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Riemannian and sub-Riemannian structures on a cotangent bundle of
Heisenberg group
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Abstract. In this paper we give a classification of left invariant sub-Riemannian structures on cotangent
bundle of 2n+1 dimensional Heisenberg group T∗H2n+1. We show that the sub-Riemannian metric is tamed
by the corresponding Riemannian metric on T∗H2n+1. We also describe Riemannian and sub-Riemannian
geodesics on T∗H2n+1.

Introduction

A sub-Riemannian geometry constitutes the natural generalization of Riemannian geometry. It has been
a research focus since the 1980’s, with motivations and ramifications in several parts of pure and applied
mathematics such as control theory, classical and quantum mechanics, symplectic and contact geometry,
analysis of hypoelliptic operators, univalent function theory, etc.

A sub-Riemannian manifold is a manifold endowed with a distribution and a fiber-inner product on
it. Here by a distribution is considered a linear sub-bundle of the tangent bundle of the manifold, usually
referred to as a horizontal space. The Chow’s theorem asserts that for the completely non-integrable
distribution on a connected manifold any two points can be connected by a horizontal path. The sub-
Riemannian distance between two points is defined in the same manner as in the Riemannian case, except
that it is only allowed to travel along the horizontal curves joining two points.

More on a sub-Riemannian geometry can be found in a wonderful book by Montgomery [10]. For
readers preferring the approach from the optimal control theory, one should look at the book by Agrachev,
Barilari and Boscain [1] and for the results focusing on Lie groups, a survey paper by Sachkov [11].

The simplest non-trivial example of sub-Riemannian geometry is the geometry of Heisenberg group.
The Riemannian case of nilpotent Lie groups is very thoroughly investigated (for example, see [6–9, 14]).
Sub-Riemannian geometry of the generalized Heisenberg group H2n+1 has been studied by various authors:
from Vershik and Gershkovich [13] in the 1980s, to the more recent works of Biggs and Nagy [3, 4].

In this paper we will make further advances, we will investigate the Riemannian and sub-Riemannian
geometry of the cotangent bundle of the generalized Heisenberg group that has natural structure of a Lie
group.
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Let G be a Lie group and D ⊂ g a linear subset of its corresponding Lie algebra. We identify the Lie
algebra with the space of left-invariant vector fields on the Lie group, in which caseD corresponds to a left-
invariant distribution. The bracket-generating condition is that D generates g, meaning that the smallest
Lie subalgebra of g containingD is g itself. The distribution satisfying the bracket-generating condition is
completely non-integrable. Hence, the restriction of an inner product on g yields a sub-Riemannian metric
for which the left-translations act as isometries.

The paper is organized as follows.
First, we briefly recall the construction of the cotangent bundle T∗h2n+1 of the Lie algebra h2n+1 corre-

sponding to the Heisenberg group H2n+1.
In Section 2 we recall the classification of all non isometric left invariant Riemannian metrics on T∗h2n+1

(see Theorem 2.3) previously discussed in [12]. Throughout the paper we identify the notion of metric on
Lie group and the inner product on its Lie algebra. We obtained only one n(2n + 1)-parameter family of
Riemannian metrics. This family is correlated with the family of Riemannian metrics on Heisenberg group
from [14]. Finally, the sub-Riemannian structures are classified in Theorem 2.5.

The Section 3 is devoted to the geodesic curves in both Riemannian and sub-Riemannian setting.

1. Preliminaries

Let us briefly recall the construction of cotangent Lie group.
The cotangent algebra T∗g of the Lie algebra g is semidirect product of g and its cotangent space g∗ by

means of the coadjoint representation T∗g := g ⋉ad∗ g
∗, i.e. the commutators are defined by

[(x, ϕ), (y, ψ)] := ([x, y], ad∗(x)(ψ) − ad∗(y)(ϕ)), x, y ∈ g, ϕ, ψ ∈ g∗, (1)

where ad∗ denotes the coadjoint representation ad∗ : g→ gl(g∗) given by (ad∗(x)(ϕ))(y) := −ϕ([x, y]).
Let us make the following two identifications: identify the zero section of the cotangent bundle of a Lie

group G with G itself and the fiber over identity element (e, 0) with g∗. Then, as a Lie group, the cotangent
group T∗G can be viewed as G ⋉Ad∗ g

∗. The multiplication law is given by:

(1, α) · (h, β) = (1 · h,Ad∗h−1 (α) + β), 1, h ∈ G, α, β ∈ g∗. (2)

Now, let us apply this construction to the corresponding Lie algebra h2n+1 of (2n + 1)-dimensional
Heisenberg group H2n+1.

The standard symplectic form in vector space R2n can be written in the form ω(x, y) = xT Jy, x, y ∈ R2n,
where the matrix of standard complex structure on R2n is denoted by

J = J2n =

(
0 E
−E 0

)
(3)

and E is the identity matrix of dimension n × n.
The Heisenberg group is two-step nilpotent Lie group H2n+1 defined on the base manifold R2n

⊕ R by
multiplication

(x, µ) · (y, λ) := (x + y, µ + λ + ω(x, y)).

The corresponding Lie algebra h2n+1 = R2n
⊕ R = R2n

⊕ Z = {(x, µ) | x ∈ R2n, µ ∈ R} has the following
commutator

[(x, µ), (y, λ)] = (0, ω(x, y)). (4)

Note that Z = R⟨µ⟩ is one-dimensional center and one-dimensional commutator subalgebra of h2n+1. To
simplify notation we write (4) in the equivalent form [x + µz, y + λz] = ω(x, y)z. If e1, . . . , en, f1, . . . , fn
represents the standard basis of R2n, then nonzero commutators of h2n+1 are [ei, fi] = z, i = 1, . . . ,n.



T. Šukilović, S. Vukmirović / Filomat 37:25 (2023), 8481–8488 8483

Let R∗2n = R⟨e∗1, . . . , e
∗
n, f ∗1 , . . . , f ∗n⟩ and Z∗ = R⟨z∗⟩ be dual vector spaces of one-forms spanned by dual

basis vectors. Denote the dual space of h2n+1 by

h∗2n+1 = R
∗2n
⊕Z

∗ = {(x∗, µ∗) | x∗ ∈ R2n, µ∗ ∈ R} = {x∗ + µ∗z∗}.

Now, the cotangent space T∗h2n+1 of h2n+1, as a vector space, can be written as a direct sum

g = T∗h2n+1 = h2n+1 ⊕ h
∗

2n+1 = R
2n
⊕Z

∗
⊕R∗2n

⊕Z � R4n+2. (5)

Note, that we changed the order of summands to better fit the structure of Lie algebra. Namely, one can
check that according to (1) the commutator on T∗h2n+1 is given by

[(x, µ∗, x∗, µ), (y, λ∗, y∗, λ)] = (0, 0, λ∗ J∗(x) − µ∗ J∗(y), ω(x, y)), (6)

where J∗ : R2n
→ R∗2n, J∗(X) := (JX)∗ is represented by matrix J given in (3), in the basis e∗1, . . . , e

∗
n, f ∗1 , . . . , f ∗n,

i.e. J∗(ek) = − f ∗k , J∗( fk) = e∗k.
The center and commutator subalgebra of T∗h2n+1 both coincide with ξ = R∗2n

⊕ Z. By that reason we
have changed the order of summands in (5) to group central (and commutator) vectors together. Hence, it
is obvious that T∗h2n+1 is a Carnot algebra of step two, i.e. a positive graded Lie algebra g = g1 ⊕ g2 such
that [g1, g1] = g2 and [g1, g2] = 0.

To simplify the notation we write commutator (6) of T∗h2n+1 in equivalent form

[x + µ∗z∗ + x∗ + µz, y + λ∗z∗ + y∗ + λz] = λ∗ J∗(x) − µ∗ J∗(y) + ω(x, y)z. (7)

Finally, the left invariant vector fields of T∗H2n+1 are the complete lifts of left invariant vector fields:

Xc
k =

∂
∂xk
−

1
2

xk+n
∂
∂z
+ z∗

∂
∂x∗k+n

, Xc
k+n =

∂
∂xk+n

+
1
2

xk
∂
∂z
− z∗

∂
∂x∗k

, Zc =
∂
∂z
, (8)

and the vertical lifts of the Maurer-Cartan left invariant forms on H2n+1:

Xv
k =

∂
∂x∗k

, Xv
k+n =

∂
∂x∗k+n

, Zv =
∂
∂z∗

, (9)

for k = 1, . . . ,n. To avoid unnecessary complications with labeling, we used the same symbols to denote
coordinates on Lie algebra and Lie group.

From (2) one can derive that the multiplication on T∗H2n+1 has the form:

(x, µ∗, x∗, µ) · (y, λ∗, y∗, λ) = (x + y, µ∗ + λ∗, x∗ + y∗ − µ∗ Jy, µ + λ +
1
2
ω(x, y)), (10)

where (x, µ), (y, λ) ∈ H2n+1 and (x∗, µ∗), (y∗, λ∗) ∈ h∗2n+1.

2. Riemannian and sub-Riemannian structures

First, let us recall the classification of the non-isometric left invariant Riemannian metrics on g = T∗h2n+1
considered in [12].

If g is a Lie algebra and ⟨·, ·⟩ inner product on g the pair (g, ⟨·, ·⟩) is called a metric Lie algebra. The
structure of metric Lie algebra uniquely defines left invariant Riemannian metric on the corresponding
simple connected Lie group G and vice versa.

Since Lie algebra g is nilpotent and therefore completely solvable, non-isometric metrics on g are the
non-isomorphic ones. They are obtained by action of group Aut(g) on the space of metrics.
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Lemma 2.1 ([12]). The group of automorphism of algebra g = T∗h2n+1 of the form (5) in the standard basis is

Aut(T∗h2n+1) =
{

F =
(
F1 0
F3 F4

)
| F1,F4 ∈ Gl2n+1(R), F3 ∈M2n+1(R)

}
, (11)

F1 =

(
F̄1 v1
uT

1 f1

)
, F4 =

(
f1 f4F̄−T

1 − (Jv1)(Ju1)T
− f4F̄−T

1 u1
− f4vT

1F̄−T
1 f4

)
, F̄T

1 JF̄1 = f4 J, (12)

v1,u1 ∈ R2n, f1, f4 ∈ R\{0}. Its dimension is dim Aut(T∗h2n+1) = 6n2 + 9n + 3.

Remark 2.2. Group of automorphisms of Heisenberg algebra h2n+1 is subgroup of Aut(T∗h2n+1) and can be described
as semidirect product of symplectic group Sp(2n,R), subgroup of translations isomorphic to R2n and 1-dimensional
ideal. For more details, see [14].

Theorem 2.3 ([12]). Dimension of the moduli space of Riemannian metrics on Lie algebra T∗h2n+1 is n(2n + 1).
Every such metric is represented by (4n + 2) × (4n + 2) block matrix

S =


D(σ) 0 0 0

0 1 0 0
0 0 S̄ 0
0 0 0 ω

 , (13)

ω > 0, D(σ) = diag(σ1, . . . , σn−1, 1, σ1, . . . , σn−1, 1), σ1 ≥ · · · ≥ σn−1 ≥ 1, S̄ is symmetric positive definite matrix of
dimension 2n × 2n satisfying S̄i(n+i) = 0, i = 1, . . .n.

Remark 2.4. Symplectic rotations Rθ : R2n
→ R2n:

ei 7→ cosθi ei − sinθi fi, fi 7→ sinθi ei + cosθi fi, (14)

by angles θ1, . . . , θn ∈ R, represent unique automorphisms preserving diag(D(σ), 1) if all σk in D(σ) = diag(σ1, . . . ,
σn−1, 1, σ1, . . . σn−1, 1) are distinct. If some of them are equal, there exist wider class of automorphism preserving
diag(D(σ), 1) that further simplifies the matrix S̄ (for details see [12]).

Now, we are able to focus on the sub-Riemannian case.

Theorem 2.5. Any left-invariant sub-Riemannian structure (D, 1) is isometric to exactly one of the structures
(D̄, 1σ) given by:D̄(e) = L(e1, . . . , en, f1, . . . , fn, z∗)

1σ = diag(D(σ), 1).
(15)

Proof. First, for an arbitrary distributionD let us show that there exists an automorphism ϕ ∈ Aut(T∗h2n+1)
such that ϕ∗D = D̄, D̄(e) = L(e1, . . . , en, f1, . . . , fn, z∗).

Let T∗h2n+1 = ν ⊕ ξ, where ξ = L(e∗1, . . . , e
∗
n, f ∗1 , . . . , f ∗n, z) denotes the center of the algebra T∗h2n+1 and

ν = L(e1, . . . , en, f1, . . . , fn, z∗) its complement. Then every element of the distributionD has the form x + y,
x ∈ ν, y ∈ ξ. From Lemma 2.1 follows that ϕ ∈ Aut(T∗h2n+1) is represented by the matrix F given by (11).
Hence

ϕ(x + y) = F1x + (F3x + F4y), F1x ∈ ν, F3x + F4y ∈ ξ.

Since F3 is completely arbitrary, it can always be obtained thatD is generated with “non-central” elements.
Now, let us consider the inner product on T∗h2n+1 represented by the non-singular symmetric matrix

S ∈ M4n+2(R) and the action FTSF, where F is the matrix representation of ψ ∈ Aut(T∗h2n+1) preserving the
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distribution D̄. The matrix F must satisfy conditions (12) and F3 = 0. Since we are only interested in the
restriction of the inner product on the distribution D̄, the problem is reduced to the action of matrix

F1 =

(
F̄1 v1
uT

1 f1

)
, F̄T

1 JF̄1 = f4 J, v1,u1 ∈ R
2n, f1, f4 ∈ R,

on the symmetric matrix S1 ∈M2n+1(R). The appropriate choice of v1,u1 allows us to obtain the form

FT
1S1F1 =

(
S̄1 0
0 ω1

)
, S̄T

1 = S̄1, ω1 > 0.

Symplectic matrix F̄1 can diagonalize positive symmetric matrix S̄1 (see [14, 15] for details regarding
independent action of S̄1 and f4) to obtain F̄T

1S̄1F̄1 = diag(σ1, . . . , σn, σ1, . . . , σn), with σ1 ≥ . . . ≥ σn > 0.
Finally, by setting f1 = 1

√
ω1

and f4 = 1
σn

, F̄T
1S̄1F̄1 = diag(D(σ), 1) = diag(σ1, . . . , σn−1, 1, σ1, . . . , σn−1, 1, 1) which

is exactly the restriction of the Riemannian metric (13) on the distribution D̄.
Hence, the automorphismθ = ψ◦ϕ is the isometry between two left invariant sub-Riemannian structures

(D, 1) and (D̄, 1σ) on T∗H2n+1: θ∗D = D̄ and 1 = θ∗1σ.

Remark 2.6. Note that the sub-Riemannian metric 1σ given by (15) is precisely the restriction of the corresponding
Riemannian metric (13) to the distribution D̄. Hence, we say that the sub-Riemannian structure is tamed by the
Riemannian one.

3. Geodesics on T∗H2n+1

Geodesic of an arbitrary left invariant metric on a Lie group G can be seen as a motion of a generalized
rigid body with a configuration space G. In Riemannian case, a geodesic passing through a fixed point is
determined by an initial geodesic vector (tangent vector), while in sub-Riemannian case it is determined
by its initial momentum.

There are two main approaches to the definition of geodesics: geodesics as shortest curves based on
Maupertuis principle of least action (variational approach) and geodesics as straightest curves based on
d’Alembert’s principle of virtual work (which leads to a geometric description, based on the notion of
connection). Although the various definitions of geodesics are equivalent in Riemannian case, their gener-
alizations to the sub-Riemannian setting give rise to the non-equivalent objects. For an extensive overview
of different approaches to definitions, generalizations and study of geodesics we refer to [2].

The other distinction between Riemannian and sub-Riemannian geometry is the existence of singular
geodesics. In Riemannian case all the geodesics are normal geodesics, meaning that they are the solutions of
geodesic equation. In sub-Riemannian case for some geometries there exist minimizing geodesics that do
not solve the geodesic equation. They are called singular or abnormal geodesics.

We are considering a 2-step nilpotent Lie group, hence there are many known facts about geodesics
in both Riemannian and sub-Riemannian case. In sub-Riemannian case, we can rule out the existence of
abnormal geodesics since the underlying distribution is contact (see, e.g. [1, Proposition 4.38]). As observed
in Remark 2.6, the Riemannian structure tames the sub-Riemannian one, hence the normal sub-Riemannian
geodesics are exactly theD-projection of the Riemannian geodesics (see [4, Proposition 7]).

In the sequel we find geodesics in the Riemannian case with respect to metric from Theorem 2.3 and
also sub-Riemannian geodesics with respect to structure from Theorem 2.5.

3.1. Riemannian case
Let c(t) be a curve on the Lie group G and let γ(t) = dL−1

c(t)ċ(t) be its associated curve on the Lie algebra g.
Then it is well known that c(t) is geodesic if and only if:

γ̇ = ad∗γ γ. (16)
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Recall that the center ξ of the Lie algebra T∗h2n+1 is non-degenerate with the respect to the metric (13).
Define the mapping j : ξ→ End(ξ⊥) as:

j(u)v = ad∗v(u), v ∈ ξ⊥, u ∈ ξ.

If we write γ(t) = v(t) + u(t), v(t) ∈ ξ⊥ and u(t) ∈ ξ, then (16) becomes:

v̇(t) = j(u)v, u̇(0) = 0. (17)

With the initial conditions v(0) = v0, u(0) = u0 and j(u0) = K, the solution of (17) is:

v(t) = exp(tK)v0, u(t) = u0. (18)

Obviously, the associated geodesic curves are constant on the center ξ. Furthermore, the matrix K is given
by:

K =
(
−ωµ0D−1(σ)J D−1(σ)JS̄x∗0

(x∗0)TS̄J 0

)
, (19)

where u0 = (x∗0, µ0). Note that the matrix K is skew-symmetric if and only if the matrix D(σ) is an identity
matrix (this is always true for n = 1). In that case the associated curves on ξ⊥ are circles.

Example 3.1. Let us thoroughly investigate the case when n = 1. The metric (13) takes the diagonal form S =
dia1(1, 1, 1, s1, s2, ω). Let γ(t) = x(t)+ y(t)+µ∗(t)+ x∗(t)+ y∗(t)+µ(t), then the equation (16) becomes the following:

ẋ = −s2y∗µ∗ + ωµy,
ẏ = s1x∗µ∗ − ωµx,
µ̇∗ = s2y∗x − s1x∗y,
ẋ∗ = ẏ∗ = µ̇ = 0.

Since, x∗(t) = x∗(0) = x∗0, y∗(t) = y∗(0) = y∗0 and µ(t) = µ(0) = µ0, the previous system can be written in simpler
matrix notation: ẋ

ẏ
µ̇∗

 =
 0 ωµ0 −s2y∗0
−ωµ0 0 s1x∗0
s2y∗0 −s1x∗0 0


 x

y
µ∗

 .
Put τ2 = (s1x∗0)2 + (s2y∗0)2 + (ωµ0)2 and ς = s1x0x∗0 + s2y0y∗0 + ωµ0µ∗0. If τ > 0, then the solution of the previous
system is:

x(t) =
s1x∗0ς
τ2 +

−s2y∗0µ
∗

0 + ωy0µ0

τ
sin(τt) +

x0τ2
− s1x∗0ς
τ2 cos(τy),

y(t) =
s2y∗0ς
τ2 +

s1x∗0µ
∗

0 − ωx0µ0

τ
sin(τt) +

y0τ2
− s2y∗0ς
τ2 cos(τt),

µ∗0(t) =
ωµ0ς

τ2 +
−s1x∗0y0 + s2x0y∗0

τ
sin(τt) +

µ∗0τ
2
− ωµ0ς

τ2 cos(τt),

where x(0) = x0, y(0) = y0 and µ∗(0) = µ∗0. If τ = 0, then the solution is simply:

x(t) = x0, y(t) = y0, µ∗(t) = µ∗0.

The geodesic curve c(t) on Lie group can be retrieved from the previous equations by integration.
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3.2. Sub-Riemannian case
The minimizing geodesic is an absolutely continuous horizontal curve that realizes the Carnot-Carathéodory

distance:

d(A,B) = inf{ℓ(γ) =
∫ √

⟨γ̇(t), γ̇(t)⟩dt |γ – horizontal curve connecting points A and B}, (20)

where ⟨·, ·⟩ is the inner product on the distributionD and the integral is over the domain of the curve.
The existence of minimizing sub-Riemannian geodesics is a consequence of the Chow’s theorem: on

a bracket-generating sub-Riemannian manifold G any two sufficiently close points can be joined by a
minimizing geodesic. Additionally, if G is connected and complete relative to the sub-Riemannian distance
function (20), then any two points can be joined by a minimizing geodesic (see [10, Theorem 1.6.3 and
Theorem 1.6.4] for the proof of local and global existence of minimizing geodesics, respectively).

To simplify the notation, in the following we will use the local coordinates (x, z), where z are 2n + 1
central coordinates. In this coordinates the vector fields (8), (9) have the form:

Xk =
∂
∂xk
−

1
2

2n+1∑
j,i=1

ci
k jx j

∂
∂zi
, k = 1, . . . , 2n + 1, Zi =

∂
∂zi
, i = 1, . . . 2n + 1,

where Xk span D and Ci = (ci
k j), i = 1, . . . , 2n + 1, are skew-symmetric matrices (the coefficients ci

k j can be
obtained from structural equations (6)).

Now, we can introduce a system of coordinates (h,w) on fibers of T∗(T∗H2n+1):

hk(λ) = ⟨λ,Xk(1)⟩, wi(λ) = ⟨λ,Zi(1)⟩, k, i = 1, . . . , 2n + 1,

with ⟨·, ·⟩ used to identify vectors and covectors.
The sub-Riemannian Hamiltonian (or kinetic energy) is the fiber-quadratic function H. The sub-

Riemannian structure is uniquely determined by its Hamiltonian (see [10, Proposition 1.5.3]). The normal
extremal trajectories λ(t) = (x(t), z(t), h(t),w(t)) are projections of integral curves of H = 1

2

∑2n+1
k=1

1
σk

h2
k , with

σ2n+1 = 1. In coordinate terms, the normal geodesic equations can be written in the form:

ẋk = {xk,H} =
1
σk

hk, ḣk = {H, hk} = −

2n+1∑
j=1

1
σ j
{hk, h j}h j = −

2n+1∑
j,i=1

1
σ j

ci
k jh jwi,

żi = {zi,H} = −
1
2

2n+1∑
j,k=1

1
σk

ci
k jhkx j, ẇi = {H,wi} = 0,

(21)

where {·, ·} denotes the Poisson bracket. The solution of Hamiltonian system of differential equations is:

h(t) = exp(−tΩw)h(0), Ωw =

2n+1∑
i=1

wiCi =

(
w2n+1D−1(σ)J −Jw̄
−w̄T J 0

)
,

x(t) = x(0) +
∫ t

0
exp(−sΩw)h(0) ds,

where vector w = (w̄,w2n+1) is constant and vertical coordinates z can always be recovered.

Example 3.2. Consider the case n = 1. The system (21) has the following form:

ẋk = hk, k = 1, 2, 3, ẇk = 0, k = 1, 2, 3,

ḣ1 = w3h2 − w2h3, ż1 =
1
2

(h2x3 − h3x2),

ḣ2 = −w3h1 + w1h3, ż2 =
1
2

(h3x1 − h1x3),

ḣ3 = w2h1 − w1h2, ż3 =
1
2

(h2x1 − h1x2).
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The solution of this system is:

x1(t) = x1(0) +
w1ς

τ2 t +
w3h2(0) − w2h3(0)

τ2 cos(τt) +
τ2h1(0) − ςw1

τ3 sin(τt),

x2(t) = x2(0) +
w2ς

τ2 t +
w3h1(0) − w1h3(0)

τ2 cos(τt) +
τ2h2(0) − ςw2

τ3 sin(τt),

x3(t) = x3(0) +
w3ς

τ2 t +
w2h1(0) − w1h2(0)

τ2 cos(τt) +
τ2h3(0) − ςw3

τ3 sin(τt),

h1(t) =
w1ς

τ2 +
τ2h1(0) − ςw1

τ2 cos(τt) −
w3h2(0) − w2h3(0)

τ
sin(τt),

h2(t) =
w2ς

τ2 +
τ2h2(0) − ςw2

τ2 cos(τt) −
w3h1(0) − w1h3(0)

τ
sin(τt),

h3(t) =
w3ς

τ2 +
τ2h3(0) − ςw3

τ2 cos(τt) −
w2h1(0) − w1h2(0)

τ
sin(τt),

w1(t) = w1, w2(t) = w2, w3(t) = w3,

with τ2 = w2
1 +w2

2 +w2
3 and ς = w1h1(0) +w2h2(0) +w3h3(0). The expression for z component of the solution is too

complicated to be written, but it can easily be obtained. Obviously, if τ = 0, the solution is:

xk(t) = xk(0) + hkt, hk(t) = hk(0), wk(t) = 0, for k = 1, 2, 3,

z1(t) = z1(0) +
1
2

(h2(0)x3(0) − h3(0)x2(0))t,

z2(t) = z2(0) +
1
2

(h3(0)x1(0) − h1(0)x3(0))t,

z3(t) = z3(0) +
1
2

(h2(0)x1(0) − h1(0)x2(0))t.

Remark 3.3. Note that process of obtaining the associated curves (18) works for all 2-step nilpotent groups (see [7]),
while the sub-Riemannian case is valid for all 2-step Carnot groups (see [1]). Note that in general sub-Riemannian
geodesic flows on Carnot groups are not integrable (see [5]).
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