Filomat 37:26 (2023), 8927-8939 https://doi.org/10.2298/FIL2326927N

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

More on generalizations of topology of uniform convergence and *m*-topology on C(X)

Pratip Nandi^a, Rakesh Bharati^a, Atasi Deb Ray^a, Sudip Kumar Acharyya^a

^aDepartment of Pure Mathematics, University of Calcutta, Kolkata, India

Abstract. This paper conglomerates our findings on the space C(X) of all real valued continuous functions, under different generalizations of the topology of uniform convergence and the *m*-topology. The paper begins with answering all the questions which were left open in our previous paper on the classifications of Z-ideals of C(X) induced by the U_l and the m_l -topologies on C(X) [5]. Motivated by the definition of the m^l topology, another generalization of the topology of uniform convergence, called U^{l} -topology, is introduced here. Among several other results, it is established that for a convex ideal I in C(X), a necessary and sufficient condition for U^{I} -topology to coincide with m^{I} -topology on C(X) is the boundedness of $X \setminus \bigcap Z[I]$ in X. As opposed to the case of the U_l -topologies (and m_l -topologies) on C(X), it is proved that each U^l -topology (respectively, m^{I} -topology) on C(X) is uniquely determined by the ideal I. In the last section, the denseness of the set of units of C(X) in $C_{ll}(X)$ (= C(X) with the topology of uniform convergence) is shown to be equivalent to the strong zero dimensionality of the space X. Also, the space X turns out to be a weakly P-space if and only if the set of zero divisors (including 0) in C(X) is closed in $C_U(X)$. Computing the closure of $C_{\mathscr{P}}(X)$ (={ $f \in C(X)$: the support of $f \in \mathscr{P}$ } where \mathscr{P} is an ideal of closed sets in X) in $C_U(X)$ and $C_m(X)$ (= C(X) with the *m*-topology), the results $cl_U C_{\mathscr{P}}(X) = C_{\infty}^{\mathscr{P}}(X) (= \{f \in C(X) : \forall n \in \mathbb{N}, \{x \in X : |f(x)| \ge \frac{1}{n}\} \in \mathscr{P}\})$ and $cl_m C_{\mathscr{P}}(X) = \{ f \in C(X) : f.g \in C_{\infty}^{\mathscr{P}}(X) \text{ for each } g \in C(X) \}$ are achieved.

1. Introduction

In the entire article X designates a completely regular Hausdorff space. As is well known C(X) stands for the ring of real valued continuous functions on X. Suppose $C^*(X) = \{f \in C(X) : f \text{ is bounded on } X\}$. If for $f \in C(X)$ and $\epsilon > 0$ in \mathbb{R} , $U(f, \epsilon) = \{g \in C(X) : \sup |f(x) - g(x)| < \epsilon\}$, then the family $\{U(f, \epsilon) : f \in C(X), \epsilon > 0\}$ turns out to be an open base for the so-called topology of uniform convergence or in brief the U-topology on C(X). Several experts have studied *U*-topology on C(X), from various points of view. One can look at the articles [7, 10, 12] for a glimpse of some relevant facts about this topology. A generalization of this *U*-topology on C(X) via a kind of ideal in C(X), viz a *Z*-ideal *I* in C(X), is already studied only recently [5].

²⁰²⁰ Mathematics Subject Classification. Primary 54C40; Secondary 46E30

Keywords. Topology of uniform convergence, m-topology, U_I , m_I , U^I and m^I topologies, weakly P-space, strongly zero-dimensional space, C → (X), C → (X) Received: 09 November 2022; Revised: 18 May 2023; Accepted: 22 May 2023

Communicated by Ljubiša D.R. Kočinac

The first author thanks the CSIR, New Delhi - 110001, India, for financial support, and the second author acknowledges financial support from University Grants Commission, New Delhi, for the award of research fellowship (F. No. 16-9(June 2018)/2019(NET/CSIR)).

Email addresses: pratipnandi100gmail.com (Pratip Nandi), rbharati.rs@gmail.com (Rakesh Bharati), debrayatasi@gmail.com (Atasi Deb Ray), sdpacharyya@gmail.com (Sudip Kumar Acharyya)

Incidentally the collection $\{U_I(f, \epsilon) : f \in C(X), \epsilon > 0\}$ constitutes an open base for this generalized *U*-topology, named as the U_I -topology on C(X). Here $U_I(f, \epsilon) = \{g \in C(X) :$ there exists $Z \in Z[I] \equiv \{Z(h) : h \in I\}$ such that $\sup |f(x) - g(x)| < \epsilon\}$, Z(h) standing for the zero set of the function *h*. It is worth mentioning in $\sum_{x \in Z} |I| = |I| = I$ is a *Z*-ideal in C(X) and a typical basic open neighborhood of $f \in C(X)$ in this topology looks like: $m_I(f, u) = \{g \in C(X) : |f(x) - g(x)| < u(x) \text{ for all } x \in Z \text{ for some } Z \in Z[I]\}$, here $u \in C(X)$ and is strictly positive on some $Z_0 \in Z[I]$. With the special choice I = (0), the m_I -topology and U_I -topology reduce respectively to the well-known *m*-topology and *U*-topology on C(X) [2M, 2N [7]]. In Section 4 of the article [5], two classifications of *Z*-ideals in C(X) induced by U_I -topologies and also by the m_I -topology. For $I \in I$, we set $[I] = \{J \in I : U_I$ -topology $= U_I$ -topology and $I \approx J$ if m_I -topology $= m_I$ -topology. For $I \in I$, we set $[I] = \{J \in I : U_I$ -topology $= U_I$ -topology and $[I] = \{J \in I : m_I$ -topology $= m_I$ -topology. For $I \in I$, we set $[I] = \{J \in I : U_I$ -topology $= U_I$ -topology and $[I] = \{I \in I : m_I$ -topology $= m_I$ -topology. For $I \in I$, we set $[I] = \{I \in I : U_I$ -topology $= U_I$ -topology and $[I] = \{I \in I : m_I$ -topology $= m_I$ -topology. For $I \in I$, we set $[I] = \{I \in I : U_I$ -topology $= U_I$ -topology and $[I] = \{I \in I : m_I$ -topology $= m_I$ -topology. For $I \in I$, we set $[I] = \{I \in I : U_I$ -topology $= U_I$ -topology $= U_I$ -topology $= m_I$ -topology $= m_I$ -topology $= m_I$ -topology. For $I \in I$, we set $[I] = \{I \in I : U_I$ -topology $= U_I$ -topology $= U_I$ -topology $= m_I$ -topology $= m_I$ -topology. For $I \in I$, we set $[I] = \{I \in I : U_I$. Theorem 4.1, Theorem 4.4], that each equivalence class [I] has a largest member and analogously all the equivalence classes [I] also have largest members [5, Theorem 4.13, Theorem 4.20]. It is further realized that som

In Section 2 of the present article we prove that each equivalence class [*I*] and [[*I*]] has a smallest member, thereby answering the questions 4.26 and 4.27 asked in [5] affirmatively. Again it was established in [5] that if *X* is a *P*-space, then each equivalence class [*I*] and [[*I*]] degenerates into singleton in [5, Theorem 4.12, Theorem 4.23] and hence ~ and ~ are identical equivalence relations on *I*. In this article we check that, regardless of whether or not *X* is a *P*-space, ~ and ~ are indeed identical equivalence relations on *I*, the set of all *Z*-ideals on *C*(*X*). This answers negatively the question 4.25 asked in [5].

have smallest members too [5, Theorem 4.10, Theorem 4.21].

In Section 3 of this article we introduce yet another generalization of *U*-topology on *C*(*X*), this time via an ideal *I* of *C*(*X*) [not necessarily a *Z*-ideal nor even a proper ideal] but with a slightly different technique. Essentially for $f \in C(X)$ and $\epsilon > 0$, we set $\widetilde{B}(f, I, \epsilon) = \{g \in C(X) : \sup_{i \in I} |f(x) - g(x)| < \epsilon \text{ and } f - g \in I\}$. Then it

needs a few routine computation to show that the family $\{B(f, I, \epsilon) : f \in C(X), \epsilon > 0\}$ makes an open base for some topology on C(X), which we designate by the U^{l} -topology on C(X). It is not at all hard to check that C(X) with this U^{l} -topology is an additive topological group. The U-topology on C(X) is a special case of the U^{I} -topology with I = C(X). Let us mention at this point that an analogous kind of topology, viz the m^{l} -topology on C(X), is initiated and studied in some details in [4]. A typical basic open neighborhood of $f \in C(X)$ for this latter topology is a set of the form $\{q \in C(X) : |f(x) - q(x)| < u(x) \text{ for all } x \in X \text{ and } f - q \in I\}$, here u is a positive unit in C(X). C(X) with the m^l -topology is a topological ring as is proved in [4]. For notational convenience, we let $C_{U^{I}}(X)$ to stand for C(X) equipped with the U^{I} -topology. Analogously $C_{m^{I}}(X)$ designates C(X) with the m^{l} -topology. In general the U^{l} -topology on C(X) is weaker than the m^{l} -topology. Incidentally it is proved [vide Theorem 3.7] that if I is a convex ideal in C(X) (in particular I may be a Z-ideal in C(X), then U^l -topology = m^l -topology if and only if $X \setminus \bigcap Z[I]$ is a bounded subset of X. We observe that $I \cap C^*(X)$ is a clopen set in the space $C_{U^l}(X)$ [Theorem 3.9(2)]. We use this fact to show that $I \cap C^*(X)$ is indeed the component of 0 in $C_{U'}(X)$ [Theorem 3.12]. We recall that a topological space Y is called homogeneous if given any two points $p,q \in Y$, there exists a homoeomorphism $\phi: Y \to Y$ such that $\phi(p) = q$. A topological group is a natural example of a homogeneous space. It follows that $C_{U'}(X)$ is either locally compact or nowhere locally compact, indeed the latter condition holds when and only when $X \setminus \bigcap Z[I]$ is a finite set [Theorem 3.16] [Compare with Theorem 4.2 in [4]]. As in the space $C_{m'}(X)$, ideals in C(X) are never compact in $C_{U'}(X)$ [Theorem 3.22(1)] and the ideals contained in the ring $C_{\psi}(X)$ of all real valued continuous functions with pseudocompact support are the only candidates for Lindelöf ideals in $C_{U'}(X)$ [Theorem 3.22(2)]. In [5], it is seen that a whole bunch of Z-ideals I in C(X), can give rise to identical U_l -topologies (respectively identical m_l -topologies). In contrast we observe in the present article that U^{I} -topologies on C(X) (respectively m^{I} -topologies on C(X)) are uniquely determined by the ideal I in *C*(*X*) [Theorem 3.1].

In Section 4 of the present article on specializing I = C(X) and therefore writing $C_U(X)$ instead of $C_{U'}(X)$, we achieve characterizations of two known classes of topological spaces X viz strongly zero-

dimensional spaces and pseudocompact weakly *P*-spaces in terms of the behavior of two chosen subsets U(X) and D(X) of the ring C(X), in the space $C_U(X)$ [Theorem 4.2, Theorem 4.3]. Here U(X) stands for the set of all units in C(X) and D(X), the collection of all zero-divisors in C(X), including 0. We further observe that the closure of the ideal $C_{K}(X)$ of all real valued continuous functions with compact support in the space $C_U(X)$ is precisely the set $\{f \in C(X) : f^*(\beta X \setminus X) = \{0\}\}$, here $f^* : \beta X \to \mathbb{R} \cup \{\infty\}$ is the well known Stone-extension of the function f. This leads to the fact that the closure of $C_K(X)$ in $C_U(X)$ is the familiar ring $C_{\infty}(X)$ of all functions in C(X) which vanish at infinity [Remark 4.9]. We would like to point out at this moment, that the same proposition is very much there in the celebrated monograph [13, Theorem 3.17] but with the additional hypothesis that X is locally compact. We also prove that the closure of the ideal $C_{\psi}(X)$ of all functions with pseudocompact support in the space $C_{U}(X)$ equals to the set $\{f \in C(X) : f^*(\beta X \setminus vX) = \{0\}\}$ [Theorem 4.11]. This ultimately leads to the proposition that the closure of $C_{\psi}(X)$ in $C_{U}(X)$ is the ring $C_{\infty}^{\psi}(X) = \{f \in C(X) : \forall n \in \mathbb{N}, \{x \in X : |f(x)| \ge \frac{1}{n}\}$ is pseudocompact}. This last ring is called the pseudocompact analogue of the ring $C_{\infty}(X)$ and is initiated in [1]. The closure of $C_K(X)$ is $C_{\infty}(X)$ and that of $C_{\psi}(X)$ is $C_{\infty}^{\psi}(X)$ (in the space $C_U(X)$). These two apparently distinct facts are put on a common setting in view of the following result, which we establish subsequently in this article. If \mathscr{P} is an ideal of closed sets in *X*, in the sense that whenever $E, F \in \mathscr{P}$, then $E \cup F \in \mathscr{P}$ and $E \in \mathscr{P}$ and *C*, a closed set in *X* with $C \subset E$ implies that $C \in \mathcal{P}$, then set $C_{\mathcal{P}}(X) = \{f \in C(X) : \text{the support of } f \in \mathcal{P}\}$ and $C^{\mathscr{P}}_{\infty}(X) = \{ f \in C(X) : \forall n \in \mathbb{N}, \{ x \in X : |f(x)| \ge \frac{1}{n} \} \in \mathscr{P} \}$. It is proved that the closure of $C_{\mathscr{P}}(X)$ in $C_U(X)$ is $C^{\mathscr{P}}_{\infty}(X)$ [Theorem 4.13(2)]. Incidentally we establish a formula for the closure of $C_{\mathscr{P}}(X)$ in the space C(X) equipped with *m*-topology. In fact we prove that the closure of $C_{\mathcal{P}}(X)$ in the *m*-topology $\equiv cl_m C_{\mathscr{P}}(X) = \{f \in C(X) : f.g \in C_{\infty}^{\mathscr{P}}(X) \text{ for each } g \in C(X)\}, \text{ Theorem 4.14(3). With the special choice } \mathscr{P} \equiv \text{the } \mathbb{P}$ ideal of all compact sets in X this formula reads $cl_m C_K(X) = \bigcap_{p \in \beta X - X} M^p$. This last result is precisely Proposition

5.6 in [4]. We conclude this article with a characterization of pseudocompact spaces via denseness of ideal $C_{\mathscr{P}}(X)$ in $C_{\infty}^{\mathscr{P}}(X)$ in the *m*-topology.

2. Answer to a few open problems concerning U_I -topologies and m_I -topologies on C(X)

At the very outset we need to explain a few notations. For each point $p \in \beta X$, $M^p = \{f \in C(X) : p \in cl_{\beta X}Z(f)\}$, which is a maximal ideal in C(X) and $O^p = \{f \in C(X) : cl_{\beta X}Z(f)\}$ is a neighborhood of p in the space $\beta X\}$, a well-known Z-ideal in C(X). For each subset A of βX , we prefer to write M^A instead of $\bigcap M^p$. Analogously

we write $O^A = \bigcap_{p \in A} O^p$. We reproduce the following results from [5], to make the paper self-contained.

Theorem 2.1. ([5, Theorem 4.1]) If A is a closed subset of βX , then $[M^A] = \{I \in I : O^A \subseteq I \subseteq M^A\}$.

Theorem 2.2. ([5, Theorem 4.2]) For any closed subset A of βX , $[[M^A]] = \{I \in I : O^A \subseteq I \subseteq M^A\}$.

We are going to establish a generalized version of each of the last two Theorems. We need the following subsidiary fact for that purpose. The proof is straightforward.

Theorem 2.3. For any subset A of βX , $M^A = M^{\overline{A}}$, here $\overline{A} = cl_{\beta X}A$

Theorem 2.1 (respectively Theorem 2.2) in conjunction with Theorem 2.3 yields the following two theorems almost immediately:

Theorem 2.4. For any subset A of βX , $[M^A] = \{I \in I : O^{\overline{A}} \subseteq I \subseteq M^A\}$.

Theorem 2.5. If $A \subset \beta X$, then $[[M^A]] = \{I \in I : O^{\overline{A}} \subseteq I \subseteq M^A\}$.

We want to recall at this moment that given a *Z*-ideal *I* in *C*(*X*), there always exists a set of maximal ideals $\{M^p : p \in A\}$ each containing *I*, *A* being a suitable subset of βX for which we can write: $[I] = [M^A] = [[I]]$ [This is proved in Theorem 4.9 and Theorem 4.20 in [5]]. In view of this fact, we can make the following comments:

Remark 2.6. Each equivalence class [*I*] in the quotient set $I/_{\sim}$ has a largest as well as a smallest member. This answers question 4.26 raised in [5] affirmatively.

Remark 2.7. Each equivalence class [[*I*]] in the quotient set $I/_{\approx}$ has a largest as well as a smallest member [This answers question 4.27 in [5]].

Remark 2.8. For each *Z*-ideal *I* in *C*(*X*), [I] = [[I]]. Essentially this means that ~ and ~ are two identical binary relations on *I* [This answers question 4.25 in [5] negatively].

3. U^{I} -topologies versus m^{I} -topologies on C(X)

We begin with the following simple result which states that the assignment: $I \rightarrow U^{I}$ is a one-one map.

Theorem 3.1. Suppose I and J are two distinct ideals in C(X). Then U^{I} -topology is different from U^{J} -topology.

Proof. Without loss of generality, we can choose a function $g \in I \setminus J$ such that |g(x)| < 1 for each $x \in X$. Clearly $\widetilde{B}(g, J, 1)$ is an open set in the U^J -topology. We assert that this set is not open in the U^I -topology. If possible, let $\widetilde{B}(g, J, 1)$ be open in the U^I -topology. Then there exists $\epsilon > 0$ in \mathbb{R} such that $\widetilde{B}(g, I, \epsilon) \subseteq \widetilde{B}(g, J, 1)$. Since $g + \frac{\epsilon}{2}g \in \widetilde{B}(g, I, \epsilon)$, this implies that $g + \frac{\epsilon}{2}g \in \widetilde{B}(g, J, 1)$. It follows that $g + \frac{\epsilon}{2}g - g \in J$, i.e., $\frac{\epsilon}{2}g \in J$, a contradiction to the initial choice that $g \notin J$. \Box

Remark 3.2. A careful modification in the above chain of arguments yields that $\overline{B}(g, J, 1)$, which is an open set in the U^{J} -topology (and therefore open in the m^{J} -topology) is not open in the m^{I} -topology. Therefore, we can say that whenever I and J are distinct ideals in C(X), it is the case that m^{I} -topology is different from m^{J} -topology.

Like any homogeneous space, $C_{U^{l}}(X)$ (respectively $C_{m^{l}}(X)$) is either devoid of any isolated point or all the points of this space are isolated. The following theorem clarifies the situation.

Theorem 3.3. *The following three statements are equivalent for an ideal I in* C(X)*:*

- 1. $C_{U^{I}}(X)$ is a discrete space.
- 2. $C_{m^{I}}(X)$ is a discrete space.
- 3. I = (0).

Proof. If I = (0), then for each $f \in C(X)$, $\widetilde{B}(f, I, 1) = \{f\}$ and therefore each point of $C_{U^{l}}(X)$ (and $C_{m^{l}}(X)$) is isolated. This settles the implication (3) \implies (1) and (3) \implies (2). (1) \implies (2) is trivial because m^{l} -topology is finer than the U^{l} -topology. Suppose (3) is false, i.e., $I \neq (0)$. Then the Remark 3.2 and the implication (3) \implies (2) imply that m^{l} -topology is different from the discrete topology. Thus (2) \implies (3). \Box

It is a standard result in the study of function spaces that $C_U(X)$ is a topological vector space if and only if X is pseudocompact [2M6, [7]]. The following fact is a minor improvement of this result.

Theorem 3.4. For an ideal I of C(X), $C_{U^{I}}(X)$ is a topological vector space if and only if I = C(X) and X is pseudocompact.

Proof. If I = C(X), then $C_{U^{I}}(X) = C_{U}(X)$, which is a topological vector space if X is pseudocompact as observed above. Conversely let $C_{U^{I}}(X)$ be a topological vector space and $f \in C(X)$. Then there exists $\epsilon > 0$ in \mathbb{R} such that $(-\epsilon, \epsilon) \times \widetilde{B}(f, I, \epsilon) \subseteq \widetilde{B}(0, I, 1)$. This implies that $\frac{\epsilon}{2}f \in I$ and hence $f \in I$. Thus I = C(X). Clearly then U^{I} -topology on C(X) reduces to the U-topology. We can therefore say that $C_{U}(X)$ is a topological vector space. In view of the observations made above, it follows that X is a pseudocompact space. \Box

The following proposition gives a set of conditions in which each implies the next.

Theorem 3.5.

- 1. The U^{I} -topology = the m^{I} -topology on C(X).
- 2. $C_{U^{I}}(X)$ is a topological ring.
- 3. $I \subset C^*(X)$.
- 4. $I \cap C^*(X) = I \cap C_{\psi}(X)$.

Proof.

- 1. \implies 2. is trivial because $C_{m^l}(X)$ is a topological ring.
- 2. \implies 3. Suppose (2) holds but $I \notin C^*(X)$. Choose $f \in I$ such that $f \notin C^*(X)$. Since the product function

 $C_{U^{l}}(X) \times C_{U^{l}}(X) \to C_{U^{l}}(X)$ $(g,h) \mapsto g.h$

is continuous at the point (0, f), we get an $\epsilon > 0$ such that $\widetilde{B}(0, I, \epsilon) \times \widetilde{B}(f, I, \epsilon) \subseteq \widetilde{B}(0, I, 1)$. Let $g = \frac{\epsilon \cdot f}{2(1+|f|)}$. Then $g \in \widetilde{B}(0, I, \epsilon)$, this implies that $g.f \in \widetilde{B}(0, I, 1)$ and hence g(x).f(x) < 1 for each $x \in X$ i.e., for each $x \in X$, $\frac{\epsilon \cdot f^2(x)}{2(1+|f(x)|)} < 1$. Now since f is an unbounded function on X, $|f(x_n)| \to \infty$ along a sequence $\{x_n\}_n$ in X. Consequently $\lim_{n\to\infty} \frac{|f(x_n)|}{1+|f(x_n)|} = \lim_{n\to\infty} [1 - \frac{1}{1+|f(x_n)|}] = 1$ and therefore there exists $k \in \mathbb{N}$ such that for all $n \ge k$, $\frac{|f(x_n)|}{1+|f(x_n)|} \ge \frac{3}{4}$. This implies that for each $n \ge k$, $\frac{\epsilon \cdot |f(x_n)|}{2} \cdot \frac{3}{4} \le \frac{\epsilon \cdot |f(x_n)|}{2} \cdot \frac{|f(x_n)|}{2} < 1$ and so $\{|f(x_n)| : n \ge k\}$ becomes a bounded sequence in \mathbb{R} . This contradicts that $|f(x_n)| \to \infty$ as $n \to \infty$. Hence $I \subset C^*(X)$.

3. \implies 4. Suppose (3) holds. We need to show that $I \cap C^*(X) \subset I \cap C_{\psi}(X)$ (because $C_{\psi}(X) \subseteq C^*(X)$). Since $C_{\psi}(X)$ is the largest bounded ideal in C(X) [Theorem 3.8, [3]]. The condition (3) implies that $I \subset C_{\psi}(X)$. Hence $I \cap C^*(X) = I = I \cap C_{\psi}(X)$. \Box

The statement (4) may not imply the statement (1) in Theorem 3.5. Consider the following example:

Example 3.6. Take $X = \mathbb{N}$, $I = C_K(\mathbb{N})$. Then U^I -topology on $C(\mathbb{N}) \subsetneq m^I$ -topology on $C(\mathbb{N})$.

Proof of this claim: First observe that $C_K(\mathbb{N}) \subset C^*(\mathbb{N})$. Now recall the function $j \in C^*(\mathbb{N})$ given by $j(n) = \frac{1}{n}, n \in \mathbb{N}$. Then $\widetilde{B}(0, I, j)$ is an open set in $C(\mathbb{N})$ with m^I -topology. We assert that this set is not open in $C(\mathbb{N})$ with U^I -topology. Suppose otherwise, then there exists $\epsilon > 0$ such that $0 \in \widetilde{B}(0, I, \epsilon) \subset \widetilde{B}(0, I, j)$. Now there exists $k \in \mathbb{N}$ such that $\frac{2}{k} < \epsilon$. Let $f(n) = \begin{cases} \frac{\epsilon}{2} & \text{when } n \leq k \\ 0 & \text{otherwise} \end{cases}$, then $f \in \widetilde{B}(0, I, \epsilon)$. But $f \notin \widetilde{B}(0, I, j)$

 $Y \subset X$ is called a relatively pseudocompact or bounded subset of X if for every $f \in C(X)$, f(Y) is a bounded subset of \mathbb{R} . The previous Theorem is a special case of the more general Theorem, given below:

Theorem 3.7. For a convex ideal I of C(X), U^{I} -topology = m^{I} -topology if and only if $X \setminus \bigcap Z[I]$ is a bounded subset of X.

Proof. First let $X \setminus \bigcap Z[I]$ be bounded and $\widetilde{B}(f, I, u)$ be an open set in m^{I} -topology, where $f \in C(X)$ and u is a positive unit in C(X). Now $\frac{1}{u}$ is bounded on $X \setminus \bigcap Z[I]$, i.e., there exists $\lambda > 0$ such that $\frac{1}{u(x)} < \lambda$ for all $x \in X \setminus \bigcap Z[I] \implies u(x) > \frac{1}{\lambda}$ for all $x \in X \setminus \bigcap Z[I]$. We claim that $\widetilde{B}(f, I, \frac{1}{\lambda}) \subset \widetilde{B}(f, I, u)$. Consider $g \in \widetilde{B}(f, I, \frac{1}{\lambda})$. Then $|g - f| < \frac{1}{\lambda}$ and $g - f \in I$. Now for all $x \in \bigcap Z[I]$, (g - f)(x) = 0 < u(x) and for all $x \in X \setminus \bigcap Z[I]$ is not a bounded subset of X. Then there exists a positive unit u in C(X) and a *C*-embedded copy of $\mathbb{N} \subset X \setminus \bigcap Z[I]$ on which $u \to 0$. Clearly $\widetilde{B}(0, I, u)$ is an open set in $C_{m^{l}}(X)$. We claim that $\widetilde{B}(0, I, u)$ is not open in the U^{l} -topology. If possible, let there exist $\epsilon > 0$ such that $0 \in \widetilde{B}(0, I, \epsilon) \subset \widetilde{B}(0, I, u)$. Since $u(n) \to 0$ as $n \to \infty$ for $n \in \mathbb{N}$, there exists $k \in \mathbb{N}$ such that $u(k) < \frac{\epsilon}{2}$. As $\mathbb{N} \subset X \setminus \bigcap Z[I]$, there exists an $f(\geq 0) \in I$ such that f(k) > 0. Since \mathbb{N} is *C*-embedded in *X*, there exists $h(\geq 0) \in C(X)$ such that $h(k) = \frac{\epsilon}{2f(k)}$. Let g = f.h. Then $g \in I$ and $g(k) = \frac{\epsilon}{2}$. Set $g' = g \wedge \frac{\epsilon}{2}$. Then $g' \leq g \implies g' \in I$, as *I* is convex. Also $g' \leq \frac{\epsilon}{2} \implies g' \in \widetilde{B}(0, I, \epsilon)$ which further implies that $g' \in \widetilde{B}(0, I, u) \implies g' < u$. But $g'(k) = \frac{\epsilon}{2} > u(k)$, a contradiction. \Box

Remark 3.8. With the special choice I = C(X), the above Theorem reads: The *U*-topology = *m*-topology on C(X) if and only if *X* is pseudocompact. This is a standard result in the theory of rings of continuous function [see 2M6 and 2N [7]].

It is proved in [4], Proposition 2.2 that if *I* is an ideal in *C*(*X*) then any ideal *J* containing *I* is clopen in $C_{m^{I}}(X)$ and also $C^{*}(X) \cap I$ is clopen in $C_{m^{I}}(X)$. These two facts can be deduced from the following proposition, because the m^{I} -topology is finer than the U^{I} -topology.

Theorem 3.9.

1. If J is any additive subgroup of (C(X), +, .) containing the ideal I, then J is a clopen subset of $C_{U^{I}}(X)$.

2. For any ideal I in C(X), $I \cap C^*(X)$ is a clopen subset of $C_{U^I}(X)$.

Proof. 1. Let $f \in J$. Then $f \in \widetilde{B}(f, I, 1) \subset J$, because $g \in \widetilde{B}(f, I, 1) \implies g - f \in I \subset J \implies g = f + (g - f) \in J$. Thus *J* becomes open in $C_{U^{I}}(X)$. To prove that *J* is also closed in this space let $f \notin J$, $f \in C(X)$. Then it is not at all hard to check that $\widetilde{B}(f, I, 1) \cap J = \emptyset$ and hence *J* is closed in $C_{U^{I}}(X)$.

2. For any $f \in I \cap C^*(X)$, it is routine to check that $f \in B(f, I, 1) \subset I \cap C^*(X)$. Then $I \cap C^*(X)$ is open in $C_{U^I}(X)$. To settle the closeness of $I \cap C^*(X)$ in $C_{U^I}(X)$, we need to verify that for any $f \in C(X) \setminus (I \cap C^*(X))$, $\widetilde{B}(f, I, 1) \cap I \cap C^*(X) = \emptyset$ and that verification is also routine. \Box

Before proceeding further we recall for any $f \in C(X)$ the map

 $\phi_f : \mathbb{R} \to C(X)$ $r \mapsto r.f$

already introduced in [3], [4].

Lemma 3.10. Let I be an ideal in C(X). Then for $f \in C(X)$,

$$\phi_f : \mathbb{R} \to C_{U^l}(X)$$
$$r \mapsto r.f$$

is a continuous map if and only if $f \in I \cap C^*(X)$ [compare with an analogous fact in the m^I-topology: Lemma 3.1 in [4]].

Proof. First assume that ϕ_f is continuous, in particular at the point 0. So there exists $\delta > 0$ in \mathbb{R} such that $\phi_f(-\delta, \delta) \subseteq \widetilde{B}(\phi_f(0), I, 1) = \widetilde{B}(0, I, 1)$. This implies that $\phi_f(\frac{\delta}{2}) \in \widetilde{B}(0, I, 1)$ and hence $|\frac{\delta}{2}f| < 1$ and $\frac{\delta}{2}f \in I$. Clearly then $f \in C^*(X) \cap I$. Conversely let $f \in C^*(X) \cap I$. Then |f| < M on X for some M > 0 in \mathbb{R} . Choose $r \in \mathbb{R}$ and $\epsilon > 0$ arbitrarily. Then it is not at all hard to check that $\phi_f(r - \frac{\epsilon}{M}, r + \frac{\epsilon}{M}) \subseteq \widetilde{B}(\phi_f(r), I, \epsilon)$. Then ϕ_f is continuous at r. \Box

Corollary 3.11. For $f \in C(X)$,

$$\phi_f : \mathbb{R} \to C_U(X)$$
$$r \mapsto r.f$$

is continuous if and only if $f \in C^*(X)$ *.*

Theorem 3.12. The component of 0 in $C_{U^{I}}(X)$ is $I \cap C^{*}(X)$.

Proof. It follows from Lemma 3.10 that $I \cap C^*(X) = \bigcup_{f \in I \cap C^*(X)} \phi_f(\mathbb{R})$, a connected subset of $C_{U^l}(X)$. Since $I \cap C^*(X)$ is a clopen set in $C_{U^l}(X)$ (Theorem 3.9(2)), it is the case that $I \cap C^*(X)$ is the largest connected subset of $C_{U^l}(X)$ containing 0. Hence $I \cap C^*(X)$ is the component of 0 in $C_{U^l}(X)$. \Box

Corollary 3.13. $C^*(X)$ is the component of 0 in $C_U(X)$

To find out when does the space $C_{U^{I}}(X)$ become locally compact, we reproduce the Lemma 4.1(*a*) from the article [4]:

Lemma 3.14. For any positive unit u in C(X) and for a finite subset $\{a_1, a_2, ..., a_k\}$ of $X \setminus \bigcap Z[I]$, for each $i \in \{1, 2, ..., k\}$, there exists $t_i \in I$ such that $|t_i| < u$, $t_i(a_i) = \frac{1}{2}u(a_i)$ and $t_i(a_j) = 0$ for $j \neq i$.

We will need the following special version of this Lemma.

Lemma 3.15. Suppose $\epsilon > 0$ and $\{a_1, a_2, ..., a_n\}$ is a finite subset of $X \setminus \bigcap Z[I]$. Then for each $i \in \{1, 2, ..., n\}$, there exists $t_i \in I$ such that $|t_i| < \epsilon$, $t_i(a_i) = \frac{1}{2}\epsilon$ and $t_i(a_j) = 0$ for all $j \neq i$.

Theorem 3.16. For an ideal I in C(X), the following three statements are equivalent:

- 1. $C_{U^{l}}(X)$ is nowhere locally compact.
- 2. $C_{m^{I}}(X)$ is nowhere locally compact.
- 3. $X \setminus \bigcap Z[I]$ is an infinite set.

Proof. The equivalence of the statements (2) and (3) is precisely Theorem 4.2 in [4]. So we shall establish the equivalence of (1) and (3). The proof for this later equivalence will be a close adaption of the proof of Theorem 4.2 in [4]. However we shall make a sketch of this proof in order to make the paper self contained. First assume that $X \setminus \bigcap Z[I]$ is an infinite set. If possible, let K be a compact subset of $C_{U^{l}}(X)$ with non-empty interior. Then there exists $f \in C(X)$ and $\epsilon > 0$ in \mathbb{R} such that $\widetilde{B}(f, I, \epsilon) \subseteq K$. The compactness of K in $C_{U^{l}}(X)$ implies that $K \subseteq \bigcup_{i=1}^{n} \widetilde{B}(g_{i}, I, \frac{\epsilon}{4})$ for a suitable finite subset $\{g_{1}, g_{2}, ..., g_{n}\}$ of K. Since $X \setminus \bigcap Z[I]$ is an infinite set, we can pick up (n + 1)-many distinct members $\{a_{1}, a_{2}, ..., a_{n+1}\}$ from this set. On using Lemma 3.15, we can find out for each $i \in \{1, 2, ..., n+1\}$, a function $t_{i} \in I$ such that $|t_{i}| < \epsilon$, $t_{i}(a_{i}) = \frac{\epsilon}{2}$ and $t_{i}(a_{j}) = 0$ if $j \neq i, j \in \{1, 2, ..., n+1\}$. Set $k_{i} = f + t_{i}, i = 1, 2, ..., n + 1$. Then for each $i = 1, 2, ..., n + 1, k_{i} \in \widetilde{B}(f, I, \epsilon) \subset K \subseteq \bigcup_{i=1}^{n} \widetilde{B}(g_{i}, I, \frac{\epsilon}{4})$, so there exist distinct $p, q \in \{1, 2, ..., n+1\}$ for which k_{p} and k_{q} lie in $\widetilde{B}(g_{i}, I, \frac{\epsilon}{4})$ for some $i \in \{1, 2, ..., n\}$. This implies that $|k_{p} - k_{q}| < \frac{\epsilon}{2}$, while $|k_{p}(a_{p}) - k_{q}(a_{p})| = \frac{\epsilon}{2}$, a contradiction. Thus (3) \Longrightarrow (1) is established. If $X \setminus \bigcap Z[I]$ is a finite set, say the set $\{b_{1}, b_{2}, ..., b_{k}\}$, then by proceeding analogously as in the proof of Lemma 4.1(b) in [4], we can easily show that \mathbb{R}^{k} is homeomorphic to the subspace I of the space $C_{U^{l}}(X)$. From Theorem 3.9(1), we get that I is an open subspace of $C_{U^{l}}(X)$. Hence the space $C_{U^{l}}(X)$ becomes locally compact at each point on I.

Consequently $C_{U^{l}}(X)$ is locally compact at each point on X (Mind that $C_{U^{l}}(X)$ is a homogeneous space).

Corollary 3.17. $C_U(X)$ is nowhere locally compact if and only if $C_m(X)$ is nowhere locally compact if and only if X is an infinite set.

A sufficient condition for the nowhere local compactness of $C_{ll'}(X)$ is given as follows:

Theorem 3.18. If $I \not\subset C^*(X)$, then $C_{U^1}(X)$ is nowhere locally compact [compare with an analogous fact concerning $C_{m^1}(X)$ in Corollary 4.4 [4]].

Proof. It is clear that $I \notin C^*(X) \implies X \setminus \bigcap Z[I]$ is an infinite set. It follows from Theorem 3.16 that $C_{U^i}(X)$ is nowhere locally compact. \Box

The following simple example shows that the converse of the last statement is not true.

Example 3.19. Take $X = \mathbb{R}$ and $I = C_K(\mathbb{R})$. Then $I \subset C^*(X)$, but $\bigcap_{f \in C_K(\mathbb{R})} Z(f) = \emptyset$ and therefore $\mathbb{R} \setminus \bigcap Z[I] = \mathbb{R} =$ an infinite set. Hence from Theorem 3.16, $C_{U^I}(\mathbb{R})$ is nowhere locally compact, though $I \subset C^*(\mathbb{R})$.

For an essential ideal *I* in *C*(*X*) [*I* is called an essential ideal in *C*(*X*) if $I \neq (0)$ and every non-zero ideal in *C*(*X*) cuts *I* non-trivially], the following fact is a simple characterization of nowhere local compactness of $C_{U^{I}}(X)$.

Theorem 3.20. Let I be an essential ideal in C(X). Then $C_{U^{I}}(X)$ is nowhere locally compact if and only if X is an infinite set.

Proof. For the essential ideal *I* in *C*(*X*), $\bigcap Z[I]$ is nowhere dense [Proposition 2.1, [2]] and hence $cl_X(X \setminus \bigcap Z[I]) = X$. The desired result follows on using Theorem 3.16 in a straightforward manner. \Box

We would like to point out at this moment that it is mentioned in [3] [the proof of the implication relation $(f) \implies (b)$ in Proposition 3.14] and also in [4] (the statement lying between Corollary 3.5 and Corollary 3.6) that whenever $C_{\psi}(X) \neq \{0\}$, then it is an essential ideal in C(X). The following counterexample shows that there exists a non-zero $C_{\psi}(X)$ in C(X), which is not an essential ideal in C(X).

Example 3.21. Consider the following subspace of \mathbb{R} : $X = \{0\} \cup \{x \in \mathbb{R} : x \text{ is rational and } 1 \le x \le 2\}$. Then X is locally compact at the point 0 and therefore $C_K(X) \ne \{0\}$, because for a space Y, $C_K(Y)$ is $\{0\}$ if and only if Y is nowhere locally compact [This follows on adapting the arguments in 4D2 [7], more generally for a nowhere locally compact space Y instead of \mathbb{Q} only]. Since X is a metrizable space, there is no difference between compact and pseudocompact subsets of X. Hence $C_{\psi}(X) = C_K(X) \ne \{0\}$. It is clear that if $f \in C_K(X)$, then f vanishes at each point on $X \setminus \{0\}$. Consequently $\bigcap_{f \in C_K(X)} Z(f) = [1, 2] \cap \mathbb{Q}$, which being a non-empty

clopen set in the space X is not nowhere dense. Hence on using Proposition 2.1 in [2], $C_K(X)$ is not an essential ideal in C(X).

It is proved in Proposition 4.6 in [4] that a non-zero ideal I in C(X) is never compact in $C_{m^{l}}(X)$ and if such an I is Lindelöf, then $I \subseteq C_{\psi}(X)$. These two facts can be deduced from the following proposition, because the m^{I} -topology is finer than the U^{I} -topology.

Theorem 3.22. *Let J be a non-zero ideal in C(X). Then:*

- 1. *J* is not compact in $C_{U^{I}}(X)$.
- 2. If J is Lindelöf in $C_{U^{I}}(X)$, then $J \subseteq C_{\psi}(X)$.

We omit the proof of this Theorem, because this can be done on closely following the arguments for the proof of Proposition 4.6 in [4].

4. A few special properties for the spaces $C_U(X)$ and $C_m(X)$

If U(X) is dense in $C_m(X)$, then it is plain that U(X) is dense in $C_U(X)$, because the *U*-topology on C(X) is weaker than the *m*-topology. We are going to show that the converse of this statement is true. We recall in this context that a space *X* is strongly zero-dimensional if given a pair of completely separated sets *K* and *W* in *X*, there exists a clopen set *C*' such that $K \subseteq C' \subseteq X \setminus W$. Equivalently *X* is strongly zero-dimensional if and only if given a pair of disjoint zero-sets *Z* and *Z*' in *X*, there exists a clopen set *C* in *X* such that $Z \subseteq C \subseteq X \setminus Z'$. The following lemma gives a sufficient condition for the strongly zero-dimensionality of *X*.

Lemma 4.1. Let U(X) be dense in $C_U(X)$. Then X is strongly zero-dimensional.

Proof. Let Z_1, Z_2 be disjoint zero-sets in X. Then there exists $f \in C(X)$ such that $|f| \le 1$, $f(Z_1) = \{-1\}$ and $f(Z_2) = \{1\}$. Since U(X) is dense in X, we can find out a member $u \in \widetilde{B}(f, \frac{1}{2}) \cap U(X)$. Let $C = \{x \in X : u(x) < 0\}$. Then C is a clopen set in $X, Z_1 \subseteq C \subseteq X \setminus Z_2$. Thus X becomes strongly zero-dimensional. \Box

Theorem 4.2. The following statements are equivalent for a space X.

1. X is strongly zero-dimensional.

- 2. U(X) is dense in $C_U(X)$.
- 3. U(X) is dense in $C_m(X)$.

Proof. The equivalence of (1) and (3) is precisely the Proposition 5.1 in [4]. This combined with Lemma 4.1 finishes the proof. \Box

Let $U^*(X) = \{u \in C(X) : |u| > \lambda \text{ for some } \lambda > 0\}.$

Theorem 4.3. $cl_U D(X) \equiv the closure of D(X) in the space <math>C_U(X) = C(X) \setminus U^*(X)$ [compare with the fact: $cl_m D(X) = C(X) \setminus U(X)$ in Proposition 5.2 in [4]].

Proof. It is easy to check that $U^*(X)$ is open in $C_U(X)$ because choosing $u \in C^*(X)$, we have $|u| > \lambda$ for some $\lambda > 0$, this implies that $\widetilde{B}(u, \frac{\lambda}{2}) \subseteq U^*(X)$ (We are simply writing $\widetilde{B}(u, \frac{\lambda}{2})$ instead of $\widetilde{B}(u, C(X), \frac{\lambda}{2})$). Since $D(X) \cap U(X) = \emptyset$, in particular $D(X) \cap U^*(X) = \emptyset$, it follows therefore that $cl_UD(X) \subseteq C(X) \setminus U^*(X)$. To prove the reverse inclusion relation, let $f \in C(X) \setminus U^*(X)$ and $\epsilon > 0$ be preassigned. We need to show that $\widetilde{B}(f, \epsilon) \cap D(X) \neq \emptyset$. For that purpose define as in the proof of Proposition 5.2 in [4].

$$h(x) = \begin{cases} f(x) + \frac{\epsilon}{2} & \text{if } f(x) \le -\frac{\epsilon}{2} \\ 0 & \text{if } |f(x)| \le \frac{\epsilon}{2} \\ f(x) - \frac{\epsilon}{2} & \text{if } f(x) \ge \frac{\epsilon}{2} \end{cases}$$

Then $h \in C(X)$. Since $f \notin U^*(X)$, f takes values arbitrarily near to zero on X. Therefore there exists $x \in X$ for which $|f(x)| < \frac{\epsilon}{2}$. This implies that $int_X Z(h) \neq \emptyset$. Thus $h \in D(X)$ and surely $|h - f| < \epsilon$. Therefore $h \in \widetilde{B}(f, \epsilon) \cap D(X)$. \Box

Definition 4.4. We call a space *X*, a weakly *P*-space if whenever $f \in C(X)$ is such that *f* takes values arbitrarily near to zero, then *f* vanishes on some neighborhood of a point in *X*, i.e., $int_X Z(f) \neq \emptyset$.

It is clear that every weakly *P*-space is an almost *P*-space and is pseudocompact. The following proposition is a characterization of weakly *P*-spaces.

Theorem 4.5. *X* is a weakly *P*-space if and only if D(X) is closed in $C_U(X)$ [Compare with the Proposition 5.2 in [4]].

Proof. Let *X* be a weakly *P*-space. This means that if $f \in C(X)$ is not a zero-divisor, then it is bounded away from zero, i.e., $f \in U^*(X)$. Thus $C(X) \setminus D(X) \subseteq U^*(X)$. The implication relation $U^*(X) \subseteq C(X) \setminus D(X)$ is trivial. Therefore $C(X) \setminus D(X) = U^*(X)$ and thus $D(X) = C(X) \setminus U^*(X)$. It follows from Theorem 4.3 that D(X) is closed in $C_U(X)$. Conversely let D(X) be closed in $C_U(X)$. Then this implies by Theorem 4.3 that $D(X) = C(X) \setminus U^*(X)$. Now let $f \in C(X)$ be such that f takes values arbitrarily near to zero. We need to show that $int_X Z(f) \neq \emptyset$. If possible, let $int_X Z(f) = \emptyset$. Then $f \notin D(X)$ and hence $f \in U^*(X)$, a contradiction. \Box

The next proposition shows that weakly *P*-spaces are special kind of almost *P*-spaces.

Theorem 4.6. *X* is a weakly *P*-space if and only if it is pseudocompact and almost *P*.

Proof. It is already settled that a weakly *P*-space is pseudocompact and almost *P*. Conversely let *X* be pseudocompact and almost *P*. Suppose $f \in C(X)$ takes values arbitrarily near to zero on *X*. Then *f* must attain the value 0 at some point on *X* because *X* is pseudocompact. Thus $Z(f) \neq \emptyset$ and hence due to the almost *P* property of *X*, we shall have $int_X Z(f) \neq \emptyset$. Therefore *X* becomes weakly *P*.

Remark 4.7. D(X) is closed in $C_U(X)$ if and only if X is a pseudocompact almost P-space.

There are enough examples of pseudocompact almost *P*-spaces. Indeed, if *X* is a locally compact realcompact space, then $\beta X \setminus X$ is a compact almost *P*-space [Lemma 3.1, [6]].

In what follows we compute the closure of a few related ideals in the ring C(X).

Theorem 4.8. $cl_UC_K(X) \equiv the closure of C_K(X) in the space <math>C_U(X) = \{f \in C(X) : f^*(\beta X \setminus X) = \{0\}\}.$

Proof. Set for each *p* ∈ β*X*, $\widetilde{M}^p = \{f \in C(X) : f^*(p) = 0\}$. Since *f* ∈ *M*^{*p*} \implies *p* ∈ *cl*_{βX}*Z*(*f*) (Gelfand-Kolmogoroff Theorem) \implies *f**(*p*) = 0, it follows that $M^p \subseteq \widetilde{M}^p$ for each *p* ∈ β*X*. Furthermore, $\widetilde{M}^p = \{f \in C(X) : |M^p(f)| = 0 \text{ or infinitely small in the residue class field$ *C*(*X*)/*M^p* $} [Theorem 7.6($ *b* $), [7]]. It is well-known [vide [11], Lemma 2.1] that <math>cl_UM^p = \{f \in C(X) : |M^p(f)| = 0 \text{ or infinitely small}\}$. Hence we get that $M^p \subseteq cl_UM^p = \widetilde{M}^p$ for each *p* ∈ β*X*. Therefore *C*_{*K*}(*X*) = $\bigcap_{p \in \beta X \setminus X} O^p$ [7*E* [7]] ⊆ $\bigcap_{p \in \beta X \setminus X} M^p \subseteq \bigcap_{p \in \beta X \setminus X} M^p =$ the intersection of a family of closed sets in *C*_{*U*}(*X*) ≡ a closed set in *C*_{*U*}(*X*). This implies that $cl_UC_K(X) \subseteq \bigcap_{p \in \beta X \setminus X} \widetilde{M}^p =$ {*f* ∈ *C*(*X*) : *f**(*βX* \ *X*) = 0}. To prove the reverse inclusion relation, let *f* ∈ $\bigcap_{p \in \beta X \setminus X} \widetilde{M}^p$. Thus *f**(*βX* \ *X*) = {0}. Consequently then *f* becomes bounded on *X*, for if *f* is unbounded on *X*, then there exists a copy of ℕ, *C*-embedded in *X* for which $\lim_{n \to \infty} |f(x)| = \infty$. Surely then $cl_{\beta X} \mathbb{N} = \beta \mathbb{N}$ and so $cl_{\beta X} \mathbb{N} \setminus vX \supseteq \beta \mathbb{N} \setminus \mathbb{N}$ [We use the fact that a countable *C*-embedded subset of a Tychonoff space is a closed subset of it 3B3 [7]]. Choose a point *p* ∈ β\mathbb{N} \ ℕ, it is

clear that $f^*(p) = \infty$, a contradiction. Thus $f \in C^*(X)$ and we can write $f^{\beta}(\beta X \setminus X) = \{\overline{0}\}$, here $f^{\beta} : \beta X \to \mathbb{R}$ is the Stone-extension of $f \in C^*(X)$. So $\beta X \setminus X \subseteq Z_{\beta X}(f^{\beta})$, the zero set of f^{β} in the space βX . Choose $\epsilon > 0$. We claim that $\widetilde{B}(f, \epsilon) \cap C_K(X) \neq \emptyset$ and we are done.

Proof of the claim: Define a function $h : X \to \mathbb{R}$ as follows

$$h(x) = \begin{cases} f(x) + \frac{\epsilon}{2} & \text{if } f(x) \le -\frac{\epsilon}{2} \\ 0 & \text{if } -\frac{\epsilon}{2} \le f(x) \le \frac{\epsilon}{2} \\ f(x) - \frac{\epsilon}{2} & \text{if } f(x) \ge \frac{\epsilon}{2} \end{cases}$$

Then $h \in C^*(X)$ and $|h(x) - f(x)| < \epsilon$ for each $x \in X$, i.e., $h \in \widetilde{B}(f, \epsilon)$. To complete this theorem, it remains only to check that $h \in C_K(X)$. Indeed let $g = (|f| \land \frac{\epsilon}{2}) - \frac{\epsilon}{2}$. Then $Z(f) \subseteq X \setminus Z(g)$ and $X \setminus Z(g) \subseteq Z(h)$ and hence g.h = 0. Since the map

$$C^*(X) \to C(\beta X)$$
$$k \mapsto k^p$$

is a lattice isomorphism, from the definition of g, we can at once write: $g^{\beta} = (|f|^{\beta} \wedge \frac{\epsilon}{2}) - \frac{\epsilon}{2}$ and $g^{\beta}.h^{\beta} = 0$. Consequently then, $\beta X \setminus Z_{\beta X}(g^{\beta}) \subseteq Z(h^{\beta})$ and also, $Z_{\beta X}(g^{\beta}) \subseteq \beta X \setminus Z_{\beta X}(f^{\beta})$. This shows that $Z(h^{\beta})$ is a neighborhood of $\beta X \setminus X$. It follows from 7*E* [7] that $h \in C_K(X)$. \Box

Remark 4.9. It is a standard result in the theory of rings of continuous functions that the complete list of free maximal ideals in $C^*(X)$ is given by $\{M^{*p} : p \in \beta X \setminus X\}$, where $M^{*p} = \{h \in C^*(X) : h^{\beta}(p) = 0\}$ [Theorem 7.2, [7]]. It is also well-known that [vide 7F1, [7]], $\bigcap_{p \in \beta X \setminus X} M^{*p} = C_{\infty}(X)$. Hence we can ultimately write

 $cl_U C_K(X) = C_\infty(X).$

Remark 4.10. We can show that for a well chosen collection of naturally existing spaces, $C_K(X)$ is not dense in $C_{\infty}(X)$ in the *m*-topology on C(X). Indeed let X be a locally compact, σ -compact non compact space (say $X = \mathbb{R}^n, n \in \mathbb{N}$). Since every σ -compact space is realcompact, it follows from Theorem 8.19 in [7] that $C_K(X) = \bigcap_{p \in \beta X \setminus X} M^p$. Incidentally it is proved in Proposition 5.6 in [4] that $cl_m C_K(X)$ (= the closure of $C_K(X)$ in the space $C_m(X)$) = $\bigcap_{p \in \beta X \setminus X} M^p$. Thus $C_K(X)$ is closed in $C_m(X)$. On the other hand,

it follows from 7F3 [7] that with the above mentioned condition on X, the intersection of all free maximal ideals in $C(X) \subsetneq C_{K}(X)$ is intersection of all free maximal ideals in $C^{*}(X)$. Therefore $C_{K}(X) \subsetneq C_{\infty}(X)$ and hence $C_{K}(X)$ is not dense in $C_{\infty}(X)$ in the space C(X) in the *m*-topology. Towards the end of this paper, we find the closure of $C_{K}(X)$ in $C_{m}(X)$.

Theorem 4.11. $cl_U C_{\psi}(X) \equiv the closure of C_{\psi}(X) in C_U(X) = \bigcap_{p \in \beta X \setminus vX} \widetilde{M}^p = \{f \in C(X) : f^*(\beta X \setminus vX) = \{0\}\}.$

Proof. We shall follow closely the technique adopted to prove Theorem 4.8. First recall the well-known fact: $C_{\psi}(X) = \bigcap_{p \in \beta X \setminus vX} M^p$, Theorem 3.1 [8]. It follows on adapting the chain of arguments in the first part of

the proof of Theorem 4.8 that $cl_U C_{\psi}(X) \subseteq \bigcap_{p \in \beta X \setminus vX} \widetilde{M}^p = \{f \in C(X) : f^*(\beta X \setminus vX) = \{0\}\}$. To prove the reverse

inclusion relation, choose $f \in C(X)$ such that $f^*(\beta X \setminus vX) = \{0\}$, then it is not at all hard to prove that f is bounded on X and therefore we can rewrite as in the proof of Theorem 4.8 that $cl_UC_{\psi}(X) \subseteq \{f \in C^*(X) : f^{\beta}(\beta X \setminus vX) = \{0\}\}$ and hence $\beta X \setminus vX \subseteq Z_{\beta X}(f^{\beta})$. Next choosing $\epsilon > 0$ and proceeding exactly as in the proof of Theorem 4.8, thereby defining the bounded continuous function $h : X \to \mathbb{R}$ verbatim, we can easily check that $h \in \widetilde{B}(f, \epsilon)$. In the next stage we set as in the proof of Theorem 4.8, $g = (|f| \land \frac{\epsilon}{2}) - \frac{\epsilon}{2}$ and ultimately reach the inequality:

$$\beta X \setminus v X \subseteq Z_{\beta X}(f^{\beta}) \subseteq \beta X \setminus Z_{\beta X}(g^{\beta}) \subseteq Z_{\beta X}(h^{\beta}) \quad \dots (1)$$

To complete this theorem, it remains to check that $h \in C_{\psi}(X)$. Since $C_{\psi}(X) = \bigcap_{p \in \beta X \setminus vX} M^p$, it is therefore

sufficient to show that (in view of Gelfand-Kolmogoroff Theorem [7]), for each point $p \in \beta X \setminus vX$, $p \in cl_{\beta X}Z(h)$. For that purpose let U be an open neighborhood of p in βX . Then $V = \beta X \setminus Z_{\beta X}(g^{\beta}) \cap U$ is an open neighborhood of p in βX (we exploit the inequality (1)). Therefore $V \cap X \neq \emptyset$. But from (1) we get that $V \cap X \subseteq Z(h)$. hence $Z(h) \cap U \neq \emptyset$. Thus each open neighborhood of p in βX cuts Z(h) and therefore $p \in cl_{\beta X}Z(h)$. \Box

For notational convenience let us write for $f \in C(X)$ and $n \in \mathbb{N}$, $A_n(f) = \{x \in X : |f(x)| \ge \frac{1}{n}\}$. Since a support, i.e., a set of the form $cl_X(X \setminus Z(k))$, $k \in C(X)$ is pseudocompact if and only if it is bounded meaning that each $h \in C(X)$ is bounded on $cl_X(X \setminus Z(k))$ [Theorem 2.1, [9]]. We rewrite: $C_{\infty}^{\psi}(X) = \{f \in C(X) :$ $A_n(f)$ is bounded for each $n \in \mathbb{N}\}$ [see [1] in this connection]. The following result relates this ring with $C_{\psi}(X)$.

Theorem 4.12. $C^{\infty}_{\psi}(X) = cl_U C_{\psi}(X).$

Proof. In view of Theorem 4.11, it amounts to showing that $C_{\psi}^{\infty}(X) = \{f \in C(X) : f^*(\beta X \setminus vX) = 0\}$. For that we make the elementary but important observation that $C_{\psi}^{\infty}(X) \subseteq C^*(X)$. First assume that $f \in C(X)$ and $f^*(\beta X \setminus vX) = \{0\}$, i.e., $f^{\beta}(\beta X \setminus vX) = \{0\}$. Choose $n \in \mathbb{N}$ arbitrarily, we shall show that $A_n(f)$ is bounded. For that purpose select $g \in C(X)$ at random. Now by abusing notation we write $A_n(f^{\beta}) = \{p \in \beta X : |f^{\beta}(p)| \ge \frac{1}{n}\}$. Then it is clear that $A_n(f^{\beta}) \subseteq vX$ and surely $A_n(f^{\beta})$ is compact. It follows that for the function $g^* : \beta X \to \mathbb{R} \cup \{\infty\}, g^*(A_n(f^{\beta}))$ is compact subset of \mathbb{R} . In particular we can say that g is bounded on $A_n(f)$, which we precisely need. Thus it is proved that $\{f \in C(X) : f^*(\beta X \setminus vX) = \{0\}\} \subseteq C_{\psi}^{\infty}(X)$. To prove the reverse containment, let $f \in C^*(X)$ and $f^*(\beta X \setminus vX) \neq \{0\}$. Without loss of generality we can take $f \ge 0$ on X, this means that there exists $p \in \beta X \setminus vX$ and $n \in \mathbb{N}$, for which $f^{\beta}(p) > \frac{1}{n}$. Hence there exists an open neighborhood U of p in βX for which $f^{\beta} > \frac{1}{n}$ on the entire U. It follows that $p \in cl_{\beta}A_n(f)$. On the other hand, since $p \notin vX$, there exists $g \in C(X)$ such that $g^*(p) = \infty$. These two facts together imply that g is unbounded on $A_n(f)$.

Theorem 4.13. Let \mathscr{P} be an ideal of closed set in X. Then

- 1. $C^{\mathscr{P}}_{\infty}(X)$ is a closed subset of $C_U(X)$.
- 2. $cl_U C_{\mathcal{P}}(X) = C_{\infty}^{\mathcal{P}}(X)$.

Proof. 1. Let us rewrite: $C_{\infty}^{\mathscr{P}}(X) = \{f \in C(X) : \text{ for each } n \in \mathbb{N}, A_n(f) \in \mathscr{P}\}$. Suppose $f \in C(X)$ is such that $f \notin C_{\infty}^{\mathscr{P}}(X)$. Thus there exists $n \in \mathbb{N}$ such that $A_n(f) \notin \mathscr{P}$. We claim that $\widetilde{B}(f, \frac{1}{2n}) \cap C_{\infty}^{\mathscr{P}}(X) = \emptyset$ and we are

8937

done. If possible, let there exists $g \in \overline{B}(f, \frac{1}{2n}) \cap C_{\infty}^{\mathscr{P}}(X)$. Then $|g - f| < \frac{1}{2n}$ and $A_k(g) \in \mathscr{P}$ for each $k \in \mathbb{N}$. The first inequality implies that $|f| < |g| + \frac{1}{2n}$, which further implies that $A_n(f) \subseteq A_{2n}(g)$. This combined with $A_{2n}(g) \in \mathscr{P}$ yields, in view of the fact that \mathscr{P} is an ideal of closed sets in X that $A_n(f) \in \mathscr{P}$, a contradiction.

2. Let $f \in C_{\infty}^{\mathscr{P}}(X)$ and $\varepsilon > 0$ in \mathbb{R} . Define as in the proof of Theorem 4.8, a function $g : X \to \mathbb{R}$ as follows:

$$g(x) = \begin{cases} f(x) + \frac{\epsilon}{2} & \text{if } f(x) \le -\frac{\epsilon}{2} \\ 0 & \text{if } -\frac{\epsilon}{2} \le f(x) \le \frac{\epsilon}{2} \\ f(x) - \frac{\epsilon}{2} & \text{if } f(x) \ge \frac{\epsilon}{2} \end{cases}$$

Then $g \in \widetilde{B}(f, \epsilon)$, we assert that $g \in C_{\mathscr{P}}(X)$ and therefore $\widetilde{B}(f, \epsilon) \cap C_{\mathscr{P}}(X) \neq \emptyset$ and we are done. Proof of the assertion: $X \setminus Z(g) \subseteq \{x \in X : |f(x)| \ge \frac{\epsilon}{2}\}$, this implies that: $cl_X(X \setminus Z(g)) \subseteq \{x \in X : |f(x)| \ge \frac{\epsilon}{2}\}$. Since $f \in C^{\mathscr{P}}_{\infty}(X)$, if follows that $\{x \in X : |f(x)| \ge \frac{\epsilon}{2}\} \in \mathscr{P}$ and hence $cl_X(X \setminus Z(g)) \in \mathscr{P}$. Thus $g \in C_{\mathscr{P}}(X)$. \Box

Set $I_{\mathcal{P}} = \{ f \in C(X) : f.g \in C_{\infty}^{\mathcal{P}}(X) \text{ for each } g \in C(X) \}.$

Theorem 4.14. The following results hold:

- 1. $I_{\mathscr{P}}$ is an ideal in C(X) with $C_{\mathscr{P}}(X) \subset I_{\mathscr{P}} \subset C_{\infty}^{\mathscr{P}}(X)$.
- 2. $I_{\mathscr{P}}$ is closed in $C_m(X)$.
- 3. $cl_m C_{\mathscr{P}}(X) = I_{\mathscr{P}}$.
- 4. $I_{\mathcal{P}} = \bigcap_{p \in F_{\mathcal{P}}} M^p$, where $F_{\mathcal{P}} = \{p \in \beta X : C_{\mathcal{P}}(X) \subset M^p\}$.

Proof. 1. Let $f, g \in I_{\mathscr{P}}$ and $h \in C(X)$. Then $f.h, g.h \in C_{\infty}^{\mathscr{P}}(X) \implies (f+g)h \in C_{\infty}^{\mathscr{P}}(X)$, because $A_n(f.h+g.h) \subset A_{2n}(f.h) \cup A_{2n}(g.h)$ for each $n \in \mathbb{N}$. Also let $f \in I_{\mathscr{P}}$ and $g \in C(X)$. Consider any $h \in C(X)$. Then $g.h \in C(X) \implies f.g.h \in C_{\infty}^{\mathscr{P}}(X) \implies f.g \in I_{\mathscr{P}}$. Thus $I_{\mathscr{P}}$ is an ideal in C(X). Clearly $C_{\mathscr{P}}(X) \subset I_{\mathscr{P}} \subset C_{\infty}^{\mathscr{P}}(X)$.

2. Let $f \in C(X)$ be such that $f \notin I_{\mathscr{P}}$. Then there exists $g \in C(X)$ such that $f.g \notin C_{\infty}^{\mathscr{P}}(X)$. Therefore there exists $p \in \mathbb{N}$ such that $A_p(f.g) \notin \mathscr{P}$. Let $u = \frac{1}{2p(1+|g|)}$. Then u is a positive unit in C(X). If possible, let $h \in \widetilde{B}(f, u) \cap I_{\mathscr{P}}$. Then |f - h| < u and $h \in I_{\mathscr{P}}$. Then $h.g \in C_{\infty}^{\mathscr{P}}(X) \implies A_n(h.g) \in \mathscr{P}$ for all $n \in \mathbb{N}$. Now $|f - h| < u \implies |f.g - h.g| < u|g| < \frac{1}{2p} \implies |f.g| < |h.g| + \frac{1}{2p} \implies A_p(f.g) \subset A_{2p}(h.g) \implies A_p(f.g) \in \mathscr{P}$, a contradiction. Therefore $\widetilde{B}(f, u) \cap I_{\mathscr{P}} = \emptyset$ and hence I is closed in $C_m(X)$.

3. Since $I_{\mathscr{P}}$ is closed in $C_m(X)$, it follows that $cl_m C_{\mathscr{P}}(X) \subseteq I_{\mathscr{P}}$. Let $f \in I_{\mathscr{P}}$ and u be any positive unit in C(X). Define a function $g : X \to \mathbb{R}$ as follows:

$$g(x) = \begin{cases} f(x) + \frac{1}{2}u(x) & \text{if } f(x) \le -\frac{1}{2}u(x) \\ 0 & \text{if } -\frac{1}{2}u(x) \le f(x) \le \frac{1}{2}u(x) \\ f(x) - \frac{1}{2}u(x) & \text{if } f(x) \ge \frac{1}{2}u(x) \end{cases}$$

Then $g \in \widetilde{B}(f, u)$ and $cl_X(X \setminus Z(g)) \subset \{x \in X : |f(x)| \ge \frac{1}{2}u(x)\}$. Now $\frac{1}{u} \in C(X)$ and $f \in I_{\mathscr{P}} \implies \frac{f}{u} \in C_{\infty}^{\mathscr{P}}(X) \implies A_n(\frac{f}{u}) \in \mathscr{P}$ for all $n \in \mathbb{N}$. It is clear that $A_2(\frac{f}{u}) = \{x \in X : |f(x)| \ge \frac{1}{2}u(x)\}$ and so $cl_X(X \setminus Z(g)) \in \mathscr{P}$, i.e., $g \in C_{\mathscr{P}}(X)$. Thus $\widetilde{B}(f, u) \cap C_{\mathscr{P}}(X) \neq \emptyset$, i.e., $f \in cl_m C_{\mathscr{P}}(X)$. So $I_{\mathscr{P}} \subseteq cl_m C_{\mathscr{P}}(X)$.

4. We know that the closure of an ideal *J* of *C*(*X*) in the *m*-topology is the intersection of all maximal ideal containing *J* [7Q2 [7]]. Therefore $I_{\mathscr{P}} = cl_m C_{\mathscr{P}}(X) = \bigcap_{m \in T} M^p$. \Box

Corollary 4.15. The closure of $C_K(X)$ in the m-topology is the ideal $\{f \in C(X) : fg \in C_{\infty}(X) \text{ for each } g \in C(X)\}$. When \mathscr{P} is the ideal of all compact sets in $X, F_{\mathscr{P}}$ will be $\beta X - X$ and hence $I_{\mathscr{P}} = \bigcap_{p \in \beta X - X} M^p$ i.e., $cl_m C_K(X) = \bigcap_{p \in \beta X - X} M^p$.

[This last result is achieved independently in [3] [Proposition 5.6]].

Corollary 4.16. From Theorem 3.1 [8], $C_{\psi}(X) = \bigcap_{p \in \beta X \setminus vX} M^p$ and so $C_{\psi}(X)$ is closed in the m-topology. Again by Theorem 4.14(3), $cl_m(C_{\psi}(X)) = \{f \in C(X) : fg \in C_{\omega}^{\psi}(X) \text{ for each } g \in C(X)\}$. Thus $C_{\psi}(X)$ can also be written as $\{f \in C(X) : fg \in C_{\omega}^{\psi}(X) \text{ for each } g \in C(X)\}$, this is an alternate formula for $C_{\psi}(X)$ [Compare with the known formula: $C_{\psi}(X) = \{f \in C(X) : fg \in C^*(X) \text{ for each } g \in C(X)\}$, [Theorem 2.1, [9]]].

We conclude this section by establishing a characterization of pseudocompact spaces.

Theorem 4.17. The U-topology and the m-topology on C(X) are equal if and only if the closures of $C_{\mathscr{P}}(X)$ in the respective topologies are equal for every choice of ideal \mathscr{P} of closed sets in X. Therefore X is pseudocompact if and only if for every choice of ideal \mathscr{P} of closed sets in X, $C_{\mathscr{P}}(X)$ is dense in $C_{\infty}^{\mathscr{P}}(X)$ in the m-topology.

Proof. If these two topologies are unequal, then *X* is not pseudocompact and so there exists $f \in C^*(X)$ such that $Z(f) = \emptyset$ and $f^*(\beta X \setminus X) = \{0\}$. Consider the ideal \mathscr{P} of bounded subsets of *X*. Then $C_{\mathscr{P}}(X) = C_{\psi}(X)$ and by Theorem 4.11, $cl_U C_{\mathscr{P}}(X) = \{f \in C(X) : f^*(\beta X \setminus vX) = \{0\}\}$ and $cl_m C_{\mathscr{P}}(X) = C_{\psi}(X)$. Clearly $f \in cl_U C_{\mathscr{P}}(X) \setminus cl_m C_{\mathscr{P}}(X)$, i.e., $cl_U C_{\mathscr{P}}(X) \neq cl_m C_{\mathscr{P}}(X)$. \Box

The following problem is left open:

Question 4.18. *Is the convexity condition on the ideal I of* C(X) *in Theorem 3.7 necessary for the validity of the same theorem?*

References

- S. K. Acharyya, S. Bag, G. Bhunia, R. Rooj, Some new results on functions in C(X) having their support on ideals of closed sets, Quaes. Math. 42 (2019), 1079–1090.
- [2] F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125 (1997), 2149–2154.
- [3] F. Azarpanah, F. Manshoor, R. Mohamadian, *Connectedness and compactness in C(X) with the m-topology and generalized m-topology* **159** (2012), 3486–3493.
- [4] F. Azarpanah, F. Manshoor, R. Mohamadian, A Generalization of the m-topology on C(X) finer than the m-topology, Filomat **31** (2017), 2509–2515.
- [5] R. Bharati, A. Deb Ray, S. K. Acharyya, S. Acharyya, A generalization of topology of uniform convergence on C(X), Topol. Appl. 310 (2022), Art. ID 108041.
- [6] N. J. Fine, L. Gillman, Extension of continuous functions in βN, Bull. Amer. Math. Soc. 66 (1960), 376–381.
- [7] L. Gillman, M. Jerison, Rings of Continuous Functions, D. Van Nos. Com., New York, 1960.
- [8] D. G. Johnson, M. Mandelker, Functions with pseudocompact support, Gen. Top. Appl. 3 (1973), 331-338.
- [9] M. Mandelker, Supports of continuous functions, Trans. Amer. Math. Soc. 156 (1971), 73-83.
- [10] A. R. McCoy, S. Kundu, V. Jindal, Function Spaces with Uniform, Fine and Graph Topologies, Springer Cham, 2018.
- [11] D. Plank, Closed l-ideals in a class of lattice-ordered algebras, Illin. J. Math. 15 (1971), 515–524.
- [12] D. Plank, On a class of subalgebras of C(X) with applications to $\beta X \setminus X$, Fund. Math. 64 (1969), 42–54.
- [13] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., Singapore, 1987.
- [14] A. Taherifar, Some generalizations and unifications of $C_{K}(X)$, $C_{\psi}(X)$ and $C_{\infty}(X)$, Quaest. Math. **138** (2015), 793–804.