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Some properties of s-paratopological groups
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Abstract. A paratopological group G is called an s-paratopological group if every sequentially continuous
homomorphism from G to a paratopological group is continuous. For every paratopological groups (G, τ),
there is an s-coreflection (G, τS(G,τ)), which is an s-paratopological group. A characterization of s-coreflection
of (G, τ) is obtained, i.e., the topology τS(G,τ) is the finest paratopological group topology on G whose
open sets are sequentially open in τ. We prove that the class of Abelian s-paratopological groups is
closed with open subgroups. The class of s-paratopological groups being determined by PT-sequences is
particularly interesting. We show that this class of paratopological groups is closed with finite product, and
give a characterization that two T-sequences define the same paratopological group topology in Abelian
groups. The s-sums of Abelian s-paratopological groups are defined. As applications, using s-sums we
give characterizations of Abelian s-paratopological groups and HausdorffAbelian s-paratopological groups,
respectively.

1. Introduction

We denote byN the set of all positive integers, Z the set of all integers, and ω = {0} ∪N. Readers may
consult [1, 9] for notations and terminology not given here. All spaces considered are assumed to be T1.

A paratopological group G is a group endowed with a topology such that the multiplication operation on
G is jointly continuous. A topological group is a paratopological group G such that the inverse operation on G
is continuous. Denote byNG the family of open neighborhoods of the unit eG (briefly, e) of a paratopological
group G.

Let u = {un}n∈ω be a non-trivial sequence in a group G. The following very important question has been
studied by many authors, such as Graev [14], Nienhuys [19], Protasov and Zelenyuk [21, 25] et al.

Question 1.1. Is there a group topology τ on G such that un → e in (G, τ)?

Protasov and Zelenyuk [21] obtained a criterion that gives the complete answer to this question for
Abelian groups [21, Theorem 2.1.3] and countable groups [21, Theorem 3.1.4]. Following [21], we say that
a sequence u = {un}n∈ω in a group G is a T-sequence if there is a group topology on G in which u converges
to e.
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Recall that a mapping f : X→ Y between topological spaces X and Y is said to be sequentially continuous
if { f (xn)}n∈ω converges to f (x) in Y whenever a sequence {xn}n∈ω converges to x in X. It is well known that
the sequential continuity of a mapping is in general far too weak to imply its continuity. The following
important notion was introduced by Noble [20], more results and historical remarks about s-groups can be
found in [2, 12, 13, 15, 23, 24] etc.

Definition 1.2. ([20]) A topological group G is called an s-group if each sequentially continuous homomor-
phism from G to a topological group is continuous.

S.S. Gabriyelyan considered the following question, which is a generalisation of Question 1.1.

Question 1.3. ([12]) Let G be a group and S be a set of sequences in G. Is there a group topology τ on G in which
every sequence of S converges to the unit e?

To answer Question 1.3, S.S. Gabriyelyan defined TS-set of sequences.

Definition 1.4. ([12]) Let G be a group and S be a set of sequences in G. The set S is called a TS-set of
sequences if there is a group topology on G in which all sequences of S converge to e. The finest group
topology with this property is denoted by τS.

Many properties are obtained in [12]. Especially, a topological group (G, τ) is an s-group if and only if
there is a TS-set S in G such that τ = τS, and every non-discrete s-group can be described as quotient of
Graev free topological group over a sequential Tychonoff space.

By analogy with s-groups, the authors in [8] defined the s-paratopological groups and PT-sets of se-
quences.

Definition 1.5. ([8]) A paratopological group G is called an s-paratopological group if every sequentially
continuous homomorphism from G to a paratopological group is continuous.

Definition 1.6. ([8]) Let G be a group and S be a set of sequences in G. The set S is called a paratopologized set
(briefly, PT-set) in G if there is a paratopological group topology on G in which all sequences of S converge
to the unit e of G. The finest paratopological group topology on G with this property is denoted by τS.

They established that a paratopological group (G, τ) is an s-paratopological group if and only if there
is a PT-set S in G such that τ = τS, and G is an s-paratopological group if and only if it is topologically
isomorphic to a quotient group of a free paratopological group on a sequential space.

Recently, F. Lin defined PT-sequence in Abelian groups [16].

Definition 1.7. ([16]) A sequence {an}n∈ω of elements of group G is called a PT-sequence if there is a paratopo-
logical group topology on G in which {an}n∈ω converges to 0. Denote by P(G|{an}n∈ω) the group G endowed
with the finest paratopological group topology in which {an}n∈ω converges to 0. We say that a paratopological
group τ on G is determined by a PT-sequence {an}n∈ω if (G, τ) = P(G|{an}n∈ω).

Note that we can also define PT-sequence in non-Abelian groups which is a PT-set containing a single
sequence. If u is a PT-sequence on a group G, we denote by τu the finest paratopological group topology on
G in which u = {an}n∈ω converges to e. It follows from definitions that every T-sequence is a PT-sequence.
And if u is a T-sequence, then τu is Hausdorff. It is clear that, if S is a PT-set, then S′ is a PT-set for every
non-empty subset S′ of S, and every sequence u ∈ S is a PT-sequence. Evidently, τS ⊆ τS′ . Also, if S contains
only trivial sequences, then S is a PT-set and τS is discrete. By definition, τu is finer than τS for every u ∈ S.
Thus, if U is open in τS, then it is open in τu for every u ∈ S. So, by definition, we obtain that τS ⊆

∧
u∈S τu,

where
∧

u∈S τu denotes the intersection of the topologies τu, i.e., U is open in
∧

u∈S τu if and only if U ∈ τu
for every u ∈ S.

Many properties of Abelian paratopological groups being determined by PT-sequences are obtained [16].
He proved that if G is an Abelian paratopological group, which is endowed with the finest paratopological
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group topology being determined by a PT-sequence, then (1) G is a sequential non-Fréchet-Urysohn space;
and (2) G does not admit a T1-complementary Hausdorff paratopological group topology on G. The class
of countable paratopological groups (not necessary being Abelian) which is determined by a PT-sequence
is also discussed in [16].

In this paper, using the methods established in [12, 13] for s-topological groups, we investigate properties
of s-paratopological groups, which is also a continuous work of [8] and [16]. Let (G, τ) be a paratopological
group, and S(G, τ) = {u = {un}n∈ω : un → e in τ}. It is worth noting that S(G, τ) is a PT-set. We call
the paratopological group (G, τS(G,τ)) is the s-coreflection of (G, τ). In Section 3, some basic properties of s-
paratopological groups, which are not considered in [8], are established. A characterization of s-coreflection
of S(G, τ) is obtained, i.e., the topology τS(G,τ) is the finest paratopological group topology on G whose open
sets are sequentially open in τ. We also show that the class of s-paratopological groups is closed with open
subgroups.

In Section 4, we consider some properties of the class of s-paratopological groups being determined by
PT-sequences. We mainly show that this class of s-paratopological groups is closed with finite product, and
give a characterization that two T-sequences define the same paratopological group topology in Abelian
groups.

In Section 5, the s-sums of Abelian s-paratopological groups are discussed. As applications, using s-sums
we give characterizations of Abelian s-paratopological groups and Hausdorff Abelian s-paratopological
groups, respectively. More precisely, (G, τ) is an s-paratopological group if and only if every continuous
sequence-covering homomorphism from an s-paratopological group onto (G, τ) is quotient; and a Hausdorff
paratopological group (G, τ) is an s-paratopological group if and only if (G, τ) is a quotient group of the
s-sum of a nonempty family of copies of (Zω0 , τe).

2. Notation and terminology

Let X be a space. For every P ⊆ X, the set P is a sequential neighborhood of x in X if every sequence
converging to x is eventually in P. The set P is a sequentially open subset of X if P is a sequential neighborhood
of each point in P. The set P is a sequentially closed subset of X if X \P is sequentially open. A space X is said
to be a sequential space [10] if each sequentially open subset is open in X. For each space (X, τ) the sequential
coreflection [11] of (X, τ), denoted (X, στ) or σX, is given by U ∈ στ if and only if U is sequentially open in
(X, τ). As it is well known, σX is a sequential space [11, p. 52]; also, X and σX have the same convergent
sequences [5, p. 678].

The following description of a neighborhood base at the identity of a paratopological group is well
known.

Lemma 2.1. Let G be a paratopological group and N be a base at the identity e of G. Then the family N has the
following five properties.

(1) for every U,V ∈ N , there exists W ∈ N with W ⊆ U ∩ V;
(2) for every U ∈ N , there exists V ∈ N such that VV ⊆ U;
(3) for every U ∈ N and 1 ∈ U, there exists V ∈ N such that 1V ⊆ U;
(4) for every U ∈ N and 1 ∈ G, there exists V ∈ N such that 1V1−1

⊆ U;
(5) {e} =

⋂
N .

Conversely, if N is a family of subsets of an abstract group G containing the identity e of G and satisfying (1)-(5),
then G admits the unique topology τ that makes it a paratopological group withN being a base at e.

• For every n ∈N, Sn denotes the group of all permutations on the set {0, 1, ...,n − 1}.
Let G be a group.
• By F (G) we denote the set of all functions f from ω × G into ωwhich satisfy the condition:

f (k, 1) < f (k + 1, 1),∀k ∈ ω,∀1 ∈ G.

• If {Am : m ≤ n} is a family of non-empty subsets of G for n ∈N. A1...An denotes the set {a1 · · · an : am ∈

Am,m ≤ n}.
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• Let {An}n∈ω be a sequence of non-empty subsets of G. Following [21, Definition 3.1.3], we write

SPm≤nAm =
⋃
σ∈Sn+1

Aσ(0)Aσ(1)...Aσ(n)

and
SPn∈ωAn =

⋃
n∈ω

SPm≤nAm =
⋃
n∈ω

⋃
σ∈Sn+1

Aσ(0)Aσ(1)...Aσ(n).

• If {an}n∈ω is a sequence of elements of G. For each n ∈ ω, put An = {am : m ≥ n}, A∗n = {am : m ≥ n} ∪ {e}
and

A(k,m) = {1011 · · · 1k : 10, 11, ..., 1k ∈ A∗m}.

If G is Abelian, for an increasing sequence 0 ≤ n0 < n1 < . . . one puts∑
k∈ω

Ank =
⋃
k∈ω

(An0 + An1 + · · · + Ank ).

3. Basic properties of s-paratopological groups

By categorical methods, B. Batı́ková and M. Hušek proved that the product of non-sequentially many of
s-paratopological groups is an s-paratopological group [6, Corollary 14]. In this section, we consider some
basic properties of s-paratopological groups. We first give an internal characterization of s-coreflection of a
paratopological group (G, τ).

The following two results will be frequently used.

Lemma 3.1. ([8, Lemma 2.5]) Let S = {Si : i ∈ I} be a PT-set of sequences in a group G, where Si = {xi
n}n∈ω for each

i ∈ I, and let p be a homomorphism from (G, τS) to a paratopological group H. Then p is continuous if and only if the
sequence p(Si) = {p(xi

n)}n∈ω converges to the identity eH in H for each i ∈ I.

Theorem 3.2. ([8, Theorem 2.8]) Let S be a PT-set of sequences in a group G, H be a closed normal subgroup of
(G, τS) and let π be the natural projection from G onto the quotient group G/H. Then π(S) is a PT-set of sequences
in G/H and (G, τS)/H � (G/H, τπ(S)).

Proposition 3.3. Let S be a PT-set of sequences in a group G. Then τS = τS(G,τS). In particular, if (G, τ) is an
s-paratopological group, then τ = τS(G,τ).

Proof. Since S ⊆ S(G, τS), it follows from the definition of the topology τS that τS ⊇ τS(G,τS). Let idG :
(G, τS(G,τS))→ (G, τS) be the identity map. For every u = {un}n∈ω ∈ S(G, τS) we have that idG(un) = un → e in
τS. By Lemma 3.1, idG is continuous. Then τS ⊆ τS(G,τS). Thus τS = τS(G,τS).

Lemma 3.4. Let (G, τ) be a paratopological group. Then
(1) S(G, τS(G,τ)) = S(G, τ);
(2) A set U is sequentially open in τS(G,τ) if and only if U is sequentially open in τ, i.e., στS(G,τ) = στ.

Proof. (1) Since τ ⊆ τS(G,τ), it follows that S(G, τS(G,τ)) ⊆ S(G, τ). Conversely, if u ∈ S(G, τ), then u ∈ S(G, τS(G,τ))
by the definition of τS(G,τ). Therefore, S(G, τS(G,τ)) = S(G, τ).

(2) Since τ ⊆ τS(G,τ), it suffices to prove that στS(G,τ) ⊆ στ. Suppose that U is sequentially open in τS(G,τ),
and a sequence u = {un}n∈ω converges to 1 ∈ U in τ. Since (G, τ) is a paratopological group, the sequence
1−1u = {1−1un}n∈ω converges to e. Thus 1−1u ∈ S(G, τ). By (1), 1−1u ∈ S(G, τS(G,τ)). Note that the translation
l1−1 : G → G defined by l1−1 (x) = 1−1x is a homeomorphism. Thus 1−1U is also sequentially open in τS(G,τ).
Hence there is n0 ∈ ω such that 1−1un ∈ 1

−1U for all n > n0. Therefore, un ∈ U for all n > n0. Hence U is
sequentially open in τ, and then στS(G,τ) ⊆ στ.
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Now we can give a characterization of s-coreflection of a paratopological group (G, τ) using sequentially
open sets.

Theorem 3.5. Let (G, τ) be a paratopological group. Then the topology τS(G,τ) is the finest paratopological group
topology on G whose open sets are sequentially open in τ.

Proof. By Lemma 3.4 (2), we have to show only the minimality ofτS(G,τ). Letτ′ be an arbitrary paratopological
group topology on G whose open sets are sequentially open in τ. According to the definition of τS(G,τ), it
is enough to prove that any u = {un}n∈ω ∈ S(G, τ) converges to the unit in τ′. Assume the converse, then
there is an open neighborhood U of the unit in τ′ that does not contain infinitely many terms {unk }k∈ω of
some u. Let v = {unk }k∈ω, then v ∈ S(G, τ) and v ∩U = ∅. Hence U is not sequentially open in τ, which is a
contradiction. Therefore, τ′ ⊆ τS(G,τ). The proof is completed.

A space X is called a k-space [9, p. 152] if, for every A ⊆ X, the set A is closed in X if and only if the
intersection of A with any compact subspace K of the space X is relatively closed in K.

Proposition 3.6. Every non-discrete paratopological group (G, τ) without infinite compact subsets is neither an
s-paratopological group nor a k-space and τS(G,τ) is discrete.

Proof. Since every compact subset in (G, τ) is finite, every convergent sequence in (G, τ) is trivial. Thus the
topology τS(G,τ) is discrete, and (G, τ) is not an s-paratopological group.

Assuming that (G, τ) is a k-space. Let A be an arbitrary subset of G, then for every compact subset K
of (G, τ) the intersection A ∩ K is finite and hence closed in K. Since (G, τ) is a k-space, it follows that A is
closed in (G, τ). Note that A is arbitrary, hence (G, τ) is discrete, which contradicts the assumption of the
proposition. Thus (G, τ) is not a k-space.

We will assume that all groups are Abelian in the rest of this section.

Theorem 3.7. ([16, Theorem 5.14]) For each PT-sequence {an}n∈ω on any group G, the paratopological group
P(G|{an}n∈ω) is sequential.

Lemma 3.8. Let (G, τ) be a paratopological group, then στ =
∧

u∈S(G,τ) τu.

Proof. Let U ∈
∧

u∈S(G,τ) τu. We will show that U is sequentially open in τ. Suppose that a sequence
{un}n∈ω converges to 1 ∈ U in τ. Since (G, τ) is a paratopological group, 1−1un → e ∈ 1−1U. Therefore,
v = {1−1un}n∈ω ∈ S(G, τ). It follows that U ∈ τv. Note that(G, τv) is a paratopological group. Thus the
translation l1−1 : G → G defined by l1−1 (x) = 1−1x is a homeomorphism. Thus 1−1U is also open in τv, and
then there is n0 ∈ ω such that 1−1un ∈ 1

−1U for all n > n0. Therefore all but finitely many members of {un}n∈ω
are contained in U, which shows that U is sequentially open in τ.

Conversely, let U be sequentially open in τ. Then U is sequentially open in τu for each u ∈ S(G, τ). In
fact, if vn → 1 ∈ U in τu, then vn → 1 ∈ U in τ. Since U is sequentially open in τ, almost all vn are contained
in U. Thus U is sequentially open in τu. By Theorem 3.7, U is open in τu.

It is worth mentioning that the class of all sequential paratopological groups is not stable under finite
products [4, Theorem 6], On the other hand, the class of s-paratopological groups is stable under finite
products. Thus there is an s-paratopological group which is not sequential. However, we have the
following result.

Theorem 3.9. Let (G, τ) be a paratopological groups. The following statements are equivalent:
(1) (G, τS(G,τ)) is sequential;
(2) τS(G,τ) =

∧
u∈S(G,τ) τu;

(3) στ is a paratopological group topology.
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Proof. (1) ⇒ (2). Let (G, τS(G,τ)) be sequential. By the definition of sequential spaces and Lemma 3.8, we
have that τS(G,τ) = στS(G,τ) =

∧
u∈S(G,τ) τu.

(2) ⇒ (3). It follows from Lemma 3.8 and the hypothesis that στ = τS(G,τ), which shows that στ is a
paratopological group topology.

(3) ⇒ (1). By Theorem 3.5 and the hypothesis, τS(G,τ) = στ. According to Lemma 3.6 (2), we have
στ = στS(G,τ) . Therefore, τS(G,τ) = στS(G,τ) , which shows that (G, τS(G,τ)) is sequential.

To conclude this section, we show that the class of s-paratopological groups is closed with open sub-
groups.

Theorem 3.10. Let (G, τ) be a paratopological group, and H be an open subgroup of G. Then (G, τ) is an s-
paratopological group if and only if so is H.

Proof. Assume that (G, τ) is an s-paratopological group. Put S1 = S(G, τ),S2 = S(H, τ|H), then τS2 ⊇ τ|H. We
will show that τS2 ⊆ τ|H. By Lemma 2.1, NH satisfies the conditions of Lemma 2.1. Since G is Abelian,
NH is also satisfies the conditions of Lemma 2.1 in G. Therefore, G admits the unique topology τ1 that
makes it a paratopological group with NH being a base at e. For each u = {un}n∈ω ∈ S1, since H is an open
subgroup of G, there is n0 ∈ ω such that v = {un0+n}n∈ω ∈ S2. Thus u is convergent in τ1. Note that (G, τ) is
an s-paratopological group, we have that τ ⊇ τ1. It follows that τS2 = τ1|H ⊆ τ|H. So τS2 = τ|H, which shows
that (H, τ|H) is an s-paratopological group.

Conversely, suppose that (H, τ|H) is an s-paratopological group. We will show that τS1 ⊆ τ. For each
u ∈ S2, it is clear that u ∈ S1. Therefore, u is convergent in (H, τS1 |H). By hypothesis that (H, τ|H) is an
s-paratopological group, it follows that τ|H = τS1 |H. Since H is an open subgroup of G, we can conclude that
id : (G, τ)→ (G, τS1 ) is continuous at e. Thus idG : (G, τ)→ (G, τS1 ) is continuous. Therefore, τS1 ⊆ τ. Hence
τ = τS1 , which shows that (G, τ) is an s-paratopological group.

However, the following question is unknown.

Question 3.11. Let (G, τ) be an s-paratopological group. Which closed subgroups of (G, τ) are s-paratopological
groups as well?

4. s-paratopological groups determined by PT-sequences

In this section, we consider a special class of s-paratopological groups, that is the s-paratopological
groups which are determined by PT-sequences. Firstly, We first show that this class of s-paratopological
groups is closed with finite product. Then we consider the following interesting question in the rest of this
section.

Question 4.1. Let G be an Abelian group. When do two PT-sequences define the same paratopological group
topologies on G?

Note that the corresponding question for groups in fact is formulated in Exercise 2.1.2 of [21]. We give a
characterization that two T-sequences define the same paratopological group topologies in Abelian groups,
which give a partial answer to Question 4.1.

By Lemma 3.2, we have the following corollary.

Corollary 4.2. Let u = {un}n∈ω be a PT-sequence in a group G, H be a closed normal subgroup of (G, τu) and
let π be the natural projection from G onto the quotient group G/H. Then π(u) is a PT-sequence in G/H and
G/H � (G/H, τπ(u)).

A criterion for a set to be a PT-set in an abstract group was given in [8, Theorem 2.4]. For the case of a
PT-sequence, that is a PT-set of one sequence, by [8, Theorem 2.4] we have the following corollary.
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Corollary 4.3. Let u = {un}n∈ω be a sequence in a group G. Then the following statements (a), (b), and (c) are
equivalent.

(a) The topology τu on G exists;
(b) u is a PT-sequence in G;
(c)
⋂

f∈F (G) SPn∈ωAn( f ) = {e}.
Moreover, if one of the statements (a), (b) or (c) holds, then the family {SPn∈ωAn( f ) : f ∈ F (G)} is a base at the

identity e in (G, τu).

Theorem 4.4. Let u = {un}n∈ω and v = {vn}n∈ω be PT-sequences in groups G and H, respectively. Set d = {dn}n∈ω,
where d2n+1 = (un, eH) and d2n = (eG, vn). Then d is a PT-sequences in G ×H and τd = τu × τv.

Proof. It is clear that d converges to the unit in (G × H, τu × τv). So d is a PT-sequence in G × H and
τu×τv ⊆ τd. To prove that τu×τv = τd, by Corollary 4.3 it is enough to show that every basic neighborhood
W = SPn∈ωAn( f ), f ∈ F (G × H), of the unit in τd contains a set of the form Wu ×Wv, where Wu ∈ τu and
Wv ∈ τv.

For each f ∈ F (G×H), put f u(k, 1) = f (2k, (1, eH)), f v(k, h) = f (2k+1, (eG, h)) for every k ∈ ω, 1 ∈ G, h ∈ H.
Then f u

∈ F (G) and f v
∈ F (H), and

Au
f u(k,1) × {eH} = {eG,u f u(k,1), · · · } × {eH} = {(eG, eH), (u f u(k,1), eH), · · · }

= {(eG, eH), (u f (2k,(1,h)), eH), · · · } ⊆ Ad
f (2k,(1,eH)),

{eG} × Av
f v(k,h) = {eG} × {eH, v f v(k,h), · · · }× = {(eG, eH), (eH, v f v(k,1)), · · · }

= {(eG, eH), (eG, v f (2k+1,(eG,h))), · · · } ⊆ Ad
f (2k+1,(eG,h)).

Thus
Ak( f u) × {eH} ⊆ A2k( f ) and {eG} × Ak( f v) × {eH} ⊆ A2k+1( f ).

For every n ∈ ω and σ′, σ′′ ∈ S(n + 1) put

σ(k) = 2σ′(k) and σ(n + 1 + k) = 2σ′′(k) + 1, 0 ≤ k ≤ n.

Then σ ∈ S(2n + 1) and

(Aσ′(0)( f u) · · ·Aσ′(n)( f u)) × (Aσ′′(0)( f v) · · ·Aσ′′(n)( f v))
= (Aσ′(0)( f u) × {eG}) · · · (Aσ′(n)( f u) × {eG}) · ({eG} × Aσ′′(0)( f v)) · · · ({eG} × Aσ′′(0)( f v))
⊆ Aσ(0)( f ) · · ·Aσ(n)( f ).

Set Wu = SPn∈ωAn( f u) ∈ τu and Wv = SPn∈ωAn( f v) ∈ τv. Then

Wu ×Wv =
⋃
n∈ω

⋃
σ′,σ′′∈Sn+1

(Aσ′(0)( f u) · · ·Aσ′(n)( f u)) × (Aσ′′(0)( f v) · · ·Aσ′′(n)( f v))

⊆

⋃
n∈ω

⋃
σ∈S2n+1

Aσ(0)( f ) · · ·Aσ(n)( f ) =W.

Therefore, we can conclude that τu × τv = τd.

In the rest of this section, all groups are Abelian. By Corollary 4.3, we have the following result, which
is also obtained in [16].

Corollary 4.5. Let u = {un}n∈ω be a sequence in a group G. Then the following statements (a), (b), and (c) are
equivalent.

(a) The topology τu on G exists;
(b) u is a PT-sequence in G;
(c)
⋂
{
∑

k∈ω Ank : {nk}k∈ω ⊆ ω with 0 ≤ n0 < n1 < . . .} = {e}.
Moreover, if one of the statements (a), (b) or (c) holds, then the family {

∑
k∈ω Ank : {nk}k∈ω ⊆ ω with 0 ≤ n0 <

n1 < . . .} is a base at the identity 0 in (G, τu).
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Lemma 4.6. Let u = {un}n∈ω be a T-sequence in G. If the sequence v = {vn}n∈ω converges to 0 in (G, τu), then for
some k,n0 ∈ ω, vn ∈ A(k, 0) holds for all n > n0.

Proof. Assuming the converse, we may assume (after passing to subsequences if required) that vn < A(n, 0)
for all n ∈ ω. We shall construct a neighborhood of 0 in (G, τu) of the form

∑
m∈ω A∗nm

not containing any
value of the sequence v = {vn}n∈ω. Let n0 = 0. Since A∗n0

= A(0, 0) and v0 < A(0, 0), {v0} ∩ A∗n0
= ∅. Suppose

that n0, . . . ,nk ∈N have been chosen so that

{v0, . . . , vk} ∩ (A∗n0
+ · · · + A∗nk

) = ∅.

Assume that, for every l ∈N, we have

{v0, . . . , vk, vk+1} ∩ (A∗n0
+ · · · + A∗nk

+ A∗l ) , ∅.

Then we can choose sequences {xl}l∈ω and {yl}l∈ω such that xl ∈ A∗n0
+ · · · + A∗nk

, yl ∈ A∗l and xl + yl ∈

{v0, . . . , vk, vk+1} for all l ∈ ω. On passing to subsequence, without loss of generality, we may assume that
the sequence {xl}l∈ω converges to some x. Since {yl}l∈ω converges to 0 and (G, τu) is a paratopological group,
the sequence {xl + yl}l∈ω converges to x. Note that A∗n0

+ · · · + A∗nk
is compact and (G, τu) is Hausdorff, thus

A∗n0
+ · · · + A∗nk

is closed. It follows that x ∈ A∗n0
+ · · · + A∗nk

. Therefore,

{v0, . . . , vk, vk+1} ∩ (A∗n1
+ · · · + A∗nk

) , ∅.

By the choice of n0, . . . ,nk ∈ ω, we have vk+1 ∈ A∗n1
+ · · ·+A∗nk

⊆ A(k, 0) ⊆ A(k+ 1, 0), which is a contradiction
with the assumption vn < A(n, 0) for all n ∈ ω. Hence there is an nk+1 ∈ ω such that

{v0, . . . , vk, vk+1} ∩ (A∗n0
+ · · · + A∗nk

+ A∗nk+1
) = ∅.

Therefore, by inductive construction, we can choose a neighborhood
∑

m∈ω A∗nm
of 0 such that v∩

∑
m∈ω A∗nm

=
∅, which is a contradiction.

Lemma 4.7. Let u = {un}n∈ω be a T-sequence in G. Then a sequence v = {vn}n∈ω converges to 0 in (G, τu) if and
only if there is m ∈ ω and n0 ∈ ω such that for every n ≥ n0 each member vn , 0 can be represented in the form

vn = an
1ukn

1
+ · · · + an

ln
ukn

ln
, (a)

where kn
1 < · · · < kn

ln
, kn

1 →∞, an
k ∈N for all k ∈ {1, . . . , ln} and an

1 + · · · + an
ln
≤ m + 1.

Proof. If either u or v is trivial, the conclusion is evident. Assume that u and v are non-trivial. Since (G, τu)
is a paratopological group, the sufficiency is clear. We will prove the necessity.

Since the subgroup ⟨u⟩ of G is open in τu and v converges to 0, there is n1 ∈ ω such that vn ∈ ⟨u⟩ for every
n ≥ n1. By Lemma 4.6, there is m ∈ ω and n2 ∈ ω such that vn ∈ A(m, 0) for all n > n2. Let n0 = max{n1,n2}.
So, if n > n0 and vn , 0, then

vn = an
1ukn

1
+ · · · + an

ln
ukn

ln
,

where kn
1 < · · · < kn

ln
, and an

1 + · · · + an
ln
≤ m + 1. We can choose a representation of vn of the form (a) with the

minimal value of the sum an
1 + · · · + an

ln
≤ m + 1. For this chosen representation of vn, every sum of terms of

the form an
i un

ki
in (a) is non-zero. Therefore, an

k ∈N for all k ∈ {1, . . . , ln}.
Let us show that kn

1 → ∞. Assuming the converse and passing to a subsequence we may suppose that
kn

1 = k1, an
1 = a1, and an

1ukn
1
= a1uk1 , 0 for every n. So

vn = an
1ukn

1
+ · · · + an

ln
ukn

ln
= a1uk1 + w1

n,

where w1
n = an

2ukn
2
+ · · · + an

ln
ukn

ln
. If kn

2 →∞, then w1
n converges to 0. Hence vn = a1uk1 + w1

n → a1uk1 , 0. This
is impossible. Thus, there is a bounded subsequence of kn

2 . Passing to a subsequence we may suppose that
kn

2 = k2, an
2 = a2, and an

2ukn
2
= a2uk2 for every n. So

vn = a1uk1 + a2uk2 + · · · + an
ln

ukn
ln
= a1uk1 + a2uk2 + w2

n,
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where w2
n = an

3ukn
3
+ · · · + an

ln
ukn

ln
. By hypothesis, a1uk1 + a2uk2 , 0. Continuing this process and taking into

account that
0 < a1 < a1 + a2 < · · · ≤ m + 1,

after at most m + 1 steps, we see that there is a fixed and non-zero subsequence of v. Thus vn ↛ 0, which is
a contradiction. Thus kn

1 →∞.

Theorem 4.8. Let u = {un} and v = {vn} be T-sequences in G. Then τu = τv if and only if there are m ∈ ω and
n0 ∈ ω such that for every n ≥ n0 each vn , 0 and un , 0 can be represented in the form

vn = an
1ukn

1
+ · · · + an

ln
ukn

ln
, (b)

kn
1 < · · · < kn

ln
, kn

1 →∞, a
n
k ∈N for all k ∈ {1, . . . , ln}, and an

1 + · · · + an
ln
≤ m + 1;

un = bn
1vsn

1
+ · · · + bn

qn
vsn

qn
, (c)

sn
1 < · · · < sn

qn
, sn

1 →∞, b
n
i ∈N for all i ∈ {1, . . . , qn}, and bn

1 + · · · + bn
qn
≤ m + 1.

Proof. If τu = τv, then vn → 0 in τu. By Lemma 4.7, v has representation (b) for some m1,n1 ∈ ω. The
same is true for the sequence u, i.e., the sequence u has representation (c) for some m2,n2 ∈ ω. Putting
m = max {m1,m2} and n0 = max {n1,n2}we obtain (b) and (c).

Conversely, if vn , 0 has representation (2), since (G, τu) is a paratopological group, we have that vn → 0
in τu. Thus, τu ⊆ τv by the definition of v. Analogously, τv ⊆ τu. Hence τu = τv.

Let {Gi}i∈I be a family of groups, where I is a non-empty set of indices. The direct sum of Gi is denoted
by ⊕

i∈I

Gi = {(1i)i∈I ∈
∏
i∈I

Gi : 1i = 0 for almost all i}.

We denote by jk the natural inclusion of Gk into
⊕

i∈I Gi, i.e.

jk(1) = (1i)i∈I ∈
⊕

i∈I

Gi, where 1i = 1 if i = k and 1i = 0 if i , k.

Note that
⊕

i∈I Gi is the coproduct of the family {Gi}i∈I in the category of all Abelian groups.
Let us denote byZω0 the derect sum

⊕
ωZ ⊆ Z

ω. The sequence e = {en} ⊆ Zω0 , where e0 = (1, 0, 0, . . .), e1 =
(0, 1, 0, . . .), . . . , converges to zero in the topology induced on Zω0 by the product topology on (Zd)ω, where
Zd is the groups Z endowed with the discrete topology. Thus e is a T-sequence, and then a PT-sequence.

Let f : X → Y be a continuous onto map. f is sequence-covering if for each sequence {yn : n ∈ ω} in
Y converging to a point in Y , there is a sequence {xn : n ∈ ω} in X converging to a point in X such that
f (xn) = yn for all n ∈ ω [18].

Theorem 4.9. Let u = {un}n∈ω be a T-sequence in G such that G = ⟨u⟩. Then (G, τu) is a quotient group of (Zω0 , τe)
under the sequence-covering homomorphism

π((n0,n1, . . . ,nm, 0, . . . , )) = n0u0 + n1u1 + . . . + nmum,

where m,n0,n1, . . . ,nm ∈ ω.

Proof. It is clear that π is a surjective homomorphism. Since π(en) = un → 0 in τu, π is continuous. By
Corollary 4.2, the quotient group (Zω0 ; τe)/kerπ is topologically isomorphic to (G, τu).

Let us show that π is sequence-covering. Since G = ⟨u⟩, each number vn can be represented in the form

vn = an
1ukn

1
+ · · · + an

ln
ukn

ln
.



Z. Tang, M. Chen / Filomat 37:26 (2023), 8941–8952 8950

Let
zn = an

1ekn
1
+ · · · + an

ln
ekn

ln
if vn , 0, and zn = 0 if vn = 0.

If v = {vn}n∈ω ∈ S(G, τu). By Lemma 4.7, there is m ∈ ω and n0 ∈ ω such that for every n ≥ n0, the
representation of vn , 0 can be enhanced that kn

1 < · · · < kn
ln

, kn
1 → ∞, an

k ∈ N for all k ∈ {1, . . . , ln} and
an

1 + · · · + an
ln
≤ m + 1. Then zn → 0 and π(zn) = vn. This implies π is sequence-covering.

Two T1-topologies τ1 and τ2 on a set X are called T1-complementary if the intersection τ1∩τ2 is the cofinite
topology and their supremum is the discrete topology on X [3, 22]. More information of this topic and
resent advances can be found in [7, 16, 17]. As mentioned in Introduction, F. Lin proved that if G is an
paratopological group, which is endowed with the finest paratopological group topology being determined
by a T-sequence, then G does not admit a T1-complementary Hausdorff paratopological group topology on
G. Thus the following question is natural.

Question 4.10. Is there a Hausdorff s-paratopological group G admiting a T1-complementary Hausdorff paratopo-
logical group topology on G?

5. The s-sum of s-paratopological groups

All groups considered in this section are assumed to be Abelian. We aim to define the s-sum of
s-paratopological groups, and then give a characterization of s-paratopological groups using s-sums.

Proposition 5.1. Assume that Gi = (Gi, τi) is a family of paratopological groups. For every i ∈ I fix Ui ∈ UGi and
put ⊕

i∈I

Ui = {(1i)i∈I ∈
⊕

i∈I

Gi : 1i ∈ Ui for all i ∈ I}.

Then the sets of the form
⊕

i∈I Ui, where Ui ∈ UGi for every i ∈ I, form a neighborhood basis at the unit of a
paratopological group topology Tb on

⊕
i∈I Gi.

Let u = {1n}n∈ω be an arbitrary sequence in S(Gi, τi). Evidently, the sequence ji(u) converges to the unit
in Tb. Thus, the set

⋃
i∈I ji(S(Gi, τi)) is a PT-set of sequences in

⊕
i∈I Gi. If (Gi, τi) is an s-paratopological

group for all i ∈ I, we can define the s-sum of Gi.

Definition 5.2. Let {(Gi, τi)}i∈I be a non-empty family of s-paratopological groups. The group
⊕

i∈I Gi
endowed with the finest paratopological group topology Ts in which every sequence of

⋃
i∈I ji(S(Gi, τi))

converges to zero is called the s-sum of Gi, and it is denoted by
⊕(s)

i∈I Gi.

Proposition 5.3. Let {(Gi, τi)}i∈I be a non-empty family of s-paratopological groups. Set S =
⋃

i∈I ji(S(Gi, τi)) and
G =

⊕(s)
i∈I Gi. The topology τS on G coincides with the finest paratopological group topology τ′ on G for which all

inclusions ji are continuous.

Proof. Fix i ∈ I. By construction, for every {un}n∈ω ∈ S(Gi, τi), ji(un)→ eG in τS. By Theorem 3.1 , the inclusion
ji is continuous. Thus τS ⊆ τ′. Conversely, if ji is continuous with respect to τ′, then ji(S(Gi, τi)) ⊆ S(G, τ′).
Therefore, S ⊆ S(G, τ′) and τ′ ⊆ τS by the definition of τS.

Theorem 5.4. Let (X, τ) be an s-paratopological group. Set I = S(X, τ). For every u ∈ I, let pu : (⟨u⟩, τu) →
X, pu(1) = 1, be the natural inclusion of (⟨u⟩, τu) into X. Then the natural homomorphism

p :
(s)⊕
u∈I

(⟨u⟩, τu)→ X, p((xu)) =
∑
u∈I

pu(xu) =
∑

u

xu,

is a quotient sequence-covering map.
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Proof. Let

G =
(s)⊕
u∈I

(⟨u⟩, τu), S =
⋃
u∈I

ji(S(⟨u⟩, τu)).

Since each element of X can be regarded as the first element of some sequence u ∈ I, p is surjective. By
construction, p is sequence-covering.

Let v = {vn}n∈ω ∈ S. By construction, p(vn) = vn → 0 in τ. According to Lemma 3.1, p is continuous.
Let H = ker p. By Theorem 3.2, G/H � (X, τp(S)). Since p(S) = S(X, τ), we obtain G/H � (X, τ). Thus p is
quotient.

Theorem 5.5. Let (X, τ) be a paratopological group. The following statements are equivalent:
(1) (X, τ) is an s-paratopological group;
(2) every continuous sequence-covering homomorphism from an s-paratopological group onto (X, τ) is quotient.

Proof. Let I = S(X, τ). For every u ∈ I, put Xu = (⟨u⟩, τu) and let pu : (⟨u⟩, τu)→ X, pu(1) = 1, be the natural
inclusion of Xu into X.

(1) ⇒ (2) Let p : G → X be a sequence-covering continuous homomorphism from an s-paratopological
group (G, ν) onto X. Set H = ker p. Since p is surjective, by Theorem 3.2, we have G/H � (X, τp(S)). Note that
p is a sequence-covering mapping, Proposition 3.3, p(S(G, ν)) = S(X, τ) and τ = τS(X,τ). Thus G/H � X.

(2)⇒ (1) Let G =
⊕(s)

u∈I Xu and

p : G→ X, p((xu)) =
∑

u

pu(xu) =
∑

u

xu.

By Theorem 5.4, p is continuous and sequence-covering. By hypothesis, p is quotient. Thus (X, τ) � G/ker p.
According to Theorem 3.2, we have that G/ker p � (X, τπ(S)). Thus τ = τp(S), and (X, τ) is an s-paratopological
group.

Proposition 5.6. Let {(Xi, νi)}i∈I and {(Gi, τi)}i∈I be non-empty families of s-paratop-ological groups and letπi : Gi →

Xi be a quotient sequence-covering map for every i ∈ I. Set X =
⊕(s)

i∈I Xi, G =
⊕(s)

i∈I Gi and π : G → X, π((1i)) =
(πi(1i)). Then π is a quotient mapping.

Proof. It is clear that π is surjective. Let

SX =
⋃
i∈I

ji(S(Xi, νi)) and SG =
⋃
i∈I

ji(S(Gi, τi)).

Since πi is sequence-covering, we have πi(S(Gi, τi)) = S(Xi, νi). Hence π(SG) = SX. By Lemma 3.1, π is
continuous. By Theorem 3.2, G/kerπ � (X, τπ(SG)). Since X is an s-paratopological group, G/kerπ � X and
π is quotient.

For Hausdorff paratopological groups, we have the following result.

Theorem 5.7. Let (X, τ) be a Hausdorff paratopological group. The following statements are equivalent:
(1) (X, τ) is an s-paratopological group;
(2) (X, τ) is a quotient group of the s-sum of a nonempty family of copies of (Zω0 , τe).

Proof. By definition of s-sum and Theorem 3.2, it is clear that (2) implies (1). We will show that (1) implies
(2).

For every u ∈ I = S(X, τ), put Gu = (ZN0 , τe), and let πu be the unique group homomorphism from Gu
onto Xu defined by πu(ei) = ui for every i ∈ ω. Since (X, τ) is a Hausdorff paratopological group, for every
u ∈ S(X, τ), (X, τu) is Hausdorff. By [16, Theorem 5.3], u is a T-sequence. Therefore, each PT-sequence in
S(X, τ) is a T-sequence. Then the result immediately follows from Theorems 4.9 and 5.4 and Proposition
5.6.
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