3k)ε + (2 − 2i − 4 j − 3k)h

16) P Q = (3 + 4i + j + 6k) + (1 − i + 4k)i + (5 + 6i − j − 3k)ε + (2 + 4i − 5k)h

17) (QP)∗ = (3 − 4i − j − 6k) + (−3 + 3i + 2 j)i + (3 + 10i + j + 3k)ε − (2 + 2i + 4 j + 3k)h

18) P∗Q∗ = (3 − 2i − j) + (−3 − i)i + (3 + 6i + j + 3k)ε + (−2 − 2i + 3k)h

19) (QP)† = (3 + 4i + j + 6k) + (−3 − 3i − 2 j)i + (3 − 10i − j − 3k)ε + (−2 + 2i + 4 j + 3k)h
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20) P†Q† = (3 + 4i + j + 6k) + (1 − i + 4k)i + (5 + 6i − j − 3k)ε + (2 + 4i − 5k)h

With these examples we can easily obtain the following corollary for hybrid quaternions.

Corollary 3.11. Let Q and P be two hybrid quaternions. Then the followings are satisfied in general:

(a) QQ , QQ, QQ† , Q†Q, QQ∗ , Q∗Q,

(b) QP , P Q, (QP)† , P†Q†, (QP)∗ , P∗Q∗.

Definition 3.12. The inner product of hybrid quaternions is defined as

⟨Q,P⟩ = S 1
2 (QP+PQ), ⟨Q,P⟩ ∈ K. (33)

where Q,P ∈ HK and S 1
2 (QP+PQ) is the hybrid scalar part of the hybrid quaternion 1

2 (QP + PQ). This inner product
fulfill all the usual properties of an inner product except positive definite.

Remark 3.13. Note that we select to define a different inner product than that defined for real quaternions. Certainly
alternative definitions can be given for the inner product.

Theorem 3.14. Let Q = qa + iqb + εqc + hqd and P = pa + ipb + εpc + hpd be two hybrid quaternions. The inner
product of Q and P:

S 1
2 (QP+PQ) = ⟨qa, pa⟩ − ⟨qb, pb⟩ + ⟨qd, pd⟩ + ⟨qc, pb⟩ + ⟨qb, pc⟩

+ i
(
⟨qa, pb⟩ + ⟨qb, pa⟩

)
+ ε
(
⟨qa, pc⟩ + ⟨qc, pa⟩

)
+ h
(
⟨qa, pd⟩ + ⟨qd, pa⟩

)
.

Proof. With the help of multiplication of two quaternions (32), we can calculate QP and PQ:

QP = (qa + iqb + εqc + hqd)(pa + ipb + εpc + hpd)
= (qapa − qbpb + qbpc + qcpb + qdpd) + i(qapb + qbpa + qbpd − qdpb)
+ ε(qapc + qcpa + qbpd − qdpb + qdpc − qcpd) + h(qapd + qdpa + qcpb − qbpc). (34)

PQ =(pa + ipb + εpc + hpd)(qa + iqb + εqc + hqd)
=(paqa − pbqb + pbqc + pcqb + pdqd) + i(paqb + pbqa + pbqd − pdqb)
+ ε(paqc + pcqa + pbqd − pdqb + pdqc − pcqd) + h(paqd + pdqa + pcqb − pbqc). (35)

By using equations (7) and (8) we can easily get

1
2

(
QP + PQ

)
= ⟨qa, pa⟩ − ⟨qb, pb⟩ + ⟨qd, pd⟩ + ⟨qc, pb⟩ + ⟨qb, pc⟩

+ i
(
⟨qa, pb⟩ + ⟨qb, pa⟩ + qb × pd + pb × qd

)
+ ε
(
⟨qa, pc⟩ + ⟨qc, pa⟩ + qb × pd + pb × qd + qd × pc + pd × qc

)
+ h
(
⟨qa, pd⟩ + ⟨qd, pa⟩ + qc × pb + pc × qd

)
.

Then, the hybrid scalar part of 1
2

(
QP + PQ

)
is obtained as

S 1
2 (QP+PQ) = ⟨qa, pa⟩ − ⟨qb, pb⟩ + ⟨qd, pd⟩ + ⟨qc, pb⟩ + ⟨qb, pc⟩ + i

(
⟨qa, pb⟩ + ⟨qb, pa⟩

)
+ ε
(
⟨qa, pc⟩ + ⟨qc, pa⟩

)
+ h
(
⟨qa, pd⟩ + ⟨qd, pa⟩

)
. (36)
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Corollary 3.15. The inner product of two hybrid quaternions which is defined above is a generalized inner product
for the complex quaternions (biquaternions), dual quaternions and hyperbolic(perplex) quaternions. In other words,
for Q = qa + iqb + εqc + hqd, P = pa + ipb + εpc + hpd ∈ HK, from the inner product ⟨Q,P⟩ we can get the inner
product of complex, dual, and hyperbolic quaternions in special cases.

(i) If qc = qd = pc = pd = 0, then we get S 1
2 (QP+PQ) = ⟨qa, pa⟩ − ⟨qb, pb⟩ + i

(
⟨qa, pb⟩ + ⟨qb, pa⟩

)
(ii) If qb = qd = pb = pd = 0, then we get S 1

2 (QP+PQ) = ⟨qa, pa⟩ + ε
(
⟨qa, pc⟩ + ⟨qc, pa⟩

)
.

(iii) If qb = qc = pb = pc = 0, then we get S 1
2 (QP+PQ) = ⟨qa, pa⟩ + ⟨qd, pd⟩ + h

(
⟨qa, pd⟩ + ⟨qd, pa⟩

)
.

Here, the results obtained under the first, second, and third cases exactly correspond to the equations achieved by the
inner product of complex, dual, and hyperbolic quaternions in (14), (21), and (27), respectively.

(iv) If qc = qd = pb = pd = 0, the inner product of a complex quaternion and a dual quaternion can be obtained as
S 1

2 (QP+PQ) = ⟨qa, pa⟩ + ⟨qb, pc⟩ + i⟨qb, pa⟩ + ε⟨qa, pc⟩.

(v) If qc = qd = pb = pc = 0, the inner product of a complex quaternion and a hyperbolic quaternion can be obtained
as S 1

2 (QP+PQ) = ⟨qa, pa⟩ + i⟨qb, pa⟩ + h⟨qa, pd⟩.

(vi) If qb = qd = pb = pc = 0, the inner product of a dual quaternion and a hyperbolic quaternion can be obtained as
S 1

2 (QP+PQ) = ⟨qa, pa⟩ + ε⟨qc, pa⟩ + h⟨qa, pd⟩.

All these special cases show that hybrid quaternions are a powerful generalization of the complex quaternions (bi-
quaternions), dual quaternions, and hyperbolic(perplex) quaternions.

Definition 3.16. For Q,P ∈ HK, vector product of hybrid quaternions is defined as

Q × P = V 1
2 (QP−PQ), Q × P ∈ HK. (37)

Here, V 1
2 (QP−PQ) is the hybrid vector part of the hybrid quaternion 1

2 (QP − PQ).

Theorem 3.17. Let Q = qa + iqb + εqc + hqd and P = pa + ipb + εpc + hpd be two hybrid quaternions. The vector
product of Q and P is given by

V 1
2 (QP−PQ) = qa × pa − qb × pb + qd × pd + qc × pb + qb × pc + i

(
qa × pb + qb × pa

)
+ ε
(
qa × pc + qc × pa

)
+ h
(
qa × pd + qd × pa

)
. (38)

Proof. Previously QP and PQ were calculated as in (34), (35) and also by using equations (7) and (8) we can
easily obtain 1

2

(
QP − PQ

)
as follows:

1
2

(
QP − PQ

)
= qa × pa − qb × pb + qd × pd + qc × pb + qb × pc + i

(
qa × pb + qb × pa + ⟨qb, pd⟩ + ⟨pb, qd⟩

)
+ ε
(
qa × pc + qc × pa + ⟨qb, pd⟩ + ⟨pb, qd⟩ + ⟨qd, pc⟩ + ⟨pd, qc⟩

)
+ h
(
qa × pd + qd × pa + ⟨qc, pb⟩ + ⟨pc, qb⟩

)
.

Then, the hybrid vector part is found as follows:

V 1
2 (QP−PQ) = qa × pa − qb × pb + qd × pd + qc × pb + qb × pc

+ i
(
qa × pb + qb × pa

)
+ ε
(
qa × pc + qc × pa

)
+ h
(
qa × pd + qd × pa

)
.
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Corollary 3.18. The vector product of two hybrid quaternions which is defined as in (37), is a generalized vector
product for the complex quaternions (biquaternions), dual quaternions, and hyperbolic(perplex) quaternions. That is,
for Q,P ∈ HK, under the special cases we can get the vector product of complex, dual, and hyperbolic quaternions
from the vector product Q × P.

Example 3.19. Let’s find the inner product and vector product of hybrid quaternions Q = (1+ i+ j)+i(1−k)+ε(i+ j)
and P = i(i+ k)+ h(1+ k). Using the definition of inner product (3.12) and the definition of vector product (3.16) we
get the results:

⟨Q,P⟩ = S 1
2 (QP+PQ) = 2 + i + 2ε + h,

Q × P = V 1
2 (QP−PQ) = 2k + i(−2i + j) + ε(i + j) + h(2 j − k).

Definition 3.20. Let Q = w0 + w1i + w2 j + w3k be a hybrid quaternion. The norm of a hybrid quaternion is a
kind of semi-norm which can be defined as in terms of the inner product of a hybrid quaternion with itself, that is
∥Q∥ = ⟨Q,Q⟩. Also, it can be directly defined as:

∥Q∥ = |Q|2 = w0
2 + w1

2 + w2
2 + w3

2, (39)

where, this semi-norm is hybrid-valued. Moreover, with the definition of inner product of two hybrid quaternions,
∥Q∥ can be written as:

∥Q∥ = ⟨Q,Q⟩ = S 1
2 (QQ+QQ) = S(QQ) , ∥Q∥ ∈ HK. (40)

Theorem 3.21. Let Q = qa + iqb + εqc + hqd be a non-zero hybrid quaternion. The norm ∥Q∥ is

∥Q∥ = S(QQ) =
∥∥∥qa

∥∥∥ − ∥∥∥qb − qc

∥∥∥ + ∥∥∥qc

∥∥∥ + ∥∥∥qd

∥∥∥ + 2i⟨qa, qb⟩ + 2ε⟨qa, qc⟩ + 2h⟨qa, qd⟩.

Proof. From the equation (34) we can easily obtain QQ as

QQ = (qaqa − qbqb + qbqc + qcqb + qdqd) + i(qaqb + qbqa + qbqd − qdqb)
+ ε(qaqc + qcqa + qbqd − qdqb + qdqc − qcqd) + h(qaqd + qdqa + qcqb − qbqc). (41)

Then, the scalar part is

SQQ = (qaqa − qbqb + qbqc + qcqb + qdqd) + i(qaqb + qbqa) + ε(qaqc + qcqa) + h(qaqd + qdqa). (42)

Using the properties of real quaternions we get

S(QQ) =
∥∥∥qa

∥∥∥ − ∥∥∥qb − qc

∥∥∥ + ∥∥∥qc

∥∥∥ + ∥∥∥qd

∥∥∥ + 2i⟨qa, qb⟩ + 2ε⟨qa, qc⟩ + 2h⟨qa, qd⟩. (43)

Corollary 3.22. The norm of a hybrid quaternion which is defined above is a generalized norm for the complex
quaternions (biquaternions), dual quaternions and hyperbolic(perplex) quaternions. In other words, for Q = qa +
iqb + εqc + hqd ∈ HK, under special cases norm of complex, dual, and hyperbolic quaternions can be obtained as
following:

(i) If qc = qd = 0, then we get ∥Q∥ = S(QQ) =
∥∥∥qa

∥∥∥ − ∥∥∥qb

∥∥∥ + 2i⟨qa, qb⟩.

(ii) If qb = qd = 0, then we get ∥Q∥ = S(QQ) =
∥∥∥qa

∥∥∥ + 2ε⟨qa, qc⟩.

(iii) If qb = qc = 0, then we get ∥Q∥ = S(QQ) =
∥∥∥qa

∥∥∥ + ∥∥∥qd

∥∥∥ + 2h⟨qa, qd⟩.
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Here, the results obtained under the first, second, and third cases exactly corresponds to the equations achieved by the
norm of a complex quaternion, dual quaternion, and hyperbolic quaternion in (15), (22), and (28), respectively. The
semi norm which is defined for hybrid quaternions above is invariant under quaternion conjugation, ∥Q∥ =

∥∥∥Q∥∥∥ .
It is known that every non-zero real quaternions have a multiplicative inverse but as mentioned previously
this does not true for complex quaternions and dual quaternions. Because, zero divisors in complex
quaternions and dual quaternions have no inverse. As hybrid quaternions are a generalization of complex
and dual quaternions, every element in this set does not have an inverse. So, the hybrid quaternion algebra
HK is not a division algebra. For proper Q ∈ HK, the inverse Q−1 exists and it is given by the relation
QQ−1 = Q−1Q = 1.

Example 3.23. For the hybrid quaternions Q1 = (i + j) + (1 + j)i + (1 + k)ε and Q2 = (1 + i) + ( j)i + (i)ε + (k)h the
inverses Q−1

1 and Q−1
2 are given by

Q−1
1 =

1
6

(
(−i + k) + (1 + i − 2k)i + (2 + i − j − 2k)ε − (1 + i + j + k)h

)
,

Q−1
2 =

1
2

(
(−i + j) + i + (i)ε + (−k)h

)
.

It can be seen that these hybrid quaternions satisfy QQ−1 = Q−1Q = 1.

4. Venn Diagrams of Number Systems

In the previous sections, we have explained and presented the fundamental informations about number
systems. In this section, we will illustrate and give the relationships between these number systems with a
Venn diagram.

Figure 1: Venn diagram of number systems and quaternions

The relationships between sets of numbers and the sets of quaternions can be listed as follows:

• C ∪D ∪H ⊆ K, R ⊆ C ⊆ K, R ⊆ D ⊆ K, R ⊆H ⊆ K

• C ∩D = D ∩H =H ∩ C = C ∩D ∩H = R

• HC ∪HD ∪HH ⊆ HK, H ⊆ HC ⊆ HK, H ⊆ HD ⊆ HK, H ⊆ HH ⊆ HK

• HC ∩HD = HC ∩HH = HD ∩HH = HC ∩HD ∩HH = H.

• R ⊆ C ⊆ H ⊆ HC ⊆ HK, R ⊆ D ⊆ HD ⊆ HK,

• R ⊆H ⊆ HH ⊆ HK,K ⊆ H ∪HC ∪HD ∪HH ⊆ HK.
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5. Conclusion

In this study, we have systematically reviewed, and summarized number systems (C,D,H,K) and
quaternions (HC,HD,HH) built on these numbers. Based on these, we have introduced a new quaternion
system called hybrid quaternions (HK) as a combination of complex quaternions(biquaternions), dual
quaternions, and hyperbolic(perplex) quaternions. We then defined basic operations, inner product, norm,
and vector product on this new system. With these inclusive definitions, hybrid quaternions take a
generalized form of the other three quaternion types. This feature makes hybrid quaternions unique since
each quaternion system is a special case of this new quaternion system. Finally, we were able to diagram
all number systems and quaternion systems as a result of the broad consideration.

Examination of hybrid quaternions as a geometric algebra, matrices of hybrid quaternions, classifications
of hybrid quaternions, polar representations, De Moivre formulas, and applications of hybrid quaternions
can be worked as further studies.
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[2] M. Akar, S. Yüce, S. Şahin, On the Dual Hyperbolic Numbers and the Complex Hyperbolic Numbers. Journal of Computer

Science, Computational Mathematics , vol.8, no.1, (2018) 1-6.
[3] F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, E. Nichelatti, P. Zampetti, The Mathematics of Minkowski Space-time with an

Introduction to Commutative Hypercomplex Numbers, Birkhauser Verlag, Berlin, (2008) 1–265.
[4] F. Catoni, R. Cannata,V. Catoni, P. Zampetti, Hyperbolic trigonometry in two-dimensional space-time geometry. arXiv, math-

ph/0508011, (2005).
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[7] E. Erkan, A. Dağdeviren, k-Fibonacci and k-Lucas Hybrid Numbers, Tamap Journal of MAthematics and Statistics, (2021) 1-11
[8] P.R. Girard, Quaternions, Clifford algebras and relativistic physics. Springer Science, Business Media, 2007.
[9] K. Gürlebeck, W. Sprossig, Quaternionic and Clifford Calculus for Physicists and Engineers. John Wiley, Chichester, 1997.

[10] A.A. Harkin, J.B. Harkin, Geometry of generalized complex numbers, Math. Mag., 77(2) (2004) 118–129.
[11] I.L. Kantor, A.S. Solodovnikov, Hypercomplex Numbers. An elemantary Introduction to Algebras, Springer-Verlag, N.Y, 1989.
[12] D. Klawitter, Clifford Algebras: Geometric Modelling and Chain Geometries with Application in Kinematics, Springer: Berlin,

Germany, 2014.
[13] H.Y. Lin, M. Cahay, B.N. Vellambi, D. Morris, A Generalization of Quaternions and Their App., Symmetry, 14(3) (2022) 599.
[14] A. MacFarlane, Hyperbolic Quaternions, Proc. Roy. Soc. Edinburg, (1900) 169-181.
[15] C. Mladenova, Robot problems over configurational manifold of vector-parameters and dual vector-parameters., J. Intell. Robot.

Syst. 11 (1994) 117–133.
[16] A.E. Motter, M.A.F. Rosa, Hyperbolic calculus. Adv. Appl. Clifford Algebras, 8(1) (1998) 109–128.
[17] B. O’neill, Semi-Riemannian Geometry with Applications to Relativity. Academic Press, 1983.
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