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Abstract. This paper conglomerates our findings on the space C(X) of all real valued continuous functions,
under different generalizations of the topology of uniform convergence and the m-topology. The paper
begins with answering all the questions which were left open in our previous paper on the classifications of
Z-ideals of C(X) induced by the UI and the mI-topologies on C(X) [5]. Motivated by the definition of the mI-
topology, another generalization of the topology of uniform convergence, called UI-topology, is introduced
here. Among several other results, it is established that for a convex ideal I in C(X), a necessary and sufficient
condition for UI-topology to coincide with mI-topology on C(X) is the boundedness of X \

⋂
Z[I] in X. As

opposed to the case of the UI-topologies (and mI-topologies) on C(X), it is proved that each UI-topology
(respectively, mI-topology) on C(X) is uniquely determined by the ideal I. In the last section, the denseness
of the set of units of C(X) in CU(X) (= C(X) with the topology of uniform convergence) is shown to be
equivalent to the strong zero dimensionality of the space X. Also, the space X turns out to be a weakly
P-space if and only if the set of zero divisors (including 0) in C(X) is closed in CU(X). Computing the closure
of CP(X) (={ f ∈ C(X) : the support of f ∈P}where P is an ideal of closed sets in X) in CU(X) and Cm(X) (=
C(X) with the m-topology), the results clUCP(X) = CP

∞
(X) (= { f ∈ C(X) : ∀n ∈ N, {x ∈ X : | f (x)| ≥ 1

n } ∈P})
and clmCP(X) = { f ∈ C(X) : f .1 ∈ CP

∞
(X) for each 1 ∈ C(X)} are achieved.

1. Introduction

In the entire article X designates a completely regular Hausdorff space. As is well known C(X) stands for
the ring of real valued continuous functions on X. Suppose C∗(X) = { f ∈ C(X) : f is bounded on X}. If for
f ∈ C(X) and ϵ > 0 in R, U( f , ϵ) = {1 ∈ C(X) : sup

x∈X
| f (x) − 1(x)| < ϵ}, then the family {U( f , ϵ) : f ∈ C(X), ϵ > 0}

turns out to be an open base for the so-called topology of uniform convergence or in brief the U-topology
on C(X). Several experts have studied U-topology on C(X), from various points of view. One can look
at the articles [7, 10, 12] for a glimpse of some relevant facts about this topology. A generalization of this
U-topology on C(X) via a kind of ideal in C(X), viz a Z-ideal I in C(X), is already studied only recently [5].
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Incidentally the collection {UI( f , ϵ) : f ∈ C(X), ϵ > 0} constitutes an open base for this generalized U-
topology, named as the UI-topology on C(X). Here UI( f , ϵ) = {1 ∈ C(X) : there exists Z ∈ Z[I] ≡ {Z(h) : h ∈
I} such that sup

x∈Z
| f (x) − 1(x)| < ϵ}, Z(h) standing for the zero set of the function h. It is worth mentioning in

this context that an analogous type of topology, viz the mI-topology, on C(X) is introduced and investigated
in some detail in [3]. Here I is a Z-ideal in C(X) and a typical basic open neighborhood of f ∈ C(X) in this
topology looks like: mI( f ,u) = {1 ∈ C(X) : | f (x) − 1(x)| < u(x) for all x ∈ Z for some Z ∈ Z[I]}, here u ∈ C(X)
and is strictly positive on some Z0 ∈ Z[I]. With the special choice I = (0), the mI-topology and UI-topology
reduce respectively to the well-known m-topology and U-topology on C(X) [2M, 2N [7]]. In Section 4 of the
article [5], two classifications of Z-ideals in C(X) induced by UI-topologies and also by the mI-topologies are
defined. To be more specific binary relations ‘∼’ and ‘≈’ on the set I of all Z-ideals in C(X) are introduced
as follows: for I, J ∈ I, I ∼ J if UI-topology = UJ-topology and I ≈ J if mI-topology = mJ-topology. For
I ∈ I, we set [I] = {J ∈ I : UI-topology = UJ-topology} and [[I]] = {J ∈ I : mI-topology = mJ-topology}.
It is established in [5, Theorem 4.1, Theorem 4.4], that each equivalence class [I] has a largest member and
analogously all the equivalence classes [[I]] also have largest members [5, Theorem 4.13, Theorem 4.20]. It
is further realized that some of these equivalence classes (in both these classifications of Z-ideals in C(X))
have smallest members too [5, Theorem 4.10, Theorem 4.21].

In Section 2 of the present article we prove that each equivalence class [I] and [[I]] has a smallest member,
thereby answering the questions 4.26 and 4.27 asked in [5] affirmatively. Again it was established in [5]
that if X is a P-space, then each equivalence class [I] and [[I]] degenerates into singleton in [5, Theorem 4.12,
Theorem 4.23] and hence ∼ and ≈ are identical equivalence relations on I. In this article we check that,
regardless of whether or not X is a P-space, ∼ and ≈ are indeed identical equivalence relations on I, the set
of all Z-ideals on C(X). This answers negatively the question 4.25 asked in [5].

In Section 3 of this article we introduce yet another generalization of U-topology on C(X), this time via
an ideal I of C(X) [not necessarily a Z-ideal nor even a proper ideal] but with a slightly different technique.
Essentially for f ∈ C(X) and ϵ > 0, we set B̃( f , I, ϵ) = {1 ∈ C(X) : sup

x∈X
| f (x) − 1(x)| < ϵ and f − 1 ∈ I}. Then it

needs a few routine computation to show that the family {B̃( f , I, ϵ) : f ∈ C(X), ϵ > 0} makes an open base
for some topology on C(X), which we designate by the UI-topology on C(X). It is not at all hard to check
that C(X) with this UI-topology is an additive topological group. The U-topology on C(X) is a special case
of the UI-topology with I = C(X). Let us mention at this point that an analogous kind of topology, viz the
mI-topology on C(X), is initiated and studied in some details in [4]. A typical basic open neighborhood of
f ∈ C(X) for this latter topology is a set of the form {1 ∈ C(X) : | f (x)− 1(x)| < u(x) for all x ∈ X and f − 1 ∈ I},
here u is a positive unit in C(X). C(X) with the mI-topology is a topological ring as is proved in [4]. For
notational convenience, we let CUI (X) to stand for C(X) equipped with the UI-topology. Analogously CmI (X)
designates C(X) with the mI-topology. In general the UI-topology on C(X) is weaker than the mI-topology.
Incidentally it is proved [vide Theorem 3.7] that if I is a convex ideal in C(X) (in particular I may be a
Z-ideal in C(X)), then UI-topology = mI-topology if and only if X \

⋂
Z[I] is a bounded subset of X. We

observe that I ∩ C∗(X) is a clopen set in the space CUI (X) [Theorem 3.9(2)]. We use this fact to show that
I ∩ C∗(X) is indeed the component of 0 in CUI (X) [Theorem 3.12]. We recall that a topological space Y is
called homogeneous if given any two points p, q ∈ Y, there exists a homoeomorphism ϕ : Y → Y such
that ϕ(p) = q. A topological group is a natural example of a homogeneous space. It follows that CUI (X) is
either locally compact or nowhere locally compact, indeed the latter condition holds when and only when
X \
⋂

Z[I] is a finite set [Theorem 3.16] [Compare with Theorem 4.2 in [4]]. As in the space CmI (X), ideals
in C(X) are never compact in CUI (X) [Theorem 3.22(1)] and the ideals contained in the ring Cψ(X) of all
real valued continuous functions with pseudocompact support are the only candidates for Lindelöf ideals
in CUI (X) [Theorem 3.22(2)]. In [5], it is seen that a whole bunch of Z-ideals I in C(X), can give rise to
identical UI-topologies (respectively identical mI-topologies). In contrast we observe in the present article
that UI-topologies on C(X) (respectively mI-topologies on C(X)) are uniquely determined by the ideal I in
C(X) [Theorem 3.1].

In Section 4 of the present article on specializing I = C(X) and therefore writing CU(X) instead of
CUI (X), we achieve characterizations of two known classes of topological spaces X viz strongly zero-
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dimensional spaces and pseudocompact weakly P-spaces in terms of the behavior of two chosen subsets
U(X) and D(X) of the ring C(X), in the space CU(X) [Theorem 4.2, Theorem 4.3]. Here U(X) stands for
the set of all units in C(X) and D(X), the collection of all zero-divisors in C(X), including 0. We further
observe that the closure of the ideal CK(X) of all real valued continuous functions with compact support
in the space CU(X) is precisely the set { f ∈ C(X) : f ∗(βX \ X) = {0}}, here f ∗ : βX → R ∪ {∞} is the
well known Stone-extension of the function f . This leads to the fact that the closure of CK(X) in CU(X)
is the familiar ring C∞(X) of all functions in C(X) which vanish at infinity [Remark 4.9]. We would like
to point out at this moment, that the same proposition is very much there in the celebrated monograph
[13, Theorem 3.17] but with the additional hypothesis that X is locally compact. We also prove that the
closure of the ideal Cψ(X) of all functions with pseudocompact support in the space CU(X) equals to the
set { f ∈ C(X) : f ∗(βX \ υX) = {0}} [Theorem 4.11]. This ultimately leads to the proposition that the closure
of Cψ(X) in CU(X) is the ring Cψ∞(X) = { f ∈ C(X) : ∀n ∈ N, {x ∈ X : | f (x)| ≥ 1

n } is pseudocompact}. This
last ring is called the pseudocompact analogue of the ring C∞(X) and is initiated in [1]. The closure of
CK(X) is C∞(X) and that of Cψ(X) is Cψ∞(X) (in the space CU(X)). These two apparently distinct facts are
put on a common setting in view of the following result, which we establish subsequently in this article.
If P is an ideal of closed sets in X, in the sense that whenever E,F ∈ P , then E ∪ F ∈ P and E ∈ P and
C, a closed set in X with C ⊂ E implies that C ∈ P , then set CP(X) = { f ∈ C(X) : the support of f ∈ P}
and CP

∞ (X) = { f ∈ C(X) : ∀n ∈ N, {x ∈ X : | f (x)| ≥ 1
n } ∈ P}. It is proved that the closure of CP(X)

in CU(X) is CP
∞ (X) [Theorem 4.13(2)]. Incidentally we establish a formula for the closure of CP(X) in

the space C(X) equipped with m-topology. In fact we prove that the closure of CP(X) in the m-topology
≡ clmCP(X) = { f ∈ C(X) : f .1 ∈ CP

∞ (X) for each 1 ∈ C(X)}, Theorem 4.14(3). With the special choice P ≡ the
ideal of all compact sets in X this formula reads clmCK(X) =

⋂
p∈βX−X

Mp. This last result is precisely Proposition

5.6 in [4]. We conclude this article with a characterization of pseudocompact spaces via denseness of ideal
CP(X) in CP

∞ (X) in the m-topology.

2. Answer to a few open problems concerning UI-topologies and mI-topologies on C(X)

At the very outset we need to explain a few notations. For each point p ∈ βX, Mp = { f ∈ C(X) : p ∈
clβXZ( f )}, which is a maximal ideal in C(X) and Op = { f ∈ C(X) : clβXZ( f ) is a neighborhood of p in the space βX},
a well-known Z-ideal in C(X). For each subset A of βX, we prefer to write MA instead of

⋂
p∈A

Mp. Analogously

we write OA =
⋂

p∈A
Op. We reproduce the following results from [5], to make the paper self-contained.

Theorem 2.1. ([5, Theorem 4.1]) If A is a closed subset of βX, then [MA] = {I ∈ I : OA
⊆ I ⊆MA

}.

Theorem 2.2. ([5, Theorem 4.2]) For any closed subset A of βX, [[MA]] = {I ∈ I : OA
⊆ I ⊆MA

}.

We are going to establish a generalized version of each of the last two Theorems. We need the following
subsidiary fact for that purpose. The proof is straightforward.

Theorem 2.3. For any subset A of βX, MA =MA, here A = clβXA

Theorem 2.1 (respectively Theorem 2.2) in conjunction with Theorem 2.3 yields the following two
theorems almost immediately:

Theorem 2.4. For any subset A of βX, [MA] = {I ∈ I : OA
⊆ I ⊆MA

}.

Theorem 2.5. If A ⊂ βX, then [[MA]] = {I ∈ I : OA
⊆ I ⊆MA

}.

We want to recall at this moment that given a Z-ideal I in C(X), there always exists a set of maximal ideals
{Mp : p ∈ A} each containing I, A being a suitable subset of βX for which we can write: [I] = [MA] = [[I]]
[This is proved in Theorem 4.9 and Theorem 4.20 in [5]]. In view of this fact, we can make the following
comments:
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Remark 2.6. Each equivalence class [I] in the quotient set I/
∼

has a largest as well as a smallest member.

This answers question 4.26 raised in [5] affirmatively.

Remark 2.7. Each equivalence class [[I]] in the quotient set I/
≈

has a largest as well as a smallest member

[This answers question 4.27 in [5]].

Remark 2.8. For each Z-ideal I in C(X), [I] = [[I]]. Essentially this means that ∼ and ≈ are two identical
binary relations on I [This answers question 4.25 in [5] negatively].

3. UI-topologies versus mI-topologies on C(X)

We begin with the following simple result which states that the assignment: I→ UI is a one-one map.

Theorem 3.1. Suppose I and J are two distinct ideals in C(X). Then UI-topology is different from UJ-topology.

Proof. Without loss of generality, we can choose a function 1 ∈ I\ J such that |1(x)| < 1 for each x ∈ X. Clearly
B̃(1, J, 1) is an open set in the UJ-topology. We assert that this set is not open in the UI-topology. If possible,
let B̃(1, J, 1) be open in the UI-topology. Then there exists ϵ > 0 in R such that B̃(1, I, ϵ) ⊆ B̃(1, J, 1). Since
1+ ϵ

21 ∈ B̃(1, I, ϵ), this implies that 1+ ϵ
21 ∈ B̃(1, J, 1). It follows that 1+ ϵ

21− 1 ∈ J, i.e., ϵ21 ∈ J, a contradiction
to the initial choice that 1 < J.

Remark 3.2. A careful modification in the above chain of arguments yields that B̃(1, J, 1), which is an open
set in the UJ-topology (and therefore open in the mJ-topology) is not open in the mI-topology. Therefore,
we can say that whenever I and J are distinct ideals in C(X), it is the case that mI-topology is different from
mJ-topology.

Like any homogeneous space, CUI (X) (respectively CmI (X)) is either devoid of any isolated point or all
the points of this space are isolated. The following theorem clarifies the situation.

Theorem 3.3. The following three statements are equivalent for an ideal I in C(X):

1. CUI (X) is a discrete space.
2. CmI (X) is a discrete space.
3. I = (0).

Proof. If I = (0), then for each f ∈ C(X), B̃( f , I, 1) = { f } and therefore each point of CUI (X) (and CmI (X)) is
isolated. This settles the implication (3) =⇒ (1) and (3) =⇒ (2). (1) =⇒ (2) is trivial because mI-topology
is finer than the UI-topology. Suppose (3) is false, i.e., I , (0). Then the Remark 3.2 and the implication
(3) =⇒ (2) imply that mI-topology is different from the discrete topology. Thus (2) =⇒ (3).

It is a standard result in the study of function spaces that CU(X) is a topological vector space if and only
if X is pseudocompact [2M6, [7]]. The following fact is a minor improvement of this result.

Theorem 3.4. For an ideal I of C(X), CUI (X) is a topological vector space if and only if I = C(X) and X is
pseudocompact.

Proof. If I = C(X), then CUI (X) = CU(X), which is a topological vector space if X is pseudocompact as
observed above. Conversely let CUI (X) be a topological vector space and f ∈ C(X). Then there exists ϵ > 0
in R such that (−ϵ, ϵ) × B̃( f , I, ϵ) ⊆ B̃(0, I, 1). This implies that ϵ

2 f ∈ I and hence f ∈ I. Thus I = C(X). Clearly
then UI-topology on C(X) reduces to the U-topology. We can therefore say that CU(X) is a topological vector
space. In view of the observations made above, it follows that X is a pseudocompact space.

The following proposition gives a set of conditions in which each implies the next.
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Theorem 3.5.
1. The UI-topology = the mI-topology on C(X).
2. CUI (X) is a topological ring.
3. I ⊂ C∗(X).
4. I ∩ C∗(X) = I ∩ Cψ(X).

Proof.
1. =⇒ 2. is trivial because CmI (X) is a topological ring.
2. =⇒ 3. Suppose (2) holds but I 1 C∗(X). Choose f ∈ I such that f < C∗(X). Since the product function

CUI (X) × CUI (X)→ CUI (X)
(1, h) 7→ 1.h

is continuous at the point (0, f ), we get an ϵ > 0 such that B̃(0, I, ϵ) × B̃( f , I, ϵ) ⊆ B̃(0, I, 1). Let 1 = ϵ. f
2(1+| f |) .

Then 1 ∈ B̃(0, I, ϵ), this implies that 1. f ∈ B̃(0, I, 1) and hence 1(x). f (x) < 1 for each x ∈ X i.e., for each
x ∈ X, ϵ. f 2(x)

2(1+| f (x)|) < 1. Now since f is an unbounded function on X, | f (xn)| → ∞ along a sequence {xn}n in X.

Consequently lim
n→∞

| f (xn)|
1+| f (xn)| = lim

n→∞
[1 − 1

1+| f (xn)| ] = 1 and therefore there exists k ∈ N such that for all n ≥ k,
| f (xn)|

1+| f (xn)| ≥
3
4 . This implies that for each n ≥ k, ϵ.| f (xn)|

2 . 34 ≤
ϵ.| f (xn)|

2 .
| f (xn)|

1+| f (xn)| < 1 and so {| f (xn)| : n ≥ k} becomes a
bounded sequence in R. This contradicts that | f (xn)| → ∞ as n→∞. Hence I ⊂ C∗(X).

3. =⇒ 4. Suppose (3) holds. We need to show that I ∩ C∗(X) ⊂ I ∩ Cψ(X) (because Cψ(X) ⊆ C∗(X)).
Since Cψ(X) is the largest bounded ideal in C(X) [Theorem 3.8, [3]]. The condition (3) implies that I ⊂ Cψ(X).
Hence I ∩ C∗(X) = I = I ∩ Cψ(X).

The statement (4) may not imply the statement (1) in Theorem 3.5. Consider the following example:

Example 3.6. Take X =N, I = CK(N). Then UI-topology on C(N) ⫋ mI-topology on C(N).
Proof of this claim: First observe that CK(N) ⊂ C∗(N). Now recall the function j ∈ C∗(N) given by

j(n) = 1
n , n ∈N. Then B̃(0, I, j) is an open set in C(N) with mI-topology. We assert that this set is not open in

C(N) with UI-topology. Suppose otherwise, then there exists ϵ > 0 such that 0 ∈ B̃(0, I, ϵ) ⊂ B̃(0, I, j). Now

there exists k ∈N such that 2
k < ϵ. Let f (n) =

 ϵ2 when n ≤ k
0 otherwise

, then f ∈ B̃(0, I, ϵ). But f < B̃(0, I, j)

Y ⊂ X is called a relatively pseudocompact or bounded subset of X if for every f ∈ C(X), f (Y) is a
bounded subset of R. The previous Theorem is a special case of the more general Theorem, given below:

Theorem 3.7. For a convex ideal I of C(X), UI-topology = mI-topology if and only if X \
⋂

Z[I] is a bounded subset
of X.

Proof. First let X \
⋂

Z[I] be bounded and B̃( f , I,u) be an open set in mI-topology, where f ∈ C(X) and
u is a positive unit in C(X). Now 1

u is bounded on X \
⋂

Z[I], i.e., there exists λ > 0 such that 1
u(x) < λ

for all x ∈ X \
⋂

Z[I] =⇒ u(x) > 1
λ for all x ∈ X \

⋂
Z[I]. We claim that B̃( f , I, 1

λ ) ⊂ B̃( f , I,u). Consider
1 ∈ B̃( f , I, 1

λ ). Then |1 − f | < 1
λ and 1 − f ∈ I. Now for all x ∈

⋂
Z[I], (1 − f )(x) = 0 < u(x) and for all

x ∈ X \
⋂

Z[I], |1(x) − f (x)| < 1
λ < u(x), i.e., |1 − f | < u on X. So 1 ∈ B̃( f , I,u). For the converse part, suppose

X \
⋂

Z[I] is not a bounded subset of X. Then there exists a positive unit u in C(X) and a C-embedded copy
ofN ⊂ X \

⋂
Z[I] on which u → 0. Clearly B̃(0, I,u) is an open set in CmI (X). We claim that B̃(0, I,u) is not

open in the UI-topology. If possible, let there exist ϵ > 0 such that 0 ∈ B̃(0, I, ϵ) ⊂ B̃(0, I,u). Since u(n) → 0
as n → ∞ for n ∈ N, there exists k ∈ N such that u(k) < ϵ

2 . As N ⊂ X \
⋂

Z[I], there exists an f (≥ 0) ∈ I
such that f (k) > 0. SinceN is C-embedded in X, there exists h(≥ 0) ∈ C(X) such that h(k) = ϵ

2 f (k) . Let 1 = f .h.

Then 1 ∈ I and 1(k) = ϵ
2 . Set 1′ = 1∧ ϵ

2 . Then 1′ ≤ 1 =⇒ 1′ ∈ I, as I is convex. Also 1′ ≤ ϵ
2 =⇒ 1′ ∈ B̃(0, I, ϵ)

which further implies that 1′ ∈ B̃(0, I,u) =⇒ 1′ < u. But 1′(k) = ϵ
2 > u(k), a contradiction.
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Remark 3.8. With the special choice I = C(X), the above Theorem reads: The U-topology = m-topology
on C(X) if and only if X is pseudocompact. This is a standard result in the theory of rings of continuous
function [see 2M6 and 2N [7]].

It is proved in [4], Proposition 2.2 that if I is an ideal in C(X) then any ideal J containing I is clopen in
CmI (X) and also C∗(X)∩I is clopen in CmI (X). These two facts can be deduced from the following proposition,
because the mI-topology is finer than the UI-topology.

Theorem 3.9.

1. If J is any additive subgroup of (C(X),+, .) containing the ideal I, then J is a clopen subset of CUI (X).
2. For any ideal I in C(X), I ∩ C∗(X) is a clopen subset of CUI (X).

Proof. 1. Let f ∈ J. Then f ∈ B̃( f , I, 1) ⊂ J, because 1 ∈ B̃( f , I, 1) =⇒ 1 − f ∈ I ⊂ J =⇒ 1 = f + (1 − f ) ∈ J.
Thus J becomes open in CUI (X). To prove that J is also closed in this space let f < J, f ∈ C(X). Then it is not
at all hard to check that B̃( f , I, 1) ∩ J=∅ and hence J is closed in CUI (X).

2. For any f ∈ I ∩ C∗(X), it is routine to check that f ∈ B̃( f , I, 1) ⊂ I ∩ C∗(X). Then I ∩ C∗(X) is open in
CUI (X). To settle the closeness of I ∩ C∗(X) in CUI (X), we need to verify that for any f ∈ C(X) \ (I ∩ C∗(X)),
B̃( f , I, 1) ∩ I ∩ C∗(X) = ∅ and that verification is also routine.

Before proceeding further we recall for any f ∈ C(X) the map

ϕ f : R→ C(X)
r 7→ r. f

already introduced in [3], [4].

Lemma 3.10. Let I be an ideal in C(X). Then for f ∈ C(X),

ϕ f : R→ CUI (X)
r 7→ r. f

is a continuous map if and only if f ∈ I ∩ C∗(X) [compare with an analogous fact in the mI-topology: Lemma 3.1
in [4]].

Proof. First assume that ϕ f is continuous, in particular at the point 0. So there exists δ > 0 in R such that
ϕ f (−δ, δ) ⊆ B̃(ϕ f (0), I, 1) = B̃(0, I, 1). This implies that ϕ f ( δ2 ) ∈ B̃(0, I, 1) and hence | δ2 f | < 1 and δ

2 f ∈ I. Clearly
then f ∈ C∗(X) ∩ I. Conversely let f ∈ C∗(X) ∩ I. Then | f | < M on X for some M > 0 in R. Choose r ∈ R and
ϵ > 0 arbitrarily. Then it is not at all hard to check that ϕ f (r− ϵ

M , r+
ϵ
M ) ⊆ B̃(ϕ f (r), I, ϵ). Then ϕ f is continuous

at r.

Corollary 3.11. For f ∈ C(X),

ϕ f : R→ CU(X)
r 7→ r. f

is continuous if and only if f ∈ C∗(X).

Theorem 3.12. The component of 0 in CUI (X) is I ∩ C∗(X).

Proof. It follows from Lemma 3.10 that I ∩ C∗(X) =
⋃

f∈I∩C∗(X)
ϕ f (R), a connected subset of CUI (X). Since

I∩C∗(X) is a clopen set in CUI (X) (Theorem 3.9(2)), it is the case that I∩C∗(X) is the largest connected subset
of CUI (X) containing 0. Hence I ∩ C∗(X) is the component of 0 in CUI (X).
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Corollary 3.13. C∗(X) is the component of 0 in CU(X)

To find out when does the space CUI (X) become locally compact, we reproduce the Lemma 4.1(a) from
the article [4]:

Lemma 3.14. For any positive unit u in C(X) and for a finite subset {a1, a2, ..., ak} of X\
⋂

Z[I], for each i ∈ {1, 2, ..., k},
there exists ti ∈ I such that |ti| < u, ti(ai) = 1

2 u(ai) and ti(a j) = 0 for j , i.

We will need the following special version of this Lemma.

Lemma 3.15. Suppose ϵ > 0 and {a1, a2, ..., an} is a finite subset of X\
⋂

Z[I]. Then for each i ∈ {1, 2, ...,n}, there
exists ti ∈ I such that |ti| < ϵ, ti(ai) = 1

2ϵ and ti(a j) = 0 for all j , i.

Theorem 3.16. For an ideal I in C(X), the following three statements are equivalent:

1. CUI (X) is nowhere locally compact.
2. CmI (X) is nowhere locally compact.
3. X \

⋂
Z[I] is an infinite set.

Proof. The equivalence of the statements (2) and (3) is precisely Theorem 4.2 in [4]. So we shall establish
the equivalence of (1) and (3). The proof for this later equivalence will be a close adaption of the proof of
Theorem 4.2 in [4]. However we shall make a sketch of this proof in order to make the paper self contained.
First assume that X\

⋂
Z[I] is an infinite set. If possible, let K be a compact subset of CUI (X) with non-empty

interior. Then there exists f ∈ C(X) and ϵ > 0 in R such that B̃( f , I, ϵ) ⊆ K. The compactness of K in CUI (X)

implies that K ⊆
n⋃

i=1
B̃(1i, I, ϵ4 ) for a suitable finite subset {11, 12, ..., 1n} of K. Since X\

⋂
Z[I] is an infinite set, we

can pick up (n + 1)-many distinct members {a1, a2, ..., an+1} from this set. On using Lemma 3.15, we can find
out for each i ∈ {1, 2, ...,n+1}, a function ti ∈ I such that |ti| < ϵ, ti(ai) = ϵ

2 and ti(a j) = 0 if j , i, j ∈ {1, 2, ...,n+1}.

Set ki = f + ti, i = 1, 2, ...,n + 1. Then for each i = 1, 2, ...,n + 1, ki ∈ B̃( f , I, ϵ) ⊂ K ⊆
n⋃

i=1
B̃(1i, I, ϵ4 ), so there exist

distinct p, q ∈ {1, 2, ...,n + 1} for which kp and kq lie in B̃(1i, I, ϵ4 ) for some i ∈ {1, 2, ...,n}. This implies that
|kp−kq| < ϵ

2 , while |kp(ap)−kq(ap)| = ϵ
2 , a contradiction. Thus (3) =⇒ (1) is established. If X \

⋂
Z[I] is a finite

set, say the set {b1, b2, ..., bk}, then by proceeding analogously as in the proof of Lemma 4.1(b) in [4], we can
easily show that Rk is homeomorphic to the subspace I of the space CUI (X). From Theorem 3.9(1), we get
that I is an open subspace of CUI (X). Hence the space CUI (X) becomes locally compact at each point on I.
Consequently CUI (X) is locally compact at each point on X (Mind that CUI (X) is a homogeneous space).

Corollary 3.17. CU(X) is nowhere locally compact if and only if Cm(X) is nowhere locally compact if and only if X
is an infinite set.

A sufficient condition for the nowhere local compactness of CUI (X) is given as follows:

Theorem 3.18. If I 1 C∗(X), then CUI (X) is nowhere locally compact [compare with an analogous fact concerning
CmI (X) in Corollary 4.4 [4]].

Proof. It is clear that I 1 C∗(X) =⇒ X \
⋂

Z[I] is an infinite set. It follows from Theorem 3.16 that CUI (X) is
nowhere locally compact.

The following simple example shows that the converse of the last statement is not true.

Example 3.19. Take X = R and I = CK(R). Then I ⊂ C∗(X), but
⋂

f∈CK(R)
Z( f ) = ∅ and thereforeR\

⋂
Z[I] = R =

an infinite set. Hence from Theorem 3.16, CUI (R) is nowhere locally compact, though I ⊂ C∗(R).
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For an essential ideal I in C(X) [I is called an essential ideal in C(X) if I , (0) and every non-zero ideal
in C(X) cuts I non-trivially], the following fact is a simple characterization of nowhere local compactness of
CUI (X).

Theorem 3.20. Let I be an essential ideal in C(X). Then CUI (X) is nowhere locally compact if and only if X is an
infinite set.

Proof. For the essential ideal I in C(X),
⋂

Z[I] is nowhere dense [Proposition 2.1, [2]] and hence clX(X \⋂
Z[I]) = X. The desired result follows on using Theorem 3.16 in a straightforward manner.

We would like to point out at this moment that it is mentioned in [3] [the proof of the implication relation
( f ) =⇒ (b) in Proposition 3.14] and also in [4] (the statement lying between Corollary 3.5 and Corollary
3.6) that whenever Cψ(X) , {0}, then it is an essential ideal in C(X). The following counterexample shows
that there exists a non-zero Cψ(X) in C(X), which is not an essential ideal in C(X).

Example 3.21. Consider the following subspace of R : X = {0} ∪ {x ∈ R : x is rational and 1 ≤ x ≤ 2}. Then
X is locally compact at the point 0 and therefore CK(X) , {0}, because for a space Y, CK(Y) is {0} if and only
if Y is nowhere locally compact [This follows on adapting the arguments in 4D2 [7], more generally for a
nowhere locally compact space Y instead of Q only]. Since X is a metrizable space, there is no difference
between compact and pseudocompact subsets of X. Hence Cψ(X) = CK(X) , {0}. It is clear that if f ∈ CK(X),
then f vanishes at each point on X \ {0}. Consequently

⋂
f∈CK(X)

Z( f ) = [1, 2] ∩ Q, which being a non-empty

clopen set in the space X is not nowhere dense. Hence on using Proposition 2.1 in [2], CK(X) is not an
essential ideal in C(X).

It is proved in Proposition 4.6 in [4] that a non-zero ideal I in C(X) is never compact in CmI (X) and if such
an I is Lindelöf, then I ⊆ Cψ(X). These two facts can be deduced from the following proposition, because
the mI-topology is finer than the UI-topology.

Theorem 3.22. Let J be a non-zero ideal in C(X). Then:

1. J is not compact in CUI (X).
2. If J is Lindelöf in CUI (X), then J ⊆ Cψ(X).

We omit the proof of this Theorem, because this can be done on closely following the arguments for the
proof of Proposition 4.6 in [4].

4. A few special properties for the spaces CU(X) and Cm(X)

If U(X) is dense in Cm(X), then it is plain that U(X) is dense in CU(X), because the U-topology on C(X) is
weaker than the m-topology. We are going to show that the converse of this statement is true. We recall in
this context that a space X is strongly zero-dimensional if given a pair of completely separated sets K and
W in X, there exists a clopen set C′ such that K ⊆ C′ ⊆ X \W. Equivalently X is strongly zero-dimensional
if and only if given a pair of disjoint zero-sets Z and Z′ in X, there exists a clopen set C in X such that
Z ⊆ C ⊆ X \Z′. The following lemma gives a sufficient condition for the strongly zero-dimensionality of X.

Lemma 4.1. Let U(X) be dense in CU(X). Then X is strongly zero-dimensional.

Proof. Let Z1,Z2 be disjoint zero-sets in X. Then there exists f ∈ C(X) such that | f | ≤ 1, f (Z1) = {−1} and
f (Z2) = {1}. Since U(X) is dense in X, we can find out a member u ∈ B̃( f , 1

2 )∩U(X). Let C = {x ∈ X : u(x) < 0}.
Then C is a clopen set in X, Z1 ⊆ C ⊆ X \ Z2. Thus X becomes strongly zero-dimensional.

Theorem 4.2. The following statements are equivalent for a space X.

1. X is strongly zero-dimensional.
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2. U(X) is dense in CU(X).
3. U(X) is dense in Cm(X).

Proof. The equivalence of (1) and (3) is precisely the Proposition 5.1 in [4]. This combined with Lemma 4.1
finishes the proof.

Let U∗(X) = {u ∈ C(X) : |u| > λ for some λ > 0}.

Theorem 4.3. clUD(X)(≡ the closure of D(X) in the space CU(X)) = C(X)\U∗(X) [compare with the fact: clmD(X) =
C(X) \U(X) in Proposition 5.2 in [4]].

Proof. It is easy to check that U∗(X) is open in CU(X) because choosing u ∈ C∗(X), we have |u| > λ for
some λ > 0, this implies that B̃(u, λ2 ) ⊆ U∗(X) (We are simply writing B̃(u, λ2 ) instead of B̃(u,C(X), λ2 )). Since
D(X) ∩ U(X) = ∅, in particular D(X) ∩ U∗(X) = ∅, it follows therefore that clUD(X) ⊆ C(X) \ U∗(X). To
prove the reverse inclusion relation, let f ∈ C(X) \ U∗(X) and ϵ > 0 be preassigned. We need to show that
B̃( f , ϵ) ∩D(X) , ∅. For that purpose define as in the proof of Proposition 5.2 in [4].

h(x) =


f (x) + ϵ

2 if f (x) ≤ − ϵ2
0 if | f (x)| ≤ ϵ

2

f (x) − ϵ
2 if f (x) ≥ ϵ

2

Then h ∈ C(X). Since f < U∗(X), f takes values arbitrarily near to zero on X. Therefore there exists x ∈ X
for which | f (x)| < ϵ

2 . This implies that intXZ(h) , ∅. Thus h ∈ D(X) and surely |h − f | < ϵ. Therefore
h ∈ B̃( f , ϵ) ∩D(X).

Definition 4.4. We call a space X, a weakly P-space if whenever f ∈ C(X) is such that f takes values
arbitrarily near to zero, then f vanishes on some neighborhood of a point in X, i.e., intXZ( f ) , ∅.

It is clear that every weakly P-space is an almost P-space and is pseudocompact. The following
proposition is a characterization of weakly P-spaces.

Theorem 4.5. X is a weakly P-space if and only if D(X) is closed in CU(X) [Compare with the Proposition 5.2 in [4]].

Proof. Let X be a weakly P-space. This means that if f ∈ C(X) is not a zero-divisor, then it is bounded
away from zero, i.e., f ∈ U∗(X). Thus C(X) \ D(X) ⊆ U∗(X). The implication relation U∗(X) ⊆ C(X) \ D(X)
is trivial. Therefore C(X) \ D(X) = U∗(X) and thus D(X) = C(X) \ U∗(X). It follows from Theorem 4.3 that
D(X) is closed in CU(X). Conversely let D(X) be closed in CU(X). Then this implies by Theorem 4.3 that
D(X) = C(X) \U∗(X). Now let f ∈ C(X) be such that f takes values arbitrarily near to zero. We need to show
that intXZ( f ) , ∅. If possible, let intXZ( f ) = ∅. Then f < D(X) and hence f ∈ U∗(X), a contradiction.

The next proposition shows that weakly P-spaces are special kind of almost P-spaces.

Theorem 4.6. X is a weakly P-space if and only if it is pseudocompact and almost P.

Proof. It is already settled that a weakly P-space is pseudocompact and almost P. Conversely let X be
pseudocompact and almost P. Suppose f ∈ C(X) takes values arbitrarily near to zero on X. Then f must
attain the value 0 at some point on X because X is pseudocompact. Thus Z( f ) , ∅ and hence due to the
almost P property of X, we shall have intXZ( f ) , ∅. Therefore X becomes weakly P.

Remark 4.7. D(X) is closed in CU(X) if and only if X is a pseudocompact almost P-space.

There are enough examples of pseudocompact almost P-spaces. Indeed, if X is a locally compact
realcompact space, then βX \ X is a compact almost P-space [Lemma 3.1, [6]].

In what follows we compute the closure of a few related ideals in the ring C(X).
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Theorem 4.8. clUCK(X) (≡ the closure of CK(X) in the space CU(X)) = { f ∈ C(X) : f ∗(βX \ X) = {0}}.

Proof. Set for each p ∈ βX, M̃p = { f ∈ C(X) : f ∗(p) = 0}. Since f ∈Mp =⇒ p ∈ clβXZ( f ) (Gelfand-Kolmogoroff
Theorem) =⇒ f ∗(p) = 0, it follows that Mp

⊆ M̃p for each p ∈ βX. Furthermore, M̃p = { f ∈ C(X) : |Mp( f )| =
0 or infinitely small in the residue class field C(X)/Mp

} [Theorem 7.6(b), [7]]. It is well-known [vide [11],
Lemma 2.1] that clUMp = { f ∈ C(X) : |Mp( f )| = 0 or infinitely small}. Hence we get that Mp

⊆ clUMp = M̃p

for each p ∈ βX. Therefore CK(X) =
⋂

p∈βX\X
Op [7E [7]]⊆

⋂
p∈βX\X

Mp
⊆
⋂

p∈βX\X
M̃p = the intersection of a family of

closed sets in CU(X) ≡ a closed set in CU(X). This implies that clUCK(X) ⊆
⋂

p∈βX\X
M̃p = { f ∈ C(X) : f ∗(βX\X) =

0}. To prove the reverse inclusion relation, let f ∈
⋂

p∈βX\X
M̃p. Thus f ∗(βX \ X) = {0}. Consequently then f

becomes bounded on X, for if f is unbounded on X, then there exists a copy of N, C-embedded in X for
which lim

n→∞
| f (x)| = ∞. Surely then clβXN = βN and so clβXN \υX ⊇ βN \N [We use the fact that a countable

C-embedded subset of a Tychonoff space is a closed subset of it 3B3 [7]]. Choose a point p ∈ βN \N, it is
clear that f ∗(p) = ∞, a contradiction. Thus f ∈ C∗(X) and we can write f β(βX \ X) = {0}, here f β : βX→ R is
the Stone-extension of f ∈ C∗(X). So βX \ X ⊆ ZβX( f β), the zero set of f β in the space βX. Choose ϵ > 0. We
claim that B̃( f , ϵ) ∩ CK(X) , ∅ and we are done.

Proof of the claim: Define a function h : X→ R as follows

h(x) =


f (x) + ϵ

2 if f (x) ≤ − ϵ2
0 if − ϵ

2 ≤ f (x) ≤ ϵ
2

f (x) − ϵ
2 if f (x) ≥ ϵ

2

Then h ∈ C∗(X) and |h(x)− f (x)| < ϵ for each x ∈ X, i.e., h ∈ B̃( f , ϵ). To complete this theorem, it remains only
to check that h ∈ CK(X). Indeed let 1 = (| f | ∧ ϵ

2 ) − ϵ
2 . Then Z( f ) ⊆ X \ Z(1) and X \ Z(1) ⊆ Z(h) and hence

1.h = 0. Since the map

C∗(X)→ C(βX)
k 7→ kp

is a lattice isomorphism, from the definition of 1, we can at once write: 1β = (| f |β ∧ ϵ
2 ) − ϵ

2 and 1β.hβ = 0.
Consequently then, βX \ ZβX(1β) ⊆ Z(hβ) and also, ZβX(1β) ⊆ βX \ ZβX( f β). This shows that Z(hβ) is a
neighborhood of βX \ X. It follows from 7E [7] that h ∈ CK(X).

Remark 4.9. It is a standard result in the theory of rings of continuous functions that the complete list of
free maximal ideals in C∗(X) is given by {M∗p : p ∈ βX \ X}, where M∗p = {h ∈ C∗(X) : hβ(p) = 0} [Theorem
7.2, [7]]. It is also well-known that [vide 7F1, [7]],

⋂
p∈βX\X

M∗p = C∞(X). Hence we can ultimately write

clUCK(X) = C∞(X).

Remark 4.10. We can show that for a well chosen collection of naturally existing spaces, CK(X) is not
dense in C∞(X) in the m-topology on C(X). Indeed let X be a locally compact, σ-compact non com-
pact space (say X = Rn,n ∈ N). Since every σ-compact space is realcompact, it follows from Theorem
8.19 in [7] that CK(X) =

⋂
p∈βX\X

Mp. Incidentally it is proved in Proposition 5.6 in [4] that clmCK(X)(≡

the closure of CK(X) in the space Cm(X)) =
⋂

p∈βX\X
Mp. Thus CK(X) is closed in Cm(X). On the other hand,

it follows from 7F3 [7] that with the above mentioned condition on X, the intersection of all free maximal
ideals in C(X) ⊊ the intersection of all free maximal ideals in C∗(X). Therefore CK(X) ⫋ C∞(X) and hence
CK(X) is not dense in C∞(X) in the space C(X) in the m-topology. Towards the end of this paper, we find the
closure of CK(X) in Cm(X).
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Theorem 4.11. clUCψ(X) (≡ the closure of Cψ(X) in CU(X)) =
⋂

p∈βX\υX
M̃p = { f ∈ C(X) : f ∗(βX \ υX) = {0}}.

Proof. We shall follow closely the technique adopted to prove Theorem 4.8. First recall the well-known
fact: Cψ(X) =

⋂
p∈βX\υX

Mp, Theorem 3.1 [8]. It follows on adapting the chain of arguments in the first part of

the proof of Theorem 4.8 that clUCψ(X) ⊆
⋂

p∈βX\υX
M̃p = { f ∈ C(X) : f ∗(βX \ υX) = {0}}. To prove the reverse

inclusion relation, choose f ∈ C(X) such that f ∗(βX \ υX) = {0}, then it is not at all hard to prove that f is
bounded on X and therefore we can rewrite as in the proof of Theorem 4.8 that clUCψ(X) ⊆ { f ∈ C∗(X) :
f β(βX \ υX) = {0}} and hence βX \ υX ⊆ ZβX( f β). Next choosing ϵ > 0 and proceeding exactly as in the proof
of Theorem 4.8, thereby defining the bounded continuous function h : X→ R verbatim, we can easily check
that h ∈ B̃( f , ϵ). In the next stage we set as in the proof of Theorem 4.8, 1 = (| f | ∧ ϵ

2 )− ϵ
2 and ultimately reach

the inequality:

βX \ υX ⊆ ZβX( f β) ⊆ βX \ ZβX(1β) ⊆ ZβX(hβ) . . . (1)

To complete this theorem, it remains to check that h ∈ Cψ(X). Since Cψ(X) =
⋂

p∈βX\υX
Mp, it is therefore

sufficient to show that (in view of Gelfand-KolmogoroffTheorem [7]), for each point p ∈ βX\υX, p ∈ clβXZ(h).
For that purpose let U be an open neighborhood of p in βX. Then V = βX \ ZβX(1β) ∩ U is an open
neighborhood of p in βX (we exploit the inequality (1)). Therefore V ∩ X , ∅. But from (1) we get that
V ∩ X ⊆ Z(h). hence Z(h) ∩ U , ∅. Thus each open neighborhood of p in βX cuts Z(h) and therefore
p ∈ clβXZ(h).

For notational convenience let us write for f ∈ C(X) and n ∈ N, An( f ) = {x ∈ X : | f (x)| ≥ 1
n }. Since

a support, i.e., a set of the form clX(X \ Z(k)), k ∈ C(X) is pseudocompact if and only if it is bounded
meaning that each h ∈ C(X) is bounded on clX(X \ Z(k)) [Theorem 2.1, [9]]. We rewrite: Cψ∞(X) = { f ∈ C(X) :
An( f ) is bounded for each n ∈ N} [see [1] in this connection]. The following result relates this ring with
Cψ(X).

Theorem 4.12. C∞ψ (X) = clUCψ(X).

Proof. In view of Theorem 4.11, it amounts to showing that C∞ψ (X) = { f ∈ C(X) : f ∗(βX \ υX) = 0}. For that
we make the elementary but important observation that C∞ψ (X) ⊆ C∗(X). First assume that f ∈ C(X) and
f ∗(βX \ υX) = {0}, i.e., f β(βX \ υX) = {0}. Choose n ∈N arbitrarily, we shall show that An( f ) is bounded. For
that purpose select 1 ∈ C(X) at random. Now by abusing notation we write An( f β) = {p ∈ βX : | f β(p)| ≥ 1

n }.
Then it is clear that An( f β) ⊆ υX and surely An( f β) is compact. It follows that for the function 1∗ : βX →
R ∪ {∞}, 1∗(An( f β)) is compact subset of R. In particular we can say that 1 is bounded on An( f ), which
we precisely need. Thus it is proved that { f ∈ C(X) : f ∗(βX \ υX) = {0}} ⊆ C∞ψ (X). To prove the reverse
containment, let f ∈ C∗(X) and f ∗(βX \ υX) , {0}. Without loss of generality we can take f ≥ 0 on X, this
means that there exists p ∈ βX\υX and n ∈N, for which f β(p) > 1

n . Hence there exists an open neighborhood
U of p in βX for which f β > 1

n on the entire U. It follows that p ∈ clβAn( f ). On the other hand, since p < υX,
there exists 1 ∈ C(X) such that 1∗(p) = ∞. These two facts together imply that 1 is unbounded on An( f ).
Hence An( f ) is not pseudocompact and thus f < Cψ∞(X). The theorem is completely proved.

Theorem 4.13. Let P be an ideal of closed set in X. Then

1. CP
∞ (X) is a closed subset of CU(X).

2. clUCP(X) = CP
∞ (X).

Proof. 1. Let us rewrite: CP
∞ (X) = { f ∈ C(X) : for each n ∈ N,An( f ) ∈ P}. Suppose f ∈ C(X) is such that

f < CP
∞ (X). Thus there exists n ∈ N such that An( f ) < P . We claim that B̃( f , 1

2n ) ∩ CP
∞ (X) = ∅ and we are
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done. If possible, let there exists 1 ∈ B̃( f , 1
2n ) ∩ CP

∞ (X). Then |1 − f | < 1
2n and Ak(1) ∈P for each k ∈N. The

first inequality implies that | f | < |1| + 1
2n , which further implies that An( f ) ⊆ A2n(1). This combined with

A2n(1) ∈P yields, in view of the fact that P is an ideal of closed sets in X that An( f ) ∈P , a contradiction.
2. Let f ∈ CP

∞ (X) and ϵ > 0 in R. Define as in the proof of Theorem 4.8, a function 1 : X→ R as follows:

1(x) =


f (x) + ϵ

2 i f f (x) ≤ − ϵ2
0 i f − ϵ

2 ≤ f (x) ≤ ϵ
2

f (x) − ϵ
2 i f f (x) ≥ ϵ

2

Then 1 ∈ B̃( f , ϵ), we assert that 1 ∈ CP(X) and therefore B̃( f , ϵ) ∩ CP(X) , ∅ and we are done. Proof of
the assertion: X \ Z(1) ⊆ {x ∈ X : | f (x)| ≥ ϵ

2 }, this implies that: clX(X \ Z(1)) ⊆ {x ∈ X : | f (x)| ≥ ϵ
2 }. Since

f ∈ CP
∞ (X), if follows that {x ∈ X : | f (x)| ≥ ϵ

2 } ∈P and hence clX(X \ Z(1)) ∈P . Thus 1 ∈ CP(X).

Set IP = { f ∈ C(X) : f .1 ∈ CP
∞ (X) for each 1 ∈ C(X)}.

Theorem 4.14. The following results hold:

1. IP is an ideal in C(X) with CP(X) ⊂ IP ⊂ CP
∞ (X).

2. IP is closed in Cm(X).
3. clmCP(X) = IP .
4. IP =

⋂
p∈FP

Mp, where FP = {p ∈ βX : CP(X) ⊂Mp
}.

Proof. 1. Let f , 1 ∈ IP and h ∈ C(X). Then f .h, 1.h ∈ CP
∞ (X) =⇒ ( f + 1)h ∈ CP

∞ (X), because An( f .h + 1.h) ⊂
A2n( f .h) ∪ A2n(1.h) for each n ∈ N. Also let f ∈ IP and 1 ∈ C(X). Consider any h ∈ C(X). Then
1.h ∈ C(X) =⇒ f .1.h ∈ CP

∞ (X) =⇒ f .1 ∈ IP . Thus IP is an ideal in C(X). Clearly CP(X) ⊂ IP ⊂ CP
∞ (X).

2. Let f ∈ C(X) be such that f < IP . Then there exists 1 ∈ C(X) such that f .1 < CP
∞ (X). Therefore

there exists p ∈ N such that Ap( f .1) < P . Let u = 1
2p(1+|1|) . Then u is a positive unit in C(X). If possible, let

h ∈ B̃( f ,u) ∩ IP . Then | f − h| < u and h ∈ IP . Then h.1 ∈ CP
∞ (X) =⇒ An(h.1) ∈ P for all n ∈ N. Now

| f − h| < u =⇒ | f .1 − h.1| < u|1| < 1
2p =⇒ | f .1| < |h.1| + 1

2p =⇒ Ap( f .1) ⊂ A2p(h.1) =⇒ Ap( f .1) ∈ P , a

contradiction. Therefore B̃( f ,u) ∩ IP = ∅ and hence I is closed in Cm(X).
3. Since IP is closed in Cm(X), it follows that clmCP(X) ⫅ IP . Let f ∈ IP and u be any positive unit in

C(X). Define a function 1 : X→ R as follows:

1(x) =


f (x) + 1

2 u(x) i f f (x) ≤ − 1
2 u(x)

0 i f − 1
2 u(x) ≤ f (x) ≤ 1

2 u(x)
f (x) − 1

2 u(x) i f f (x) ≥ 1
2 u(x)

Then 1 ∈ B̃( f ,u) and clX(X \ Z(1)) ⊂ {x ∈ X : | f (x)| ≥ 1
2 u(x)}. Now 1

u ∈ C(X) and f ∈ IP =⇒
f
u ∈ CP

∞ (X) =⇒
An( f

u ) ∈ P for all n ∈ N. It is clear that A2( f
u ) = {x ∈ X : | f (x)| ≥ 1

2 u(x)} and so clX(X \ Z(1)) ∈ P , i.e.,
1 ∈ CP(X). Thus B̃( f ,u) ∩ CP(X) , ∅, i.e., f ∈ clmCP(X). So IP ⫅ clmCP(X).

4. We know that the closure of an ideal J of C(X) in the m-topology is the intersection of all maximal
ideal containing J [7Q2 [7]]. Therefore IP = clmCP(X) =

⋂
p∈FP

Mp.

Corollary 4.15. The closure of CK(X) in the m-topology is the ideal { f ∈ C(X) : f1 ∈ C∞(X) for each 1 ∈ C(X)}.
When P is the ideal of all compact sets in X, FP will be βX−X and hence IP =

⋂
p∈βX−X

Mp i.e., clmCK(X) =
⋂

p∈βX−X
Mp.

[This last result is achieved independently in [3] [Proposition 5.6]].
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Corollary 4.16. From Theorem 3.1 [8], Cψ(X) =
⋂

p∈βX\υX
Mp and so Cψ(X) is closed in the m-topology. Again by

Theorem 4.14(3), clm(Cψ(X)) = { f ∈ C(X) : f1 ∈ Cψ∞(X) for each 1 ∈ C(X)}. Thus Cψ(X) can also be written as
{ f ∈ C(X) : f1 ∈ Cψ∞(X) for each 1 ∈ C(X)}, this is an alternate formula for Cψ(X) [Compare with the known formula:
Cψ(X) = { f ∈ C(X) : f1 ∈ C∗(X) for each 1 ∈ C(X)}, [Theorem 2.1, [9]]].

We conclude this section by establishing a characterization of pseudocompact spaces.

Theorem 4.17. The U-topology and the m-topology on C(X) are equal if and only if the closures of CP(X) in the
respective topologies are equal for every choice of ideal P of closed sets in X. Therefore X is pseudocompact if and
only if for every choice of ideal P of closed sets in X, CP(X) is dense in CP

∞ (X) in the m-topology.

Proof. If these two topologies are unequal, then X is not pseudocompact and so there exists f ∈ C∗(X) such
that Z( f ) = ∅ and f ∗(βX \ X) = {0}. Consider the ideal P of bounded subsets of X. Then CP(X) = Cψ(X)
and by Theorem 4.11, clUCP(X) = { f ∈ C(X) : f ∗(βX \ υX) = {0}} and clmCP(X) = Cψ(X). Clearly f ∈
clUCP(X) \ clmCP(X), i.e., clUCP(X) , clmCP(X).

The following problem is left open:

Question 4.18. Is the convexity condition on the ideal I of C(X) in Theorem 3.7 necessary for the validity of the same
theorem?
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