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Abstract. In this paper we introduce a theory of multiplication alteration by two-cocycles for weak Hopf
algebras. We show that, just like it happens for Hopf algebras, if H a weak Hopf algebra and Hσ its weak
Hopf algebra deformation by a 2-cocycle σ, there is a braided monoidal category equivalence between
the categories of left-right Yetter-Drinfel’d modules HYD

H and HσYD
Hσ . As a consequence we get in this

context that the category Rep(D(H)) of left modules over the Drinfel’d double D(H) can be identified with
the category Rep(D(Hσ)) of left modules over the Drinfel’d double D(Hσ).

1. Introduction

Let R be a commutative ring with a unit and denote the tensor product over R by ⊗. In [20] we can
find one of the first interesting examples of multiplication alteration by a 2-cocycle for R-algebras. In this
case Sweedler proved that, if U is an associative unitary R-algebra with a commutative subalgebra A and
σ =
∑

ai ⊗ bi ⊗ ci ∈ A ⊗ A ⊗ A is an Amistur 2-cocycle, then U admits a new associative an unitary product
defined by u • v =

∑
ai ubi vci for all u, v ∈ U. Moreover, if U is central separable, U with the new product is

still central separable and is isomorphic to the Rosenberg-Zelinsky central separable algebra obtained from
the 2-cocycle σ−1 (see [19]). Later, Doi discovered in [8] a new contruction to modify the algebra structure of
a bialgebra A over a field F using an invertible 2-cocycle σ in A. In this case if σ : A⊗A→ F is the 2-cocycle,
the new product on A is defined by

a ∗ b =
∑
σ(a1 ⊗ b1)a2b2σ

−1(a3 ⊗ b3)

for a, b ∈ A. With the new algebra structure and the original coalgebra structure, A is a new bialgebra
denoted by Aσ, and if A is a Hopf algebra with antipode λA, so is Aσ with antipode given by

λAσ (a) =
∑
σ(a1 ⊗ λA(a2))λA(a3)σ−1(λA(a4) ⊗ a5).
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for a ∈ A. This type of deformations appear frequently in relation to the classification problems of semisim-
ple and non semisimple Hopf algebras. For example, as was showed in [4], all Hopf algebras whose
coradical is an abelian group algebra are cocycle deformations of their associated graded Hopf algebras.

On the other hand, to study projections of Hopf algebras, Radford [18] establishes conditions that led
to the notion of Yetter-Drinfel’d module introduced by Yetter [22] in order to explain the relationship
between different theories in mathematics and physics, as low dimensional topology, knots and links, Hopf
algebras, quantum integrable systems, and exactly solvable models in statistical mechanics. It is a well-
known fact (see [12]) that every Yetter-Drinfel’d module gives rise to a solution of the quantum Yang-Baxter
equation, and if H is a finite Hopf algebra in a symmetric monoidal category C, the category HYD

H of left-
right Yetter-Drinfel’d modules is isomorphic to the one of modules over the quantum double (also called
the Drinfel’d double), which was originally conceived to find solutions of the Yang-Baxter equation via
universal matrices. The connection between Yetter-Drinfel’d modules and cocycle deformations of Hopf
algebras was established by Majid and Oeckl [15] by giving a category equivalence between Yetter-Drinfel’d
modules for H and those for Hσ.

In another vein, weak Hopf algebras (or quantum groupoids in the terminology of Nikshych and
Vainerman [17]) were introduced by Böhm, Nill and Szlachányi [5] as a new generalization of Hopf algebras
and groupoid algebras. The main difference with other Hopf algebraic constructions is that weak Hopf
algebras are coassociative but the coproduct is not required to preserve the unit, equivalently, the counit is
not a monoid morphism. There is a close connection between weak Hopf algebras and the theory of algebra
extensions, and they have important applications in the study of dynamical twists of Hopf algebras and
a deep link with quantum field theories and operator algebras, besides being an useful tool in the study
of fusion categories in characteristic zero [10]. In addition there are innumerable examples, such groupoid
algebras of finite groupoids and their duals. Also, Hayashi’s face algebras (see [11]) are particular instances
of weak Hopf algebras, whose counital subalgebras are commutative, and Yamanouchi’s generalized Kac
algebras [21] are exactly C∗-weak Hopf algebras with involutive antipode.

The main goal of this paper is to get the results related to cocycle deformations and Yetter-Drinfel’d
modules cited above in the context of weak Hopf algebras. We have considered a definition of 2-cocycle
inspired in the one we had already used in [2] and [3] in order to get the Sweedler cohomology for weak
Hopf algebras. Our notion of 2-cocycle is essentially different to the one given by Chen, Zhang and Wang in
[6] (see Remark 3.11), and it has the advantage of using a minimum number of conditions similar to those
well-known in the Hopf algebra setting.

An outline of the paper is the following: after a section of preliminaries, in Section 3 we introduce a
theory of cocycle deformations for weak Hopf algebras. In the main result of this section (Theorem 3.18)
we show that, if σ : H⊗H→ K is a normal and convolution invertible 2-cocycle for a weak Hopf algebra H,
the cocycle twist Hσ is also a weak Hopf algebra. In section 4, using the theory of Yetter-Drinfel’d modules
for weak Hopf algebras developed in [1] and [16], we obtain the braided monoidal equivalence between
the categories of Yetter-Drinfel’d modules for H and those for Hσ which implies a category equivalence
between D(H)-modules and D(Hσ)-modules, being D(H) and D(Hσ) the Drinfel’d doubles associated to the
weak Hopf algebras H and Hσ, respectively.

2. Preliminaries

From now on C denotes a strict symmetric category with tensor product denoted by ⊗ and unit object
K. With c we will denote the natural isomorphism of symmetry and we also assume that C has equalizers.
Then, under these conditions, every idempotent morphism q : Y→ Y splits, i.e., there exist an object Z and
morphisms i : Z → Y and p : Y → Z such that q = i ◦ p and p ◦ i = idZ. We denote the class of objects of C
by |C| and for each object M ∈ |C|, the identity morphism by idM : M→M. For simplicity of notation, given
objects M, N, P in C and a morphism f : M→ N, we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP.

We assume that the reader is familiar with the notion of algebra, coalgebra, module and comodule in a
monoidal setting. For an algebra in C, A = (A, ηA, µA), ηA : K → A denotes the unit and µA : A ⊗ A → A
the product. If A, B are algebras in C, the object A ⊗ B is an algebra in C where ηA⊗B = ηA ⊗ ηB and
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µA⊗B = (µA ⊗ µB) ◦ (A ⊗ cB,A ⊗ B). Similarly, for a coalgebra D = (D, εD, δD), εD : D → K denotes the counit
and δD : D→ D ⊗D the coproduct. When D, E are coalgebras in C, δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE) is the
coproduct of the coalgebra D ⊗ E and εD⊗E = εD ⊗ εE its counit.

If A is an algebra, B is a coalgebra and f : B→ A, 1 : B→ A are morphisms, we define the convolution
product by f ∗ 1 = µA ◦ ( f ⊗ 1) ◦ δB.

By weak Hopf algebras we understand the objects introduced in [5], as a generalization of ordinary
Hopf algebras. Here we recall the definition in the symmetric monoidal setting.

Definition 2.1. A weak Hopf algebra H is an object inCwith an algebra structure (H, ηH, µH) and a coalgebra
structure (H, εH, δH) such that the following axioms hold:

(a1) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H,

(a2) εH ◦ µH ◦ (µH ⊗H) = (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ δH ⊗H)

= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH) ⊗H),

(a3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH)

= (H ⊗ (µH ◦ cH,H) ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH).

(a4) There exists a morphism λH : H→ H in C (called the antipode of H) satisfying:

(a4-1) idH ∗ λH = ((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H),

(a4-2) λH ∗ idH = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

(a4-3) λH ∗ idH ∗ λH = λH.

To finish this section of preliminaries in the following remark we list the main properties of weak Hopf
algebras we will need in this paper.

Remark 2.2. If H is a weak Hopf algebra in C, the antipode λH is unique, antimultiplicative, anticomulti-
plicative and leaves the unit and the counit invariant:

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H, δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH, (1)

λH ◦ ηH = ηH, εH ◦ λH = εH. (2)

If we define the morphisms ΠL
H (target), ΠR

H (source), Π
L
H and Π

R
H by

ΠL
H = ((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H),

ΠR
H = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

Π
L
H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH) ⊗H),

Π
R
H = ((εH ◦ µH) ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

it is straightforward to show (see [5]) that they are idempotent and ΠL
H, ΠR

H satisfy the equalities

ΠL
H = idH ∗ λH, ΠR

H = λH ∗ idH, ΠL
H ∗ idH = idH, Π

R
H ∗ λH = λH. (3)

Moreover,

ΠL
H = λH ◦Π

L
H = Π

R
H ◦ λH, ΠR

H = Π
L
H ◦ λH = λH ◦Π

R
H, (4)
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ΠL
H ◦Π

L
H = Π

L
H, ΠL

H ◦Π
R
H = Π

R
H, ΠR

H ◦Π
L
H = Π

L
H, ΠR

H ◦Π
R
H = Π

R
H, (5)

Π
L
H ◦Π

L
H = Π

L
H, Π

L
H ◦Π

R
H = Π

R
H, Π

R
H ◦Π

L
H = Π

L
H, Π

R
H ◦Π

R
H = Π

R
H. (6)

For the morphisms target and source we have the following identities:

(H ⊗ΠL
H) ◦ δH ◦Π

L
H = δH ◦Π

L
H, (ΠR

H ⊗H) ◦ δH ◦Π
R
H = δH ◦Π

R
H, (7)

(H ⊗Π
R
H) ◦ δH ◦Π

R
H = δH ◦Π

R
H, (Π

L
H ⊗H) ◦ δH ◦Π

L
H = δH ◦Π

L
H, (8)

µH ◦ (H ⊗ΠL
H) = ((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H), (9)

(H ⊗ΠL
H) ◦ δH = (µH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H), (10)

µH ◦ (ΠR
H ⊗H) = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH) (11)

(ΠR
H ⊗H) ◦ δH = (H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)) (12)

µH ◦ (Π
R
H ⊗H) = ((εH ◦ µH) ⊗H) ◦ (H ⊗ δH), (13)

µH ◦ (H ⊗Π
L
H) = (H ⊗ (εH ◦ µH)) ◦ (δH ⊗H), (14)

(Π
L
H ⊗H) ◦ δH = (H ⊗ µH) ◦ ((δH ◦ ηH) ⊗H), (15)

(H ⊗Π
R
H) ◦ δH = (µH ⊗H) ◦ (H ⊗ (δH ◦ ηH)), (16)

δH ◦ ηH = (ΠR
H ⊗H) ◦ δH ◦ ηH = (H ⊗ΠL

H) ◦ δH ◦ ηH = (H ⊗Π
R
H) ◦ δH ◦ ηH = (Π

L
H ⊗H) ◦ δH ◦ ηH, (17)

εH ◦ µH = εH ◦ µH ◦ (ΠR
H ⊗H) = εH ◦ µH ◦ (H ⊗ΠL

H) = εH ◦ µH ◦ (Π
R
H ⊗H) = εH ◦ µH ◦ (H ⊗Π

L
H). (18)
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3. Product alterations by two cocycles for weak Hopf algebras

In this section we prove that, as in the Hopf algebra case (see [9]), 2-cocycles provide a way of altering
the product of a weak Hopf algebra to produce another weak Hopf algebra.

Definition 3.1. Let H be a weak Hopf algebra. We will say that a morphism σ : H ⊗H → K is convolution
invertible if there exists a morphism σ−1 : H⊗H→ K (the convolution inverse of σ) satisfying the following
equalities:

(b1) σ ∗ σ−1 = σ−1
∗ σ = εH ◦ µH.

(b2) σ ∗ σ−1
∗ σ = σ.

(b3) σ−1
∗ σ ∗ σ−1 = σ−1.

It is not difficult to see that, if σ is convolution invertible, the inverse σ−1 is unique.

Proposition 3.2. Let H be a weak Hopf algebra and let σ : H ⊗H→ K be convolution invertible. Then

σ ∗ (εH ◦ µH) = σ = (εH ◦ µH) ∗ σ, (19)

σ−1
∗ (εH ◦ µH) = σ−1 = (εH ◦ µH) ∗ σ−1. (20)

As a consequence, the equalities

σ = σ ◦ (H ⊗ µH) ◦ (H ⊗ΠR
H ⊗H) ◦ (δH ⊗H), (21)

σ = σ ◦ (µH ⊗H) ◦ (H ⊗Π
L
H ⊗H) ◦ (H ⊗ (cH,H ◦ δH)), (22)

σ = σ ◦ (µH ⊗H) ◦ (H ⊗ΠL
H ⊗H) ◦ (H ⊗ δH), (23)

σ = σ ◦ (H ⊗ µH) ◦ (H ⊗Π
R
H ⊗H) ◦ ((cH,H ◦ δH) ⊗H), (24)

hold, and similar equalities involving σ−1 are satisfied.

Proof. We will show (19). Using (b1)-(b2),

σ ∗ (εH ◦ µH) = σ ∗ σ−1
∗ σ = σ = σ ∗ σ−1

∗ σ = (εH ◦ µH) ∗ σ

The proof for (20) is similar but using (b3) instead of (b2). Finally, the equalities (21)-(24) are a direct
consequence of (9), (11), (13) and (14).

Proposition 3.3. Let H be a weak Hopf algebra and let σ : H ⊗H → K be convolution invertible. Assume that the
antipode λH is an isomorphism. Then

(i) The following conditions are equivalent:

σ ◦ (ηH ⊗H) = εH. (25)

σ ◦ (ΠL
H ⊗H) ◦ δH = εH. (26)
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σ ◦ cH,H ◦ (H ⊗Π
L
H) ◦ δH = εH. (27)

σ ◦ (ΠR
H ⊗ λH) ◦ δH = εH. (28)

σ ◦ cH,H ◦ (λ−1
H ⊗Π

R
H) ◦ δH = εH. (29)

(ii) The following conditions are equivalent:

σ ◦ (H ⊗ ηH) = εH. (30)

σ ◦ (H ⊗ΠR
H) ◦ δH = εH. (31)

σ ◦ cH,H ◦ (Π
R
H ⊗H) ◦ δH = εH. (32)

σ ◦ (λH ⊗Π
L
H) ◦ δH = εH. (33)

σ ◦ cH,H ◦ (Π
L
H ⊗ λ

−1
H ) ◦ δH = εH. (34)

And similar equivalences involving σ−1 are satisfied.

Proof. We will show part (i). The proof for (ii) follows a similar pattern. By composing with ηH ⊗H in (22)

and (23), we get that σ ◦ (ηH ⊗H) = σ ◦ cH,H ◦ (H ⊗Π
L
H) ◦ δH = σ ◦ (ΠL

H ⊗H) ◦ δH. Moreover, if we compose in
(22) with ηH ⊗λH, using (1) and (4) we obtain that σ ◦ (ηH ⊗λH) = σ ◦ (ΠR

H ⊗λH) ◦ δH. Finally, by composing

in (23) with ηH ⊗λ−1
H we get that σ ◦ (ηH ⊗λ−1

H ) = σ ◦ (Π
R
H ⊗λ

−1
H ) ◦ cH,H ◦ δH. Then the result follows by (2).

Definition 3.4. Let H be a weak Hopf algebra with antipodeλH isomorphism. We will say that a convolution
invertible morphism σ : H ⊗H→ K is normal if it satisfies any of the equivalent conditions of (i) and (ii) of
Proposition 3.3.

Proposition 3.5. Let H be a weak Hopf algebra and let σ : H ⊗ H → K be a convolution invertible morphism.
Assume that the antipode λH is an isomorphism. Then σ is normal if and only if so is σ−1.

Proof. Assume that σ is normal. Then

σ−1
◦ (ηH ⊗H)

= (σ−1
∗ (εH ◦ µH)) ◦ (ηH ⊗H) (by (20))

= ((σ−1
◦ cH,H ◦ (H ⊗Π

L
H) ◦ δH) ⊗ εH) ◦ δH (H coalgebra and by the definition of Π

L
H)

= ((σ−1
◦ cH,H ◦ (H ⊗Π

L
H) ◦ δH) ⊗ (σ ◦ (ΠL

H ⊗H) ◦ δH)) ◦ δH (by (26))
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= ((σ−1
◦ cH,H) ⊗ (((εH ◦ µH) ⊗ σ) ◦ (H ⊗ cH,H ⊗H))) ◦ (H ⊗ ((H ⊗ µH ⊗H) ◦ ((δH ◦ ηH) ⊗ (δH ◦ ηH))) ⊗ δH)

◦δH (by (10) and by the definition of Π
L
H)

= ((σ−1
◦ cH,H) ⊗ ((εH ◦ µH) ∗ σ)) ◦ (H ⊗ (δH ◦ ηH) ⊗H) ◦ δH (by (a3))

= (σ−1
∗ σ) ◦ (ηH ⊗H) (by (19))

= εH (by (b1)).

The equality σ−1
◦ (H ⊗ ηH) = εH follows a similar pattern but using (31) for σ−1 and (32). Finally, by

exchanging the roles of σ and σ−1 we get the only if part.

Proposition 3.6. Let H be a weak Hopf algebra and let σ : H ⊗ H → K be a normal and convolution invertible
morphism. Assume that the antipode λH is an isomorphism. Then we have that

(µH ⊗ σ) ◦ δH⊗H ◦ (ηH ⊗H) = idH, (35)

(σ ⊗ µH) ◦ δH⊗H ◦ (ηH ⊗H) = idH, (36)

(µ ⊗ σ) ◦ δH⊗H ◦ (H ⊗ ηH) = idH, (37)

(σ ⊗ µH) ◦ δH⊗H ◦ (H ⊗ ηH) = idH, (38)

and similar equalities involving σ−1 are satisfied.

Proof. The proof follows easily by Proposition 3.3 and by (10), (15), (16) and (12).

Proposition 3.7. Let H be a weak Hopf algebra and let σ : H ⊗ H → K be a normal and convolution invertible

morphism. Assume that the antipode λH is an isomorphism. Then, for Π ∈ {ΠR
H,Π

L
H,Π

R
H,Π

L
H},

(σ ⊗ µH) ◦ δH⊗H ◦ (Π ⊗H) = µH ◦ (Π ⊗H), (39)

(µH ⊗ σ) ◦ δH⊗H ◦ (Π ⊗H) = µH ◦ (Π ⊗H), (40)

(σ ⊗ µH) ◦ δH⊗H ◦ (H ⊗Π) = µH ◦ (H ⊗Π), (41)

(µH ⊗ σ) ◦ δH⊗H ◦ (H ⊗Π) = µH ◦ (H ⊗Π), (42)

and similar equalities involving σ−1 are satisfied.

Proof. We begin by showing (39) for ΠR
H. Indeed,

(σ ⊗ µH) ◦ δH⊗H ◦ (ΠR
H ⊗H)

= ((σ ◦ (ΠR
H ⊗H)) ⊗ µH) ◦ δH⊗H ◦ (ΠR

H ⊗H) ( by (7))
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= µH ◦ (ΠR
H ⊗ ((σ ⊗ µH) ◦ δH⊗H ◦ (ηH ⊗H))) (by (12))

= µH ◦ (ΠR
H ⊗H) (by (36)),

and we get the equality (39) forΠR
H. As a consequence, using (19) and (18), we have that σ◦(ΠR

H⊗H) = εH◦µH
and then

(µH ⊗ σ) ◦ δH⊗H ◦ (ΠR
H ⊗H)

= ((µH ◦ (ΠR
H ⊗H)) ⊗ σ) ◦ δH⊗H ◦ (ΠR

H ⊗H)

= (H ⊗ (((εH ◦ µH) ⊗ σ) ◦ δH⊗H)) ◦ (cH,H ⊗H) ◦ (ΠR
H ⊗ δH)

= (H ⊗ σ) ◦ (cH,H ⊗H) ◦ (ΠR
H ⊗ δH)

= (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH)

= µH ◦ (ΠR
H ⊗H).

By composing with Π
L
H ⊗H and using (5) we obtain the equalities for Π

L
H. In a similar way we get (39) and

(40) for Π
R
H and the equalities for ΠL

H follow by composing with ΠL
H ⊗H.

On the other hand,

(µH ⊗ σ) ◦ δH⊗H ◦ (H ⊗ΠL
H)

= (µH ⊗ (σ ◦ (H ⊗ΠL
H))) ◦ δH⊗H ◦ (H ⊗ΠL

H) (by (7))

= µH ◦ (((µH ⊗ σ) ◦ δH⊗H ◦ (H ⊗ ηH)) ⊗ΠL
H) (by (10))

= µH ◦ (H ⊗ΠL
H) (by (37)),

and we get the equality (42) forΠL
H. As a consequence, using (19) and (18) we have that σ◦(H⊗ΠR

H) = εH◦µH
and then

(σ ⊗ µH) ◦ δH⊗H ◦ (H ⊗ΠL
H)

= (σ ⊗ (µH ◦ (H ⊗ΠL
H))) ◦ δH⊗H ◦ (H ⊗ΠL

H)

= (((σ ⊗ (εH ◦ µH)) ◦ δH⊗H) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗Π
L
H)

= (σ ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗Π
L
H)

= ((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗Π
L
H)

= µH ◦ (H ⊗ΠL
H).

By composing with H ⊗Π
R
H and using (5) we obtain the equalities for Π

R
H. In a similar way we get (42) and

(41) for Π
L
H and the equalities for ΠR

H follow by composing with H ⊗ΠR
H.

Corollary 3.8. Let H be a weak Hopf algebra and let σ : H ⊗ H → K be a normal and convolution invertible
morphism. Assume that the antipode λH is an isomorphism. Then

εH ◦ µH = σ ◦ (ΠR
H ⊗H) = σ ◦ (Π

R
H ⊗H) = σ ◦ (H ⊗ΠL

H) = σ ◦ (H ⊗Π
L
H), (43)

εH ◦ µH ◦ (λH ⊗H) = σ ◦ (ΠL
H ⊗H) = σ ◦ cH,H ◦ (H ⊗Π

L
H), (44)
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εH ◦ µH ◦ (H ⊗ λH) = σ ◦ (H ⊗ΠR
H) = σ ◦ cH,H ◦ (Π

R
H ⊗H), (45)

and similar equalities involving σ−1 are satisfied.
As a consequence, we have the following expressions for the Π morphisms:

ΠL
H = (σ ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H) = (σ−1

⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H), (46)

ΠR
H = (H ⊗ σ) ◦ (cH,H ⊗H)) ◦ (H ⊗ (δH ◦ ηH)) = (H ⊗ σ−1) ◦ (cH,H ⊗H)) ◦ (H ⊗ (δH ◦ ηH)), (47)

Π
L
H = (H ⊗ σ) ◦ ((δH ◦ ηH) ⊗H) = (H ⊗ σ−1) ◦ ((δH ◦ ηH) ⊗H), (48)

Π
R
H = (σ ⊗H) ◦ (H ⊗ (δH ◦ ηH)) = (σ−1

⊗H) ◦ (H ⊗ (δH ◦ ηH)). (49)

Proof. The equalities of (43) follow by composing in (39) and (42) with εH and using (18). Moreover, taking
into account (4) and by composing with λH ⊗H we get the first equality of (44), and the second one follows
because

εH ◦ µH ◦ (λH ⊗H)

= εH ◦ µH ◦ (λH ⊗Π
L
H)

= εH ◦ µH ◦ (λH ⊗ (λH ◦Π
L
H))

= εH ◦ µH ◦ cH,H ◦ (H ⊗Π
L
H)

= σ ◦ cH,H ◦ (H ⊗Π
L
H).

The proof for the equalities of (45) is similar. Finally, (46)-(49) can be easily obtained using (43) and (17) and
the proof is complete.

Proposition 3.9. Let H be a weak Hopf algebra, and let σ : H ⊗ H → K be a normal and convolution invertible
morphism. Define ∂1(σ) = εH⊗σ, ∂2(σ) = σ◦(µH⊗H), ∂3(σ) = σ◦(H⊗µH), ∂4(σ) = σ⊗εH and e = εH◦µH◦(H⊗µH).
Then the following equalities hold:

∂1(σ) ∗ ∂1(σ−1) ∗ e = e = e ∗ ∂1(σ) ∗ ∂1(σ−1), (50)

∂1(σ−1) ∗ ∂1(σ) ∗ e = e = e ∗ ∂1(σ−1) ∗ ∂1(σ), (51)

∂2(σ) ∗ ∂2(σ−1) = e = ∂2(σ−1) ∗ ∂2(σ) (52)

∂2(σ) ∗ e = ∂2(σ) = e ∗ ∂2(σ), ∂2(σ−1) ∗ e = ∂2(σ−1) = e ∗ ∂2(σ−1) (53)
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∂3(σ) ∗ ∂3(σ−1) = e = ∂3(σ−1) ∗ ∂3(σ) (54)

∂3(σ) ∗ e = ∂3(σ) = e ∗ ∂3(σ), ∂3(σ−1) ∗ e = ∂3(σ−1) = e ∗ ∂3(σ−1) (55)

∂4(σ) ∗ ∂4(σ−1) ∗ e = e = e ∗ ∂4(σ) ∗ ∂4(σ−1), (56)

∂4(σ−1) ∗ ∂4(σ) ∗ e = e = e ∗ ∂4(σ−1) ∗ ∂4(σ), (57)

Proof. First of all, note that

∂1(σ) ∗ e = σ ◦ (µH ⊗H) ◦ (ΠR
H ⊗H ⊗H). (58)

e ∗ ∂1(σ) = σ ◦ (µH ⊗H) ◦ (Π
R
H ⊗H ⊗H), (59)

and similar equalities involving σ−1 are satisfied. We will show (58), the other is similar. Indeed,

∂1(σ) ∗ e

= (εH ⊗ σ ⊗ ((εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH) ⊗H))) ◦ δH⊗H⊗H (by (a2))

= (σ ∗ (εH ◦ µH)) ◦ (((H ⊗ (ε ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH)) ⊗H) (H is a coalgebra and naturality)

= σ ◦ (µH ⊗H) ◦ (ΠR
H ⊗H ⊗H) (by (11) and (20)).

Then

∂1(σ) ∗ ∂1(σ−1) ∗ e

= (εH ⊗ σ ⊗ (σ−1
◦ (µH ⊗H) ◦ (ΠR

H ⊗H ⊗H))) ◦ δH⊗H⊗H

= (σ ∗ σ−1) ◦ (((H ⊗ (ε ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH)) ⊗H)

= εH ◦ µH ◦ (ΠR
H ⊗ µH)

= e.

The other equality of (50) and the ones of (51) follow a similar pattern.
On the other hand, using (a1) and by naturality,

∂2(σ) ∗ ∂2(σ−1) = (σ ∗ σ−1) ◦ (µH ⊗H) = e = (σ−1
∗ σ) ◦ (µH ⊗H) = ∂2(σ−1) ∗ ∂2(σ).

Moreover,

∂2(σ) ∗ e = (σ ∗ (εH ◦ µH)) ◦ (µH ⊗H) = ∂2(σ) = ((εH ◦ µH) ∗ σ) ◦ (µH ⊗H) = e ∗ ∂2(σ),

and with similar computations we can obtain (54). Finally, taking into account that the equalities

∂4(σ) ∗ e = σ ◦ (H ⊗ µH) ◦ (H ⊗H ⊗Π
L
H) (60)

e ∗ ∂4(σ) = σ ◦ (H ⊗ µH) ◦ (H ⊗H ⊗ΠL
H), (61)

and the ones corresponding for σ−1 hold, it is not difficult to see (56) and (57).
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Now we recall the notion of (normal) 2-cocycle (see [2] for details).

Definition 3.10. Let H be a weak Hopf algebra, and let σ : H⊗H→ K be a convolution invertible morphism.
We say that σ is a 2-cocycle if the equality

∂1(σ) ∗ ∂3(σ) = ∂4(σ) ∗ ∂2(σ) (62)

holds.
Equivalently, a convolution invertible morphism σ : H ⊗H→ K is a 2-cocycle if

σ ◦ (H ⊗ ((σ ⊗ µH) ◦ δH⊗H)) = σ ◦ (((σ ⊗ µH) ◦ δH⊗H) ⊗H). (63)

The 2-cocycle σ is called normal if it satisfies the normal condition, i.e.; the conditions (25) and (30) hold.

Remark 3.11. We want to point out that there is an alternative definition of 2-cocycle given by Chen, Zhang
and Wang (see [6]) in which other conditions are requested. Although some of their conditions can be
obtained from those of our definition and viceversa, there is a very important difference involving the
convolution inverse morphism of the 2-cocycle, since in our definition σ−1

∗ σ = εH ◦ µH = σ ∗ σ−1, while in
the one of [6] σ−1

∗ σ = εH ◦ µH but σ ∗ σ−1 = εH ◦ µH ◦ cH,H. This is a fundamental point to establish that
both definitions are essentially different, since in the case that one could be obtained from the other, we
would have that εH ◦ µH = εH ◦ µH ◦ cH,H, and this equality is not true in general in the weak Hopf algebra
setting (consider for example a groupoid algebra). Therefore, both alternatives determine different ways
and procedures. We consider that our choice has the advantage of using a minimum number of conditions
similar to those well-known in Hopf algebras, and in addition the conditions about the convolution inverse
of the 2-cocycle in our definition are very close to the ones given by the third author of the quoted paper in
an article with Liu and Shen (see [13]).

Proposition 3.12. Let H be a weak Hopf algebra, and let σ : H ⊗ H → K be a normal and convolution invertible
2-cocycle. Then the equalities

∂1(σ) ∗ e = e ∗ ∂1(σ), (64)

∂4(σ) ∗ e = e ∗ ∂4(σ), (65)

hold.

Proof. Indeed,

∂1(σ) ∗ e

= σ ◦ (µH ⊗H) ◦ (ΠR
H ⊗H ⊗H) (by (58))

= σ ◦ (((σ ⊗ µH) ◦ δH⊗H) ⊗H) ◦ (ΠR
H ⊗H ⊗H) (by (39))

= σ ◦ (H ⊗ ((σ ⊗ µH) ◦ δH⊗H)) ◦ (ΠR
H ⊗H ⊗H) (by (63))

= σ ◦ (H ⊗ ((σ ⊗ µH) ◦ δH⊗H)) ◦ (Π
R
H ⊗H ⊗H) (by (43))

= σ ◦ (((σ ⊗ µH) ◦ δH⊗H) ⊗H) ◦ (Π
R
H ⊗H ⊗H) (by (63))

= σ ◦ (µH ⊗H) ◦ (Π
R
H ⊗H ⊗H) (by (39))

= e ∗ ∂1(σ) (by (58)),
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and we obtain (64). The proof for the equality (65) follows a similar pattern and we get the details to the
reader.

Proposition 3.13. Let H be a weak Hopf algebra, and let σ : H ⊗ H → K be a normal and convolution invertible
2-cocycle. Then the following conditions are equivalent:

(i)

∂3(σ) ∗ ∂2(σ−1) = ∂1(σ−1) ∗ ∂4(σ), (66)

∂2(σ) ∗ ∂3(σ−1) = ∂4(σ−1) ∗ ∂1(σ). (67)

(ii)

∂1(σ) ∗ e = e ∗ ∂1(σ), (68)

∂4(σ) ∗ e = e ∗ ∂4(σ). (69)

(iii)

∂1(σ−1) ∗ e = e ∗ ∂1(σ−1), (70)

∂4(σ−1) ∗ e = e ∗ ∂4(σ−1). (71)

Proof. (i)⇒ (ii) Using (54), condition of 2-cocycle, (67) and (59) for σ−1,

∂1(σ) ∗ e

= ∂1(σ) ∗ ∂3(σ) ∗ ∂3(σ−1)

= ∂4(σ) ∗ ∂2(σ) ∗ ∂3(σ−1)

= ∂4(σ) ∗ ∂4(σ−1) ∗ ∂1(σ)

= ((σ ∗ σ−1) ⊗ εH) ∗ ∂1(σ)

= ((εH ◦ µH) ⊗ σ) ◦ (H ⊗ δH ⊗H)

= σ ◦ (µH ⊗H) ◦ (Π
R
H ⊗H ⊗H)

= e ∗ ∂1(σ),

and in a similar way but using (66) and (53) instead of (67) and (55), respectively, we get (65).
(ii)⇒ (iii) Indeed, (70) follows because by (50),

∂1(σ−1) ∗ e = ∂1(σ−1) ∗ e ∗ ∂1(σ) ∗ ∂1(σ−1) = ∂1(σ−1) ∗ ∂1(σ) ∗ e ∗ ∂1(σ−1) = e ∗ ∂1(σ−1),

and in a similar way we get (71).
Moreover, if we assume (iii), it is easy to obtain (ii). Indeed,

∂1(σ) ∗ e = ∂1(σ) ∗ e ∗ ∂1(σ−1) ∗ ∂1(σ) = ∂1(σ) ∗ ∂1(σ−1) ∗ e ∗ ∂1(σ) = e ∗ ∂1(σ),
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and by similar computations ∂4(σ) ∗ e = e ∗ ∂4(σ).
To complete the proof we get (iii)⇒ (ii). First of all, note that the equalities

∂1(σ−1) ∗ e ∗ e ∗ ∂4(σ) = ∂1(σ−1) ∗ ∂4(σ), (72)

∂4(σ−1) ∗ e ∗ e ∗ ∂1(σ) = ∂4(σ−1) ∗ ∂1(σ), (73)

hold. We will show (72), the proof for (73) is similar. Indeed,

∂1(σ−1) ∗ e ∗ e ∗ ∂4(σ)

= (σ−1
◦ (µH ⊗H) ◦ (ΠR

H ⊗H ⊗H)) ∗ (σ ◦ (H ⊗ µH) ◦ (H ⊗H ⊗ΠL
H)) (by (58) and (61))

= (σ−1
⊗ σ) ◦ (((H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ δH)) ⊗H ⊗H ⊗ (((εH ◦ µH) ⊗H)

◦(H ⊗ cH,H) ◦ (δH ⊗H))) ◦ δH⊗H⊗H (by (9) and (11))

= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ δH ⊗H) ◦ (H ⊗H ⊗ σ−1
⊗H) ◦ (H ⊗ (cH,H ◦ δH) ⊗ σ ⊗ δH) ◦ (δH⊗H ⊗H)

(by naturality)

= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH) ⊗H) ◦ (H ⊗H ⊗ σ−1
⊗H)

◦(H ⊗ (cH,H ◦ δH) ⊗ σ ⊗ δH) ◦ (δH⊗H ⊗H) (by (a2))

= (((εH ◦ µH) ∗ σ) ⊗ (σ−1
∗ (εH ◦ µH))) ◦ (H ⊗ (cH,H ◦ δH) ⊗H) (by naturality)

= ∂1(σ−1) ∗ ∂4(σ) (by (19) and (20)).

As a consequence, using (ii), (iii), (52), (55), the condition of 2-cocycle and (51) we have that

∂1(σ−1) ∗ ∂4(σ)

= ∂1(σ−1) ∗ e ∗ e ∗ ∂4(σ)

= e ∗ ∂1(σ−1) ∗ ∂4(σ) ∗ e

= e ∗ ∂1(σ−1) ∗ ∂4(σ) ∗ ∂2(σ) ∗ ∂2(σ−1)

= e ∗ ∂1(σ−1) ∗ ∂1(σ) ∗ ∂3(σ) ∗ ∂2(σ−1)

= e ∗ ∂3(σ) ∗ ∂2(σ−1)

= ∂3(σ) ∗ ∂2(σ−1).

Finally,

∂4(σ−1) ∗ ∂1(σ)

= ∂4(σ−1) ∗ e ∗ e ∗ ∂1(σ)

= e ∗ ∂4(σ−1) ∗ ∂1(σ) ∗ e

= e ∗ ∂4(σ−1) ∗ ∂1(σ) ∗ ∂3(σ) ∗ ∂3(σ−1)

= e ∗ ∂4(σ−1) ∗ ∂4(σ) ∗ ∂2(σ) ∗ ∂3(σ−1)

= e ∗ ∂2(σ) ∗ ∂3(σ−1)

= ∂2(σ) ∗ ∂3(σ−1),
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and the proof is complete.

Proposition 3.14. Let H be a weak Hopf algebra, and let σ : H ⊗ H → K be a normal and convolution invertible
2-cocycle. Then the equality

∂3(σ−1) ∗ ∂1(σ−1) = ∂2(σ−1) ∗ ∂4(σ−1) (74)

holds.

Proof. Indeed,

∂3(σ−1) ∗ ∂1(σ−1)

= e ∗ ∂3(σ−1) ∗ ∂1(σ−1) (by (55))

= ∂2(σ−1) ∗ ∂2(σ) ∗ ∂3(σ−1) ∗ ∂1(σ−1) (by (52))

= ∂2(σ−1) ∗ ∂4(σ−1) ∗ ∂1(σ) ∗ ∂1(σ−1) (by (67))

= ∂2(σ−1) ∗ e ∗ ∂4(σ−1) ∗ ∂1(σ) ∗ ∂1(σ−1) (by (53))

= ∂2(σ−1) ∗ ∂4(σ−1) ∗ e ∗ ∂1(σ) ∗ ∂1(σ−1) (by (65))

= ∂2(σ−1) ∗ ∂4(σ−1) ∗ e (by (50))

= ∂2(σ−1) ∗ e ∗ ∂4(σ−1) (by (65))

= ∂2(σ−1) ∗ ∂4(σ−1) (by (53)).

Proposition 3.15. Let H be a weak Hopf algebra and let σ be a normal and convolution invertible 2-cocycle. Define
the product µHσ as

µHσ = (σ ⊗ µH ⊗ σ
−1) ◦ (H ⊗H ⊗ δH⊗H) ◦ δH⊗H.

Then Hσ = (H, ηHσ = ηH, µHσ , εHσ = εH, δHσ = δH) is an algebra coalgebra and the equality

δHσ ◦ µHσ = (µHσ ⊗ µHσ ) ◦ δHσ⊗Hσ (75)

holds.

Proof. We begin by showing that Hσ is an algebra. Indeed, using (46),

µHσ ◦ (ηHσ ⊗H)

= (µH ⊗ σ−1) ◦ δH⊗H ◦ (ΠL
H ⊗H) ◦ δH

= ΠL
H ∗ idH

= idH,

and in a similar way we get that µHσ ◦ (H ⊗ ηHσ ) = idH. As far as the associativity of the product, the proof
is identical that the well-known one for Hopf algebras ([8], Theorem 1.6).

On the other hand, it is obvious that Hσ is a coalgebra. Finally,

(µHσ ⊗ µHσ ) ◦ δHσ⊗Hσ

= (σ ⊗ µH ⊗ (σ−1
∗ σ) ⊗ µH ⊗ σ−1) ◦ (δH⊗H ⊗H ⊗H ⊗ δH⊗H) ◦ (H ⊗H ⊗ δH⊗H) ◦ δH⊗H

= (σ ⊗ µH ⊗ (εH ◦ µH) ⊗ µH ⊗ σ−1) ◦ (δH⊗H ⊗H ⊗H ⊗ δH⊗H) ◦ (H ⊗H ⊗ δH⊗H) ◦ δH⊗H
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= (σ ⊗ µH ⊗ µH ⊗ σ−1) ◦ (δH⊗H ⊗ δH⊗H) ◦ δH⊗H

= δHσ ◦ µHσ ,

and the proof is complete.

Remark 3.16. In the same conditions of Proposition 3.15, by (19),

εH ◦ µHσ = εH ◦ µH. (76)

As a consequence the Πmorphisms of H and Hσ coincide, that is to say, for i ∈ {L,R}, the equalities

Πi
Hσ = Π

i
H (77)

and

Π
i
Hσ = Π

i
H (78)

hold.

Lemma 3.17. Let H be a weak Hopf algebra and let σ : H⊗H→ K be a normal and convolution invertible morphism.

Assume that the antipode λH is an isomorphism. Then, for Π ∈ {ΠR
H,Π

L
H,Π

R
H,Π

L
H}, the following equalities hold:

µHσ ◦ (H ⊗Π) = µH ◦ (H ⊗Π) (79)

µHσ ◦ (Π ⊗H) = µH ◦ (Π ⊗H) (80)

Proof. The result follows easily using Proposition 3.7 and by equalities (7) and (8).

The following theorem is the main result of this section. We will show that, under suitable conditions,
Hσ is also a weak Hopf algebra we will call the cocycle twist of H.

Proposition 3.18. Let H be a weak Hopf algebra and let σ be a normal and convolution invertible 2-cocycle. Then
Hσ is a weak Hopf algebra with antipode

λHσ = ((σ ◦ (H ⊗ λH) ◦ δH) ⊗ λH ⊗ (σ−1
◦ (H ⊗ λH) ◦ δH)) ◦ (δH ⊗H) ◦ δH.

Moreover, σ−1 is a convolution invertible 2-cocycle for Hσ, and (Hσ)σ−1
= H.

Proof. By Proposition 3.15, to get that Hσ is a weak Hopf algebra we only need to see (a2)-(a4). Then

εHσ ◦ µHσ ◦ (µHσ ⊗H)

= εH ◦ µH ◦ (µHσ ⊗H) (by (76))

= εH ◦ µH ◦ (µHσ ⊗Π
L
H) (by (18))

= εHσ ◦ µHσ ◦ (µHσ ⊗Π
L
H) (by (76))

= εHσ ◦ µHσ ◦ (H ⊗ µHσ ) ◦ (H ⊗H ⊗ΠL
H) (by associativity)

= εH ◦ µH ◦ (H ⊗ µH) ◦ (H ⊗H ⊗ΠL
H) (by (76) and (79))

= εH ◦ µH ◦ (H ⊗ µH) (by (18)),
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and we obtain (a2). Moreover, using (17) and (80) it is not difficult to get (a3) because

(H ⊗ µHσ ⊗H) ◦ ((δH ◦ ηH) ⊗ (δH ◦ ηH)) = (H ⊗ µH ⊗H) ◦ ((δH ◦ ηH) ⊗ (δH ◦ ηH)). (81)

Now we will show that λHσ is the antipode of Hσ. Indeed,

idHσ ∗ λHσ

= (µH ⊗ σ−1) ◦ (σ ⊗ δH⊗H) ◦ δH⊗H ◦ (H ⊗ σ ⊗H ⊗ σ−1)

◦(H ⊗H ⊗ (cH,H ◦ δH ◦ λH) ⊗ λH ⊗H) ◦ (H ⊗ δH ⊗ δH) ◦ (H ⊗ δH) ◦ δH

(anticomultiplicativity of λH)

= (((σ ⊗ µH) ◦ δH⊗H) ⊗ (σ−1
∗ σ)) ◦ (δH⊗H ⊗ σ−1) ◦ (H ⊗ λH ⊗ λH ⊗H) ◦ (δH ⊗ δH) ◦ δH

(by naturality)

= (((σ ⊗ µH) ◦ δH⊗H) ⊗ (εH ◦ µH)) ◦ (δH⊗H ⊗ σ−1) ◦ (H ⊗ λH ⊗ λH ⊗H) ◦ (δH ⊗ δH) ◦ δH

(σ is convolution invertible)

= (σ ⊗ µH) ◦ (δH⊗H ⊗ σ−1) ◦ (H ⊗ λH ⊗ λH ⊗H) ◦ (δH ⊗ δH) ◦ δH (H weak Hopf algebra)

= (ΠL
H ⊗ σ ⊗ σ

−1) ◦ ((cH,H ◦ δH) ⊗ λH ⊗ λH ⊗H) ◦ (δH ⊗ δH) ◦ δH (anticomultiplicativity of λH)

= (ΠL
H ⊗ (∂1(σ−1) ∗ ∂4(σ))) ◦ ((cH,H ◦ δH) ⊗ λH ⊗H) ◦ (H ⊗ δH) ◦ δH (anticomultiplicativity of λH)

= (ΠL
H ⊗ (∂3(σ) ∗ ∂2(σ−1))) ◦ ((cH,H ◦ δH) ⊗ λH ⊗H) ◦ (H ⊗ δH) ◦ δH (by (66))

= (ΠL
H ⊗ σ ⊗ σ

−1) ◦ (H ⊗H ⊗H ⊗ µH ⊗H) ◦ (H ⊗H ⊗ cH,H ⊗H ⊗H)

◦(H ⊗ δH ⊗ (cH,H ◦ (λH ⊗Π
R
H) ◦ δH) ⊗H) ◦ ((cH,H ◦ δH) ⊗ δH) ◦ δH (anticomultiplicativity of λH)

= (ΠL
H ⊗ (εH ◦ µH) ⊗ σ−1) ◦ (H ⊗H ⊗H ⊗ µH ⊗H) ◦ (H ⊗H ⊗ cH,H ⊗H ⊗H)

◦(H ⊗ δH ⊗ (cH,H ◦ (λH ⊗ λH) ◦ δH) ⊗H) ◦ ((cH,H ◦ δH) ⊗ δH) ◦ δH (by (45))

= (ΠL
H ⊗ (εH ◦ µH) ⊗ (σ−1

◦ (µH ⊗H))) ◦ (H ⊗ δH⊗H ⊗H) ◦ ((cH,H ◦ δH) ⊗ ((λH ⊗H) ◦ δH)) ◦ δH

(anticomultiplicativity of λH)

= (ΠL
H ⊗ σ

−1) ◦ (H ⊗ (µH ◦ (H ⊗ λH)) ⊗H) ◦ ((cH,H ◦ δH) ⊗ δH) ◦ δH (H weak Hopf algebra)

= (H ⊗ σ−1) ◦ (µH⊗H ⊗H) ◦ ((cH,H ◦ δH) ⊗ ((λH ⊗ λH) ◦ δH) ⊗H) ◦ (δH ⊗H) ◦ δH (definition of ΠL
H)

= (H ⊗ σ−1) ◦ (µH⊗H ⊗H) ◦ ((cH,H ◦ δH) ⊗ (cH,H ◦ δH ◦ λH) ⊗H) ◦ (δH ⊗H) ◦ δH

(H weak Hopf algebra and anticomultiplicativity of λH)

= (H ⊗ σ−1) ◦ ((cH,H ◦ δH ◦Π
L
H) ⊗H) ◦ δH (H weak Hopf algebra)

= ((((εH ◦ µH) ⊗ σ−1) ◦ δH⊗H) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H) (definition of ΠL
H and coassociativity)

= (σ−1
⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H) (by (20)

= ΠL
H (by (46))

= ΠL
Hσ (by (77)),

and with similar computations, we get that λHσ ∗ idHσ = Π
R
Hσ . Finally, using (79),
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λHσ ∗ idHσ ∗ λHσ

= λHσ ∗Π
L
Hσ

= λHσ ∗Π
L
H

= ((σ ◦ (H ⊗ λH)) ⊗ σ−1
⊗ (µH ◦ (H ⊗ΠL

H))) ◦ (δH ⊗ (δH⊗H ◦ (λH ⊗H))) ◦ (δH ⊗H) ◦ δH

= ((σ ◦ (H ⊗ λH)) ⊗ ((σ−1
⊗ (εH ◦ µH)) ◦ δH⊗H) ⊗H) ◦ (δH ⊗H ⊗ cH,H) ◦ (H ⊗ (δH ◦ λH) ⊗H)

◦(δH ⊗H) ◦ δH

= (σ ⊗ σ−1
⊗H) ◦ (H ⊗ λH ⊗H ⊗ cH,H) ◦ (δH ⊗ (δH ◦ λH) ⊗H) ◦ (δH ⊗H) ◦ δH

= (σ ⊗ σ−1
⊗H) ◦ (H ⊗ λH ⊗H ⊗ cH,H) ◦ (δH ⊗ ((λH ⊗ λH) ◦ cH,H ◦ δH) ⊗H) ◦ (δH ⊗H) ◦ δH

= λHσ .

To finish the proof, using (b1) it is easy to see that (Hσ)σ−1
= H. Moreover, by (76) and Proposition 3.5,

σ−1 : H ⊗ H → K is a normal and convolution invertible morphism with inverse σ. Finally, condition (63)
holds because

σ−1
◦ (H ⊗ ((σ−1

⊗ µHσ ) ◦ δH⊗H))

= σ−1
◦ (H ⊗ (σ−1

∗ σ) ⊗ µH ⊗ σ−1) ◦ (H ⊗H ⊗H ⊗ δH⊗H) ◦ (H ⊗ δH⊗H) (by the definition of µHσ )

= σ−1
◦ (H ⊗ (εH ◦ µH) ⊗ µH ⊗ σ−1) ◦ (H ⊗H ⊗H ⊗ δH⊗H) ◦ (H ⊗ δH⊗H) (by (b1))

= σ−1
◦ (H ⊗ ((µH ⊗ σ−1) ◦ δH⊗H)) (by (a1))

= σ−1
◦ (((µH ⊗ σ−1) ◦ δH⊗H) ⊗H) (by (66))

= σ−1
◦ ((σ−1

∗ σ) ⊗ µH ⊗ σ−1
⊗H) ◦ (H ⊗H ⊗ δH⊗H ⊗H) ◦ (δH⊗H ⊗H) (by (a1) and (b1))

= σ−1
◦ (((σ−1

⊗ µHσ ) ◦ δH⊗H) ⊗H) (by the definition of µHσ ),

and the proof is complete.

4. The Yetter-Drinfel’d module category of a cocycle deformation

In this section we consider the categories of left-right Yetter-Drinfel’d modules over the weak Hopf
algebras H and Hσ and show that they are equivalent. As a consequence we get an equivalence between
modules for their Drinfel’d doubles.

First of all we recall the notion of left-right Yetter-Drinfel’d module in the weak Hopf algebra setting. We
want to point that the properties of Yetter-Drinfel’d modules remain valid with slight changes regardless
of the side where we work (left-left, left-right, right-left or right-right), so that we will cite our convenience
different papers without taking into account the side on which their results are obtained.

Definition 4.1. A left-right Yetter-Drinfel’d module over a weak Hopf algebra H is a triple M = (M, φM, ρM)
such that

(b1) (M, φM) is a left H-module.

(b2) (M, ρM) is a right H-comodule.

(b3) (φM ⊗ µH) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM) = (M ⊗ µH) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φM) ◦ (δH ⊗M)

(b4) ρM = (φM ⊗ µH) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM) ◦ (ηH ⊗M)
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If M and N are left-right Yetter-Drinfel’d modules over H, we say that f : M→ N is a morphism of left-right
Yetter-Drinfel’d modules if f is a morphism of left H-modules and right H-comodules. In what follows we
will denote by HYD

H the category of left-right Yetter-Drinfel’d modules over H.

Remark 4.2. The condition (b4) (see [1]) can be restated as

φM = (M ⊗ εH) ◦ (φM ⊗ µH) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM) (82)

Moreover, conditions (b3) and (b4) (see [16]) are equivalent to

ρM ◦ φM = (M ⊗ (µH ◦ cH,H)) ◦ (cH,M ⊗H) ◦ (λ−1
H ⊗ φM ⊗ µH) ◦ (δH ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM) (83)

Let H be a weak Hopf algebra and let (M, φM) and (N, φN) be left H-modules. Following [1], the morphism

∇M⊗N = φM⊗N ◦ (ηH ⊗M ⊗N) : M ⊗N→M ⊗N

is an idempotent, where φM⊗N = (φM ⊗ φN) ◦ (H ⊗ cH,M ⊗ N) ◦ (δH ⊗M ⊗ N). Moreover, if we denote by
M ×N the image of ∇M⊗N and by pM⊗N : M ⊗N→M ×N, iM⊗N : M ×N→M ⊗N the morphisms such that
iM⊗N ◦ pM⊗N = ∇M⊗N and pM⊗N ◦ iM⊗N = idM×N, the object M ×N is a left H-module with action

φM×N = pM⊗N ◦ φM⊗N ◦ (H ⊗ iM⊗N) : H ⊗ (M ×N)→M ×N.

Moreover, the following equalities hold:

φM⊗N = ∇M⊗N ◦ φM⊗N = φM⊗N ◦ (H ⊗ ∇M⊗N) (84)

In a similar way, if (M, ρM) and (N, ρN) are right H-comodules, the morphism

∆M⊗N = (M ⊗N ⊗ εH) ◦ ρM⊗N : M ⊗N→M ⊗N

is an idempotent, where ρM⊗N = (M ⊗N ⊗ (µH ◦ cH,H)) ◦ (M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN). Moreover, if we denote
by M ⊙N the image of ∆M⊗N and by p′M⊗N : M ⊗N → M ⊙N, i′M⊗N : M ⊙N → M ⊗N the morphisms such
that i′M⊗N ◦ p′M⊗N = ∆M⊗N and p′M⊗N ◦ i′M⊗N = idM⊙N, the object M ⊙N is a right H-comodule with coaction

ρM⊙N = (p′M⊗N ⊗H) ◦ ρM⊗N ◦ i′M⊗N : M ⊙N→ (M ⊙N) ⊗H,

and the equalities

ρM⊗N = ρM⊗N ◦ ∆M⊗N = (∆M⊗N ⊗H) ◦ ρM⊗N (85)

hold.
On the other hand, by [16], if σ is a normal and convolution invertible 2-cocycle and M, N are in HYD

H,
then ∇M⊗N = ∆M⊗N and M ×N =M ⊙N is in HYD

H with the action and coaction defined above. Moreover
HYD

H is a braided monoidal category with braiding tM,N : M ×N→ N ×M defined by

tM,N = pN⊗M ◦ (N ⊗ φM) ◦ (ρN ⊗M) ◦ cM,N ◦ iM⊗N,

with inverse
t−1
M,N = pM⊗N ◦ cN,M ◦ (N ⊗ φM) ◦ (N ⊗ λH ⊗M) ◦ (ρN ⊗M) ◦ iN⊗M.

Proposition 4.3. Let H be a weak Hopf algebra and let σ be a normal and convolution invertible 2-cocycle. If
M = (M, φM, ρM) is a left-right Yetter-Drinfel’d module over H then Mσ = (M, φσM, ρM) is a left-right Yetter-
Drinfel’d module over Hσ, being

φσM = (M ⊗ σ) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φM ⊗ σ
−1) ◦ (δH ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)
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Proof. It is obvious that (M, ρM) is a right H-comodule. To get that (M, φσM) is a left H-module, the equality
φσM ◦ (H⊗φσM) = φσM ◦ (µHσ ⊗M) follows with similar computations to the ones developed for Hopf algebras
in [7]. A far as the unity,

φσM ◦ (ηH ⊗M)

= (M ⊗ σ) ◦ (ρM ⊗H) ◦ cH,M ◦ (Π
L
H ⊗ φM ⊗ σ−1) ◦ (δH ⊗ cH,M ⊗H) ◦ (H ⊗Π

R
H ⊗ ρM) ◦ ((δH ◦ ηH) ⊗M)

(by (17))

= (M ⊗ εH) ◦ (((M ⊗ µH) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φM) ◦ (δH ⊗M)) ⊗ (εH ◦ µH))

◦(H ⊗ cH,M ⊗H) ◦ ((δH ◦ ηH) ⊗ ρM) (by (43))

= (M ⊗ εH) ◦ (((φM ⊗ µH) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)) ⊗ (εH ◦ µH)) ◦ (H ⊗ cH,M ⊗H) ◦ ((δH ◦ ηH) ⊗ ρM)

(by (b3))

= (M ⊗ εH) ◦ (φM ⊗ µH) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM) ◦ (ηH ⊗M)

(because M is a right H-comodule and by (a1))

= (M ⊗ εH) ◦ ρM (by (b4))

= idM,

and we have (b2). To get (b3), the proof given in [7] for Hopf algebras works well in our setting by using
(a1) instead of the invertibility of the cocycle σ. Finally,

(φσM ⊗ µHσ ) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM) ◦ (ηH ⊗M)

= (M ⊗ (εH ◦ µH)) ◦ (ρM ⊗H) ◦ cH,M ◦ (Π
L
H ⊗ φM)) ⊗ σ−1

⊗ (µHσ ◦ (ΠL
H ⊗H))) ◦ (((δH ⊗ cH,M ⊗H)

◦(δH ⊗ ρM)) ⊗H ⊗H) ◦ (H ⊗ cH,M ⊗H) ◦ ((δH ◦ ηH) ⊗ ρM) (by (17))

= (((M ⊗ εH) ◦ (M ⊗ µH) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φM) ◦ (δH ⊗M)) ⊗ σ−1
⊗ (µH ◦ (ΠL

H ⊗H)))

◦(((H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)) ⊗H ⊗H) ◦ (H ⊗ cH,M ⊗H) ◦ ((δH ◦ ηH) ⊗ ρM) (by (43) and (80))

= (((M ⊗ εH) ◦ (φM ⊗ µH) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)) ⊗ σ−1
⊗ (µH ◦ (ΠL

H ⊗H)))

◦(((H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)) ⊗H ⊗H) ◦ (H ⊗ cH,M ⊗H) ◦ ((δH ◦ ηH) ⊗ ρM) (by (b3) and (17))

= (φM ⊗ σ−1
⊗ µH) ◦ (((H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)) ⊗H ⊗H) ◦ ((H ⊗ cH,M ⊗H) ◦ ((δH ◦ ηH) ⊗ ρM))

(by (82))

= (φM ⊗ ((σ−1
⊗ µH) ◦ δH⊗H ◦ (ΠL

H ⊗H))) ◦ ((H ⊗ cH,M ⊗H) ◦ ((δH ◦ ηH) ⊗ ρM))

(by coassociativity, (17) and condition of right H-comodule)

= (φM ⊗ µH) ◦ (H ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM) ◦ (ηH ⊗M) (by (39))

= ρM (by (b4)),

and the proof is complete.

Now we will show that HYD
H and HσYD

Hσ are equivalent as braided monoidal categories.

Theorem 4.4. Let H be a weak Hopf algebra and let σ be a normal and convolution invertible 2-cocycle. Then there
is a braided monoidal category isomorphism between HYD

H and HσYD
Hσ .
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Proof. We define the covariant functor

F :H YD
H
→Hσ YD

Hσ

by F(M) = Mσ on the objects and by the identity on the morphisms. By Proposition 4.3, Mσ is an object in
HσYD

Hσ . To get that F is monoidal, note that if M and N are two objects in HYD
H, by (76) the idempotent

morphisms ∆Mσ⊗Nσ and ∆(M⊗N)σ coincide and then we can define ΦM,N : Mσ
×Nσ → (M ×N)σ as

ΦM,N = (p(M⊗N)σ ⊗ (σ−1
◦ cH,H)) ◦ (M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN) ◦ iMσ⊗Nσ .

Using (20) it is easy to see that

ΦM,N ◦ pMσ⊗Nσ = (p(M⊗N)σ ⊗ (σ−1
◦ cH,H)) ◦ (M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN) (86)

and

i(M⊗N)σ ◦ΦM,N = (M ⊗N)σ ⊗ (σ−1
◦ cH,H)) ◦ (M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN) ◦ iMσ⊗Nσ , (87)

and using this fact and (b1) we can see in a similar way that in the case of Hopf algebras that ΦM,N is a
morphism in HσYD

Hσ and commutes with the braidings.
Moreover ΦM,N is an isomorphism with inverse

Φ−1
M,N = (pMσ⊗Nσ ⊗ (σ ◦ cH,H)) ◦ (M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN) ◦ i(M⊗N)σ .

Indeed, using (87) and (b1),

Φ−1
M,N ◦ΦM,N

= (((pMσ⊗Nσ ⊗ (σ ◦ cH,H)) ◦ (M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN) ◦ (∆(M⊗N)σ ⊗ (σ−1
◦ cH,H))

◦(M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN) ◦ iMσ⊗Nσ

= (pMσ⊗Nσ ⊗ ((σ ∗ σ−1) ◦ cH,H)) ◦ (M ⊗ cH,N ⊗H) ◦ (ρM ⊗ ρN) ◦ iMσ⊗Nσ

= pMσ⊗Nσ ◦ ∆Mσ⊗Nσ ◦ iMσ⊗Nσ

= idMσ×Nσ ,

and in a similar way ΦM,N ◦Φ
−1
M,N = id(M×N)σ .

To get the inverse functor of F note that, by Proposition 3.18, σ−1 is a 2-cocycle on Hσ and (Hσ)σ−1
= H

and then (Hσ)σ−1YD
(Hσ)σ−1

=H YD
H . As a consequence we can define the functor

G :Hσ YD
Hσ
→H YD

H

by G(M) =Mσ−1
on the objects, and by the identity on the morphisms. Then, if M is in HYD

H,

(φσM)σ
−1

= (M ⊗ σ−1) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φσM ⊗ σ) ◦ (δH ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)

= (M ⊗ (σ−1
∗ σ)) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φM ⊗ (σ−1

∗ σ)) ◦ (δH ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)

(by naturality)

= (M ⊗ (εH ◦ µH)) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φM ⊗ (εH ◦ µH)) ◦ (δH ⊗ cH,M ⊗H) ◦ (δH ⊗ ρM)

(by (b1))
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= (M ⊗ (εH ◦ µH)) ◦ (ρM ⊗H) ◦ cH,M ◦ (H ⊗ φM) ◦ (δH ⊗M) (by (82))

= φM (by (82)).

As a consequence G ◦ F is equal to the identity functor on the braided monoidal category HYD
H, and in

a similar way F ◦ G is equal to the identity functor on the braided monoidal category HσYD
Hσ . Therefore

HYD
H and HσYD

Hσ are isomorphic braided monoidal categories and this finishes the proof.

It is a well-known fact the close connection between Yetter-Drinfel’d modules and the Drinfel’d double in
the sense that HYD

H can be identified with the category Rep(D(H)) of left H-modules over the Drinfel’d
double D(H) (see [14] for Hopf algebras or [16] for weak Hopf algebras). As a consequence we get the
following corollary.

Corollary 4.5. Let H be a weak Hopf algebra and let σ be a normal and convolution invertible 2-cocycle. Then there
is a category equivalence between Rep(D(H)) and Rep(D(Hσ))
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