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Abstract. A Hadamard manifold is a simply connected, complete Riemannian manifold with nonpositive
sectional curvature. The theory of Hadamard manifolds is a topic that has been more and more intensively
studied for more than forty years. In the present paper, we prove Liouville-type theorems for conformal,
isometric and harmonic pointwise transformations of metrics of Hadamard manifolds.

1. Introduction

A simply connected complete Riemannian manifold of nonpositive sectional curvature is called a Hadamard
manifold after the Cartan-Hadamard theorem (see [1, p. 240]). Namely, thanks to this theorem, we know
that it is diffeomorphic to a Euclidean space of the same dimension. For example, the hyperbolic space is
a Hadamard manifold with negative constant sectional curvature. There is another example of Hadamard
manifolds is a Euclidean space of the same dimension which has zero sectional curvature. From the
Cartan-Hadamard theorem, there follow several basic properties of Riemannian manifolds of nonpositive
curvature. First, from the theorem, we conclude that no compact simply connected manifold admits a
metric of nonpositive sectional curvature (see also [2, p. 162]). Second, a Hadamard manifold has an
infinite volume, which follows from the Cartan–Hadamard theorem. One can find dozens of papers
on the geometry in the large of Hadamard manifolds. But in the present paper, we prove Liouville-type
theorems for conformal, isometric and harmonic transformations of metrics of Hadamard manifolds. These
theorems complement similar theorems for complete and compact Riemannian manifolds and represent
our contribution to the geometry in the large of Hadamard manifolds.
The present paper is our lecture at ”XXI Geometrical Seminar” (June 26th – July 2nd, 2022, Belgrade, Serbia).

2. Liouville-type theorems on subharmonic, superharmonic, and convex functions defined on Hadamard
manifolds

Let
(
M, 1
)

be a complete Riemannian manifold. We recall here that a function f ∈ C2(M) is subharmonic
(resp., superharmonic and harmonic) if it satisfies the differential inequality ∆ f ≥ 0 (resp., ∆ f ≤ 0 and ∆ f
= 0) for the Beltrami Laplacian ∆ f = div

(
1rad f

)
(see [2, p. 281]). In what follows, we will insist that the

function f be in Lp(M) if the p−power of the absolute value of f is integrable with respect to the Riemannian
measure induced by the given Riemannian metric 1. In addition, we recall that if a Riemannian manifold
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Email addresses: s.e.stepanov@mail.ru (Sergey Stepanov), i.i.tsyganok@mail.ru (Irina Tsyganok)



S. Stepanov, I. Tsyganok / Filomat 37:25 (2023), 8473–8479 8474

(M, 1) has infinite volume, then all of the constant functions, except a null function, are not in Lq (M) for
any q ∈ (0, ∞) (see [3, p. 419]). For example, we consider the following famous result of S.-T. Yau (see [4,
p. 663]): A nonnegative subharmonic Lq-function for some q ∈(1,∞) on an arbitrary complete Riemannian
manifold

(
M, 1
)
, then f is constant. To this, we can add that the constant must be zero if (M, 1) has infinite

volume. In turn, the following statement holds.
Lemma 2.1. The Hadamard manifold (M, 1) does not admit a non-zero non-negative subharmonic Lq-function for
each q ∈ (0, ∞).
Proof. Let f be a non-zero non-negative subharmonic Lq-function for some q ∈ (0,∞) defined a Hadamard
manifold (M, 1). In turn, we known from [4, p. 288] that if a Riemannian manifold (M, 1) is complete,
simply connected and has non-positive sectional curvature then for each q ∈ (0,∞) every nonnegative Lq

subharmonic function on (M, 1) is constant. Therefore, our function f must be a constant. On the other
hand, a Hadamard manifold has an infinite volume, which follows from the Cartan–Hadamard theorem.
This forces the constant function f to be zero (see, for example, [3, p. 418]). This completes the proof of our
lemma.
Remark 2.2. A similar statement can be found in [3, pp. 419-420]. Namely, the Hadamard manifold (M, 1)
does not admit a non-constant non-negative subharmonic Lq -function for each p ∈ (0, 1].
It is obvious that the modulus of a harmonic function is a non-negative subharmonic function, so we can
state the obvious corollary of Lemma 2.1.
Corollary 2.3. A Hadamard manifold (M, 1) does not admit a non-zero harmonic Lq -function for each q ∈ (0, ∞).
A function f ∈ C2 (M) is called convex (see [2, p. 281]) if its Hessian Hess1 f := ∇ d f is positive semi-definite at
each point x ∈M. Then, in particular, we have ∆ f ≥ 0 for a convex function f and hence f is a subharmonic
function. Therefore, the following corollary holds.
Corollary 2.4. A Hadamard manifold

(
M, 1
)

does not admit non-zero non-negative smooth convex Lq-functions for
some q ∈ (0, ∞).
There are many examples of Hadamard manifolds, and one of them is a Riemannian globally symmetric
space (M, 1) of non-compact type, which is also simply connected, complete and has nonpositive sectional
curvature. That is a prominent example of a Hadamard manifold. Therefore, a new corollary of Lemma 2.1
holds.
Corollary 2.5. A Riemannian globally symmetric space of noncompact type does not admit a nonzero non-negative
subharmonic (resp., harmonic and convex) Lq-function for q ∈ (0, ∞).
Remark 2.6. A simply connected irreducible symmetric space is an Einstein manifold (see [2, p. 386]). In
particular, the Einstein constant of a Riemannian globally symmetric space (M, 1) of noncompact type is
negative and hence Ric < 0.
Next, we can prove the following theorem.
Theorem 2.7. Let f ∈ C2 (M) be a non-negative superharmonic function defined on a complete Riemannian manifold
(M, 1) . If f ∈ Lq (M) for some q ∈ (0, 1), then f must be identically constant. Moreover, this constant must be zero
if (M, 1) has infinite volume.
Proof. S.-T. Yau formulated in [5, p. 607] the following Liouville-type theorem: Let (M, 1) be a complete
Riemannian manifold and f ∈ C2(M) be a nonnegative function such that

(
q − 1

)
f ∆ f ≥ 0 where q is a

positive number, then for q , 1, either
∫

M f qdvol1 = ∞ or f = constant. This text was a corrected formulation
of a theorem that had been proved earlier in his paper [6, p. 664]. In turn, from the theorem above we can
conclude that a nonnegative superharmonic Lq -function f defined on a complete Riemannian manifold(
M, 1
)

must be a constant function for any q ∈ (0, 1). If, in addition, (M, 1) has infinite volume, then this
forces the constant function f to be zero (see, for example, [3, p. 418]).
Next, let (M, 1) be a connected and noncompact Riemannian manifold and consider a diffusion process
on it, generated by the Laplacian ∆, which is absorbing at infinity. If the probability of the absorption at
∞ in a finite time is zero, then (M, 1) is said to be stochastically complete. In turn, a classical result by A.
Grigor’yan states that on a stochastically complete manifold non-negative superharmonic L1-functions are
necessarily constant (see [7, p. 204]). At the same time, this constant must be zero if (M, 1) has infinite
volume. Summing up, we can formulate the following theorem.
Theorem 2.7. Let f ∈ C2(M) be a non-negative superharmonic function defined on a complete and stochastically
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complete Riemannian manifold (M, 1) . If f ∈ Lq (M) for some q ∈ (0, 1], then f must be identically constant.
Moreover, this constant must be zero if (M, 1) has infinite volume.
S.-T. Yau proved that an arbitrary complete Riemannian manifold is stochastically complete if its Ricci
curvature is bounded from below by a negative constant (see also [7, p. 224]). In this case, we can formulate
the following corollary.
Corollary 2.8. A Hadamard manifold (M, 1) with the Ricci curvature bounded from below does not admit a
non-negative and non-zero superharmonic Lq-function for each q ∈ (0, 1).
Remark 2.9. The last corollary is an analogue of the theorem from [3, pp. 419-420] which we formulated in
Remark 2.2.
In conclusion we prove the following theorem (cf. [6, p. 660]).
Theorem 2.10. Let f ∈ C2(M) be a superharmonic function on a Hadamard manifold (M, 1) such that

∥∥∥ 1rad f
∥∥∥ ∈

L1 (M), then f must be a harmonic function.
Proof. It is well known that if V is a smooth vector field on a complete non-compact and oriented Riemannian
manifold

(
M, 1
)

such that ∥V ∥ ∈ L1 (M) and div V ≤ 0, then div V = 0 (see [8, p. 281]). If we suppose
V = 1rad f for some f ∈ C2 (M) , then div V = ∆ f . In this case, the condition div V ≤ 0 can be rewritten as
∆ f ≤ 0. As a result, we can reformulate the above theorem for the vector field 1rad f and the superharmonic
function f ∈ C2 (M). In order to complete of the proof, we recall that the Hadamard manifold is simply
connected and hence orientable.

3. Theorems of Liouville type in the theory of conformal transformations of metrics of Hadamard
manifolds

We will consider here the map id :
(
M, 1
)
→
(
M, 1̄
)

such that 1̄ = e2σ1 which we will call the conformal
transformation of the metric of

(
M, 1
)
. Then the scalar curvatures s̄ and s of two conformally equivalent

metrics 1̄ = e2σ1 and 1 are related by the equality (see [9, p. 271])

2 (n − 1) ∆ σ =
(

s − e2σ s̄
)
− (n − 1) (n − 2)

∥∥∥ 1rad σ
∥∥∥2 (1)

where
∥∥∥ 1rad σ

∥∥∥2 = 1 (dσ, dσ). Therefore, if the inequality e2σ s̄ ≥ s holds everywhere on (M, 1), then (1)
implies the inequality ∆ σ ≤ 0. It means that σ is a superharmonic function. In this case, based on Theorem
2.9 and equation (1), we conclude that σ = constant if

∥∥∥ 1rad σ
∥∥∥ ∈ L1 (M) and

(
M, 1
)

is a Hadamard manifold.
In this case, F is a homothetic transformation. Summarizing the above, we can formulate Theorem 3.1.
Theorem 3.1. Let

(
M, 1
)

be an n-dimensional ( n ≥ 3 ) Hadamard manifold and id :
(
M, 1
)
→
(
M, 1̄
)

be a conformal
map with 1̄ = e2σ1. If the following conditions hold: e2σ s̄ ≥ s and

∥∥∥ 1rad σ
∥∥∥ ∈ L1 (M), then id :

(
M, 1
)
→
(
M, 1̄
)

is
homothetic.
Let σ = ln f for some positive scalar function f ∈ C2 (M) then from (2) we obtain the following equation

2 (n − 1) f ∆ f = f 2
(

s − f 2 s̄
)
− (n − 1) (n − 4)

∥∥∥ 1rad f
∥∥∥2 , (2)

where f 2 = e2σ. Moreover, based on Corollary 2.8 above, we can formulate the following Corollary 3.2.
Corollary 3.2. An n-dimensional ( n ≥ 4 ) Hadamard manifold

(
M, 1
)

with the Ricci curvature, bounded from below
by some negative constant, does not admit a non-isometric conformal map id :

(
M, 1
)
→
(
M, 1̄
)

such that 1̄ = e2σ1

and e2σ s̄ ≥ s for a Lq -function σ at least for one q ∈ (0, 1].
In general, a harmonic function does not transform into a harmonic function. The conditions under
which the harmonic functions remain invariant have been studied by Y. Ishii in [10]. He introduced the
pointwise conharmonic transformations as a subgroup of the conformal transformations which preserve
the harmonicity of a certain class of smooth functions. In particular, Y. Ishii proved that id :

(
M, 1
)
→
(
M, 1̄
)

is a conharmonic metric transformation if it is a conformal transformation metric 1̄ := F∗1 = e2σ1 for a
smooth function σ ∈ C2 (M) satisfying the condition s = e2σ s̄. Using Theorem 3.1 we can conclude that the
following Liouville-type proposition holds.
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Corollary 3.3. Let id :
(
M, 1
)
→
(
M, 1̄
)

be a conharmonic transformation of an n-dimensional (n ≥ 3) Hadamard
manifold (M, 1) such that 1̄ = e2σ1 for some function σ ∈ C2 (M). If

∥∥∥ 1rad σ
∥∥∥ ∈ L1 (M) then id :

(
M, 1
)
→
(
M, 1̄
)

is
homothetic.
Taking into account the equality s = e2σ s̄, equation (1) can be rewritten in the form

2∆ σ = − (n − 2)
∥∥∥ 1rad σ

∥∥∥2 where n ≥ 3. Then we can conclude that σ is a superharmonic function.
Then, on the basis of Corollary 2.8, we conclude that the following Liouville-type assertion holds for
conharmonic mappings of Hadamard manifolds.
Corollary 3.4. An n-dimensional ( n ≥ 4 ) Hadamard manifold

(
M, 1
)

with the Ricci curvature, bounded from below
by some negative constant, does not admit a non-isometric conharmonic map id :

(
M, 1
)
→
(
M, 1̄
)

such that 1̄ = e2σ1

for a Lq-function σ at least for one q ∈ (0, 1].
A vector field V on

(
M, 1
)

is called an infinitesimal conformal transformation or a conformal Killing vector field if
a local one-parameter group of infinitesimal transformations generated by the vector field V is a group of
conformal transformations of

(
M, 1
)

(see [9, p. 282]). In this case LV1 = 2σ1 where LV is the Lie derivation
with respect to V. The function σ is called the conformal factor of V and is defined by the equality n σ = div V.
The vector field V is said to be infinitesimal homothetic or infinitesimal isometric transformation according as its
conformal factor σ is a constant or zero, respectively.
Let V be a conformal Killing vector field, then one can proved that (see [11, p. 25])

1
(
∆̄V, X

)
= Ric (V, X) −

n − 2
n

X ( div V ) (3)

where ∆̄ = −trace1∇2 and X ( div V ) is the directional derivative of div V along an arbitrary smooth vector
field X on

(
M, 1
)
. From (3) we obtain the formula

∆ e (V) = −Ric (V, V) − (n − 2) V ( σ ) + ∥ ∇V ∥2 (4)

for the energy density function ∆ e (V) = 1/2 ∥V ∥2 := 1/2 1 (V, V) of the flow generated by the conformal
Killing vector field V and ∥ ∇V ∥2 = 1 (∇V, ∇V ).
If
(
M, 1
)

is an n-dimensional Hadamard manifold, then, according to the definition of the Ricci tensor, we
have Ric (V, V) =

∑
i=1,...,n

sec (V, ei) ≤ 0 for any orthonormal frame, { e1, ··· , en}, of TxM and for the sectional

curvature sec (Y, Z) of the plane spanned by Y,Z ∈ TxM at an arbitrary point x ∈ M. If Ric (V, V) is
not strictly negative and LV σ ≤ 0 everywhere on

(
M, 1
)
, then, based on (4), we conclude that e (V) is a

subharmonic function. In this case, using Lemma 2.1, we can formulate the following theorem.
Theorem 3.5. Let V be a conformal Killing vector field on n-dimensional ( n ≥ 3 ) Hadamard manifold

(
M, 1
)
. If the

following conditions hold:
(i) the energy density function e (V) ∈ Lq (M) at least for one q ∈ (0, ∞);
(ii) V ( σ ) ≤ 0 for the conformal factor σ of V;
(iii) Ric (V, V) ≤ 0,
then V is identically zero.
Remark 3.6. The condition LV σ ≤ 0, which is equivalent to the inequality LV ( div V) ≤ 0. In turn, the
last inequality means that d vol1 is a nonincreasing function along trajectories of the flow generated by the
vector field V.
An interesting particular case of a conformal Killing vector field is when its dual 1-form is closed (see [8, p.
280]). In this case, it is said to be a closed conformal Killing vector field, or, in other words, a concircular vector
field (see [9, p. 168]). In turn, concircular vector fields appeared in the study of concircular transformations,
i.e., conformal transformations preserving geodesic circles. The following theorem holds for these vector
fields.
Theorem 3.7. Let Vbe a closed conformal Killing vector field on n-dimensional ( n ≥ 3 ) Hadamard manifold

(
M, 1
)
.

If the following conditions hold:
(i) the energy density function e (V) ∈ Lq (M) at least for one q ∈ (0, ∞);
(ii) Ric (V, V) ≤ 0,
then V is identically zero.
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Proof. Let V be a closed conformal Killing vector field on a Riemannian manifold
(
M, 1
)
, then from [8, p.

282] we have the formula

div (σV) = −
1

n − 1
Ric (V, V) + n σ2, (5)

where div (σV) = ∆ e (V). If Ric (V, V) ≤ 0, then from (5) we conclude that∆ e (V) is a subharmonic function.
Let now

(
M, 1
)

be an n-dimensional ( n ≥ 3 ) Hadamard manifold, then, using Lemma 2.1, we can formulate
Theorem 3.7.
Remark 3.8. First, Theorem 3.7 completes of the following Proposition 2.3 from [8, p. 282]: Let

(
M, 1
)

be an n-dimensional complete, simply connected Riemannian manifold with Ric ≤ 0, and let V be a
closed conformal vector field on

(
M, 1
)
, with conformal factor σ. If ∥ σV ∥ ∈ L1 (M), then V is parallel and

Ric (V, V) = 0. Second, thanks to Poincare lemma, every closed form of degree 1 is exact on any manifold
diffeomorphic to a Euclidean space of the same dimension. Therefore, the dual form for a closed conformal
Killing vector field is exact on a Hadamard manifold. Therefore, the words ”closed conformal Killing
vector” in Theorem 3.7 can be replaced by ”gradient conformal Killing vector”.

4. Theorems of Liouville type in the theory of isometric transformations of metrics of Hadamard mani-
folds

Let
(
M, 1
)

be a complete Riemannian manifold of dimension n ≥ 2 and d
(
x, y
)

be the distance function
defined by g for any x, y ∈ M (see details in Section 3.2.2 of monograph [2]). If F : (M, 1) → (M, 1) is a
isometric transformation of

(
M, 1
)

then it preserves the distance function d
(
x, y
)
, i.e., d

(
x, y
)
= d
(
F (x) , F

(
y
))

for any x, y ∈M (see [2, p. 202]). Let
(
M, 1
)

be a Hadamard manifold, then the square d2
F of the displacement

function dF (x) = d (x, F (x)) is smooth and convex (see [1, p. 246]). Therefore, thanks to Corollary 2.4, we can
formulate the following theorem
Theorem 4.1. Let dF be the displacement function of an isometric self-diffeomorphisms F :

(
M, 1
)
→
(
M, 1
)

of a
Hadamard manifold

(
M, 1
)
. If its square is a Lq-function at least for one q ∈ (0, ∞), then F is the constant map.

A vector field V on (M, 1) is called an infinitesimal isometric or Killing vector field (see [2, p. 313]) if a local one-
parameter group of infinitesimal transformations generated by the vector field V is a group of pointwise
isometric transformations of

(
M, 1
)
. In this case, we have LV g = 0 where LV is the Lie derivation with

respect to V. One can proved that (see [2, p. 318])(
Hess1e (V)

)
(X, X) = ∥ ∇XV∥2 − 1 (R (V,X) X, V) (6)

for the energy density function ∆ e (V) = 1/2 ∥V ∥2 of the flow generated by the Killing vector field V and
an arbitrary smooth X ∈ TM . At the same time, by the definition of a Hadamard manifold (M, 1) we have
1 (R (V,X) X, V) ≤ 0. In this case, from (6) we obtain the inequality

(
Hess1e (V)

)
≥ 0. Therefore, e (V) is a

non-negative convex function. As a result, we get Corollary 4.2.
Corollary 4.2. The Hadamard manifold

(
M, 1
)

does not admit a non-zero Killing vector field such that its energy
density function is a Lq-function at least for one q ∈ (0, ∞).
On the other hand, from (4) we obtain (see also [2, p. 318])

∆ e (V) = −Ric (V, V) + ∥ ∇V ∥2 . (7)

If we suppose that Ric (V, V) ≤ 0 on
(
M, 1
)
, then (7) implies the inequality ∆ e (V) ≥ 0. In this case, based

on Lemma 2.1, we can formulate the following Corollary 4.3.
Corollary 4.3. Let V be a Killing vector field on n-dimensional ( n ≥ 3 ) Hadamard manifold

(
M, 1
)
. If the following

conditions hold:
(i) the energy density function e (V) ∈ Lq (M) at least for one q ∈ (0, ∞);
(ii) Ric (V, V) ≤ 0,
then V is identically zero.
Remark 4.4. Corollary 4.3 generalizes the classical result on the Killing vector field on a compact Riemannian
manifold (see [2, p. 319]).
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5. Theorems of Liouville type in the theory of harmonic transformations of metrics of Hadamard mani-
folds

Consider an n-dimensional ( n ≥ 3 ) smooth manifold M with two Riemannian metrics 1 and 1̄. We denote a
globally definite tensor field T = ∇̄ −∇which is called the deformation tensor of the Levi-Civita connection
∇ into the Levi-Civita connection ∇. A map id : (M, 1) → (M, 1̄) is said to be harmonic transformation if
trace1T = 0 (see [12, p. 295]).
Let us now prove the following Liouville-type theorem, supplementing the above result of S.-T. Yau and R.
Schoen (see also [13, p. 337]).
Theorem 5.1. Let

(
M, 1̄
)

be an n-dimensional (n ≥ 2) Hadamard manifold and 1 be another complete Riemannian
metric on M such that its Ricci tensor is non-negative. Then the harmonic map id : (M, 1) → (M, 1̄) is a constant
map if its energy density e (id) is a Lq-function for at least one q ∈ (0, ∞).
Proof. Using the general theory of harmonic mappings (see, for example, [7]), we proved in [14, p. 110-111]
that the map id : (M, 1)→ (M, 1̄) is harmonic if and only if the following equation holds:

∆e(id) = Q(id) + ∥T∥2, (8)

where ∆e(id) = ∆(trace11̄) is the Laplacian of the energy density of the harmonic map id :
(
M, 1
)
→
(
M, 1̄
)

and Q (id) = 1
(
Ric, 1̄

)
− trace1

(
trace1Riem

)
for the Riemannian curvature tensor Riem of the metric 1̄. From

(8) we conclude that Q (id) ≥ 0 holds if the Ricci curvature of 1 is nonnegative and the sectional curvature
of 1̄ is nonpositive (see also [14, p. 110-111]). In this case, from (8), we obtain that ∆ e (id) ≥ 0 under the
above curvature assumptions and hence e (id) is a subharmonic function on (M, 1). At the same time, recall
that every non-negative subharmonic Lq-function for any q ∈ (0, ∞) is constant on a complete Riemannian
manifold

(
M, 1
)

with non-negative Ricci curvature (see [4, p. 288]). In turn, this constant must be equal
to zero everywhere on a complete manifold

(
M, 1
)

with infinite volume (see [5, p. 667]). To conclude the
proof, we note that a simply connected manifold M with a complete Riemannian metric 1̄ of nonpositive
sectional curvature is a Hadamard manifold.
The vector field V is an infinitesimal harmonic transformation in

(
M, 1
)

if the local one-parameter group
of infinitesimal pointwise transformations generated by the vector field V is a group of harmonic trans-
formations (see [12, p. 295]). Analytic characteristic of such vector field V has the form (see also [12, p.
295])

∆ e (V) = −Ric (V, V) + ∥ ∇V ∥2 . (9)

In this case, using our Lemma 2.1 we can prove the following Theorem 5.2.
Theorem 5.2. Let V be an infinitesimal harmonic transformation on n-dimensional ( n ≥ 3 ) Hadamard manifold(
M, 1
)
. If the following conditions hold:

(i) the energy density function e (V) ∈ Lq (M) at least for one q ∈ (0, ∞);
(ii) Ric (V, V) ≤ 0,
then V is identically zero.
Suppose that

(
M, 1
)

is a complete Riemannian manifold such that the equation

−2Ric = 2λ 1 + LV1 (10)

holds for some constant λ and some complete vector field V on M. In this case, we say 1 is a Ricci soliton
(see [15, pp. 37-38]). The Ricci soliton 1 is said to be steady if λ = 0, shrinking if λ < 0, and expanding if
λ > 0. If the vector field V is zero or is a Killing vector field, then the Ricci soliton 1 becomes Einstein. In
this case, if

(
M, 1
)

is a Hadamard manifold, from (10) we obtain the inequality Ric = −λ 1 ≤ 0. This means
that the Ricci soliton 1 is steady or expanding. Moreover, if 1 is steady then Ric ≡ 0. In the last case, from the
conditions Ric ≡ 0 and sec ≤ 0 we obtain sec ≡ 0, i.e., the sectional curvature of

(
M, 1
)

vanishes identically.
Therefore,

(
M, 1
)

is a flat Riemannian manifold. Moreover,
(
M, 1
)

is simply connected, and hence isometric
to a Euclidean space of the same dimension.
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In turn, we proved that the following theorem holds: The vector field V of a Ricci soliton 1 is an infinitesimal
harmonic transformation (see [16, p. 474]). Therefore, the validity of the following statement is obvious as
a corollary of Theorem 5.2.
Corollary 5.3. Let

(
M, 1
)

be a Hadamard manifold
(
M, 1
)

and the metric 1 be a Ricci soliton with a smooth vector
field V such that its energy density function e (V) is a Lq-function at least for one q ∈ (0, ∞) and Ric (V,V) ≤ 0. Then
(i) 1 cannot be a shrinking soliton;
(ii) if 1 is a steady soliton, then

(
M, 1
)

is isometric to a Euclidean space of the same dimension;
(iii) if 1 is a expanding soliton, then

(
M, 1
)

is an Einstein manifold with negative Einstein constant and hence Ric
< 0.
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[12] Stepanov S.E., Shandra I.G., Geometry of Infinitesimal Harmonic Transformations, Annals of Global Analysis and Geometry, 24

(2003), 291–299.
[13] Schoen, R., Yau, S. T., Lectures on harmonic maps. Conference Proceedings and Lecture Notes in Geometry and Topology,

II. International Press, Cambridge, MA, 1997. 394 pp.
[14] Stepanov, S. E., Tsyganok, I. I., Harmonic transforms of a complete Riemannian manifold, Math. Notes 100 (2016), no. 3-4, 465–471.
[15] Morgan J., Tian G., Ricci flow and Poincare conjecture, Clay Mathematics Monographs, 3. American Mathematical Society,

Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. 521 pp.
[16] Stepanov, S. E., Shelepova, V. N., A remark on Ricci solitons, Math. Notes 86 (2009), no. 3-4, 447–450.


