# Elementary abelian group actions on a product of spaces of cohomology type ( $a, b$ ) 

Hemant Kumar Singh ${ }^{\text {a }}$, Konthoujam Somorjit Singh ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, University of Delhi, Delhi 110007, India<br>${ }^{b}$ Department of Mathematics, National Institute of Technology Manipur, Langol, Imphal 795004, India


#### Abstract

Let $X_{n}$ be a finite CW complex with cohomology type ( $a, b$ ), characterized by an integer $n>1$ [20]. In this paper, we show that if $G=\left(\mathbb{Z}_{2}\right)^{q}$ acts freely on the product $Y=\prod_{i=1}^{m} X_{n}^{i}$, where $X_{n}^{i}$ are finite CW complexes with cohomology type ( $a, b$ ), $a$ and $b$ are even for every $i$, then $q \leq m$. Moreover, for $n$ even and $a=b=0$, we prove that $G=\left(\mathbb{Z}_{2}\right)^{q}(q \leq m)$ is the only finite group which can act freely on $Y$. These are generalizations of the results which says that the rank of a group acting freely on a space with cohomology type $(a, b)$ where $a$ and $b$ are even, is one and for $n$ even, $G=\mathbb{Z}_{2}$ is the only finite group which acts freely on spaces of cohomology type $(0,0)$ [17].


## 1. Introduction

Let $G$ be a finite group and $p$ be a prime. The rank of $G$ is defined by $\operatorname{rk}(G)=\max \left\{q \mid\left(\mathbb{Z}_{p}\right)^{q} \subset\right.$ $G$ as a subgroup\}. One of the interesting problems in topological transformation groups is to find $\mathrm{rk}(G)$ when $G$ acts freely on a space X. P.A. Smith [16] and R.G. Swan[19] showed that if a finite group $G$ acts freely on a sphere $\mathbb{S}^{n}$ then $\operatorname{rk}(G)=1$. Conner [7] proved that if a finite group $G$ acts freely on $\mathbb{S}^{n} \times \mathbb{S}^{n}$ then $\operatorname{rk}(G)=2$. Heller [14] proved the same result for arbitrary product of two spheres $\mathbb{S}^{n} \times \mathbb{S}^{m}$. In this direction, Benson and Carlson [5] arise the following conjecture: If a finite group $G$ acts freely on $X=\prod_{i=1}^{m} \mathbb{S}^{n_{i}}$ then $\operatorname{rk}(G) \leq m$. So far this conjecture has been proved in the following cases: Carlsson [6] proved the result for $p=2$ and $n_{1}=n_{2}=\cdots=n_{m}$ with the condition that the induced action of $G$ is trivial on the mod 2-cohomology algebra of $X$. Adem and Browder [1] proved this result for $n_{1}=n_{2}=\cdots=n_{m}$ and $n_{1} \neq 1,3,7$. Hanke [13] proved Carlsson conjecture for all primes $p>3\left(n_{1}+\cdots+n_{k}\right)$. Okutan and Yalcın [15] proved this result for dimensions $n_{i}$ which are higher compared to the differences $\left|n_{i}-n_{j}\right|$ among all dimensions.

Cusick [8] proved that if $G$ acts freely on $X=\prod_{i=1}^{m} \mathbb{R} P^{n_{i}}$ and the induced action of $G$ on the mod 2 cohomology algebra of $X$ is trivial then $\operatorname{rk}(G)=v\left(n_{1}\right)+\cdots+v\left(n_{m}\right)$, where

$$
v(n)= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \equiv 1(\bmod 4) \\ 2 & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

[^0]Adem and Yalcin [2] improved this result without the assumption of trivial induced action on the mod 2 cohomology algebra of $X$. Cusick [9] shown that if $X=\prod_{i=1}^{m} \mathbb{C} P^{n_{i}}$ then $\operatorname{rk}(G)=v\left(n_{1}\right)+\cdots+v\left(n_{m}\right)$, where

$$
v(n)= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \equiv 1(\bmod 4) .\end{cases}
$$

Allday [4] put the following conjecture: If $G$ acts freely on $X=\prod_{i=1}^{m} L_{p}^{2 n_{i}-1}$, where $p$ an odd prime, then $\operatorname{rk}(G)=m$. Yalcin [18] proved this conjecture when $n_{1}=\cdots=n_{m}$. This conjecture is still open for general case.

In this paper, we have showed that the rank of a finite group $G$ acting freely on the product $\prod_{i=1}^{m} X_{n}^{i}$, where $X_{n}^{i}$ are the spaces of type $(a, b), a$ and $b$ are even for each $i$, is atmost $m$. Moreover, for $n$ even, we have proved that if a finite $G$ acts freely on $\prod_{i=1}^{m} X_{n}^{i}$ where $X_{n}^{i}$ are spaces of type $(0,0)$ then $G=\left(\mathbb{Z}_{2}\right)^{q}$, where $q \leq m$.

## 2. Preliminaries

Given two integers $a$ and $b$, a space $X$ is said to have cohomology type $(a, b)$ if $H^{j}(X ; \mathbb{Z}) \cong \mathbb{Z}$ for $j=0, n, 2 n$ and $3 n$ only, and the generators $x \in H^{n}(X ; \mathbb{Z}), y \in H^{2 n}(X ; \mathbb{Z})$ and $z \in H^{3 n}(X ; \mathbb{Z})$ satisfies $x^{2}=a y$ and $x y=b z$. It is denoted by $X_{n}$. For example, $\mathbb{S}^{n} \times \mathbb{S}^{2 n}$ has type $(0,1), \mathbb{C} P^{3}$ and $\mathbb{Q} P^{3}$ have type $(1,1), \mathbb{C} P^{2} \vee \mathbb{S}^{6}$ has type $(1,0)$ and $\mathbb{S}^{n} \vee \mathbb{S}^{n} \vee \mathbb{S}^{3 n}$ has type ( 0,0 ). Such spaces were first investigated by James [10] and Toda [20]. Let $Y$ be $\prod_{i=1}^{m} X_{n}^{i}$, where $X_{n}^{i}$ is a finite CW-complex with cohomology type $(a, b)$. The cohomology algebra of $Y$ is given by

$$
H^{*}\left(Y ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{m}\right] / I
$$

where $I$ is a graded ideal generated by a set $A=\left\{x_{i}^{2}-a y_{i}, y_{i}^{2}, z_{i}^{2}, x_{i} y_{i}-b z_{i}, y_{i} z_{i}, x_{i} z_{i} \mid 1 \leq i \leq m\right\}$ and $\operatorname{deg} x_{i}=n$, $\operatorname{deg} y_{i}=2 n$ and $\operatorname{deg} z_{i}=3 n$ for all $1 \leq i \leq m$.

The Borel construction on $X$ is defined as the orbit space $X_{G}=\left(X \times E_{G}\right) / G$, where the compact Lie group $G$ acts diagonally (and freely) on the product $X \times E_{G}$. The projection $X \times E_{G} \rightarrow E_{G}$ gives a fibration $X_{G} \rightarrow B_{G}$ with fiber $X$. We will use the Leray-Serre spectral sequence associated to the Borel fibration $X \stackrel{i}{\hookrightarrow} X_{G} \xrightarrow{\pi} B_{G}$. If $\pi_{1}\left(B_{G}\right)$ acts trivially on $H^{*}(X ; R)$ ( $R$ is a field) then the system of local coefficient is simple and $E_{2}$-term of the spectral sequence of the fibration $X \xrightarrow{i} X_{G} \xrightarrow{\pi} B_{G}$ is given by $E_{2}^{k, l}=H^{k}\left(B_{G} ; R\right) \otimes H^{l}(X ; R)$. Note that for $G=\left(\mathbb{Z}_{2}\right)^{q}, H^{*}\left(B_{G} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}\left[t_{1}, t_{2} \ldots, t_{q}\right]$, where deg $t_{i}=1$ for all $1 \leq i \leq q$.

For the results in spectral sequences, we refer [11]. Throughout this paper, cohomologies are Čech cohomology with coefficient in $\mathbb{Z}_{2}$. Now, we recall some results which were used in this paper.

Proposition 2.1. ([3]) Let $G=\left(\mathbb{Z}_{2}\right)^{q}$ act on a finitistic space $X$ and $H^{i}(X)=0$ for all $i>n$. Then $H^{i}(X / G)=0$ for all $i>n$.

The following results are proved by G. Carlsson [6]:
Proposition 2.2. ([6]) Suppose $\left\{f_{1}, \ldots, f_{k}\right\}$ are elements of $H^{n}\left(B_{\left(\mathbb{Z}_{2}\right)^{q}} ; \mathbb{Z}_{2}\right)$, regarded as homogeneous polynomials of degree $n$ in $q$ variables. Then they have a nontrivial common zero in $\left(\mathbb{Z}_{2}\right)^{q}$ if and only if there exist a inclusion $i: \mathbb{Z}_{2} \hookrightarrow\left(\mathbb{Z}_{2}\right)^{q}$ such that $i^{*}\left(f_{j}\right)=0$ for all $j$.

Proposition 2.3. ([6]) Let $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ be an ideal generated by homogeneous polynomials $f_{j}$ in $\mathbb{Z}_{2}\left[t_{1}, \ldots, t_{q}\right]$ which is invariant under the action of the Steenrod algebra. If $q>k$, then there exists nontrivial common zero to $f_{1}, \ldots, f_{k}$.

## 3. Main theorems

In this section, our aim is to determine an elementary abelian 2-group, which can act freely on a finite product of spaces of type $(a, b)$. We show that the rank of elementary 2-abelian groups which acts freely on $Y$ will not exceed $m$. This generalizes Theorem 3.2 [17].

Theorem 3.1. Let $G=\left(\mathbb{Z}_{2}\right)^{q}$ act freely on a space $Y=\prod_{i=1}^{m} X_{n}^{i}$, where $X_{n}^{i}$ is a finite CW-complex with cohomology type $(a, b)$, $a$ and $b$ are even for every $i$. If $G$ acts trivially on $H^{*}(Y)$ then $q \leq m$.

Proof. As $G$ acts trivially on $H^{*}(Y), E_{2}^{k, l}=H^{k}\left(B_{G}\right) \otimes H^{l}(Y)$. Let $x_{i} \in H^{n}(Y), y_{i} \in H^{2 n}(Y)$ and $z_{i} \in H^{3 n}(Y)$ be generators of the cohomology algebra of $H^{*}(Y)$.

First, we prove that $d_{n+1}\left(1 \otimes x_{i}\right)=0$ for all $1 \leq i \leq m$. Let $d_{n+1}\left(1 \otimes x_{i}\right)=v_{i} \otimes 1$ for some $i$. Consider $d_{n+1}\left(1 \otimes y_{i}\right)=\sum_{j} w_{i, j} \otimes \alpha_{i, j} x_{j}$, where $\alpha_{i, j} \in\{0,1\}$. By the multiplicative property of spectral sequence, we have $0=d_{n+1}\left(1 \otimes x_{i} y_{i}\right)=v_{i} \otimes y_{i}+\sum_{j \neq i} w_{i, j} \otimes \alpha_{i, j} x_{j} x_{i}$, a contradiction. This implies that $d_{n+1}\left(1 \otimes x_{i}\right)=0$ for all $1 \leq i \leq m$. Therefore, $d_{r}\left(1 \otimes x_{i}\right)=0$ for all $i$ and $r \geq 2$.

Next, we have observed that both $d_{n+1}\left(1 \otimes y_{i}\right)$ and $d_{n+1}\left(1 \otimes z_{i}\right)$ can't be trivial simultaneously for all $i$. For that, if $d_{n+1}\left(1 \otimes y_{i}\right)=d_{n+1}\left(1 \otimes z_{i}\right)=0$ for all $i$ then, $E_{2 n+1}^{* * *}=E_{2}^{* * *}$. Clearly, $d_{2 n+1}\left(1 \otimes y_{i}\right)=0$ for all $i$. So, $d_{r}\left(1 \otimes y_{i}\right)=0$ for all $i$ and for all $r \geq 2$. If $d_{2 n+1}\left(1 \otimes z_{i}\right) \neq 0$ for some $i$ then $d_{2 n+1}\left(1 \otimes z_{i}\right)=\sum_{j=1} u_{i, j} \otimes \alpha_{i, j} x_{j}$ where $\alpha_{i, j} \in\{0,1\}$. Then $0=d_{2 n+1}\left(1 \otimes z_{i} x_{i}\right)=\sum_{j \neq i} u_{i, j} \otimes \alpha_{i, j} x_{j}$. Thus, $\alpha_{i, j}=0$ for all $j \neq i$ and $\alpha_{i, j}=1$ for $j=i$. Let $d_{2 n+1}\left(1 \otimes z_{i}\right)=v_{i} \otimes x_{i}$ for all $1 \leq i \leq k(\leq m)$. Then, we get $E_{3 n+1}^{*, *} \cong E_{2 n+2}^{*, *} \cong\left(E_{2}^{* *}-S\right) / Q$, where $S$ is a graded ideal generated by $\left\{1 \otimes z_{1}, \ldots, 1 \otimes z_{k}\right\}$ and graded ideal $Q$ is generated by $\left\{v_{i} \otimes x_{i}, \beta \mid\right.$ for all $1 \leq i \leq k$ and $\left.\beta \in A\right\}$. Clearly, $d_{3 n+1}\left(1 \otimes z_{i}\right)=0$ for all $k+1 \leq i \leq m$ and so $d_{r}\left(1 \otimes z_{i}\right)=0$ for all $k+1 \leq i \leq m$ and for all $r \geq 3 n+1$. Therefore, $d_{r}=0$ for all $r \geq 3 n+1$. So, $E_{3 n+1}^{*, *} \cong E_{\infty}^{*, *}$, which contradicts Proposition 2.1. Thus, the following three cases are possible:
(i) $d_{n+1}\left(1 \otimes y_{i}\right) \neq 0$ for some $i$ and $d_{n+1}\left(1 \otimes z_{i}\right)=0$ for all $i$.
(ii) $d_{n+1}\left(1 \otimes y_{i}\right)=0$ for all $i$ and $d_{n+1}\left(1 \otimes z_{i}\right) \neq 0$ for some $i$.
(iii) $d_{n+1}\left(1 \otimes y_{i}\right) \neq 0$ for some $i$ and $d_{n+1}\left(1 \otimes z_{j}\right) \neq 0$ for some $j$.

Case (i). Let $d_{n+1}\left(1 \otimes y_{i}\right) \neq 0$ for some $i$ and $d_{n+1}\left(1 \otimes z_{i}\right)=0$ for all $i$. If $d_{n+1}\left(1 \otimes y_{i}\right) \neq 0$ then $d_{n+1}\left(1 \otimes y_{i}\right)=$ $\sum_{j} u_{i, j} \otimes \alpha_{i, j} x_{j}$, where $u_{i, j} \in H^{n+1}\left(B_{G}\right)$ and $\alpha_{i, j} \in\{0,1\}$. We have $0=d_{n+1}\left(1 \otimes x_{i} y_{i}\right)=\sum_{j \neq i} u_{i, j} \otimes \alpha_{i, j} x_{j} x_{i}$. This implies $\alpha_{i, j}=0$ for all $j \neq i$ and $\alpha_{i, i} \neq 0$. Therefore, $d_{n+1}\left(1 \otimes y_{i}\right)=u_{i, i} \otimes x_{i}$. Let $d_{n+1}\left(1 \otimes y_{i}\right)=u_{i, i} \otimes x_{i}$ for all $1 \leq i \leq m$, where $\left\{u_{i, i}\right\}$ is linearly independent subset of $H^{n+1}\left(B_{G}\right)$, and $d_{n+1}\left(1 \otimes z_{i}\right)=0$ for all $i$. Then $d_{n+1}\left(1 \otimes x_{1} \ldots x_{i-1} y_{i} x_{i+1} \ldots x_{m}\right)=u_{i, i} \otimes x_{1} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{m}$ for all $i$. Now, consider the submodule $Q$ generated by $\left\{u_{i, i} \otimes x_{1} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{m} \mid\right.$ for all $\left.1 \leq i \leq m\right\}$ of acyclic module $\left\{\alpha \otimes x_{1} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{m} \mid \alpha \in H^{*}\left(B_{G}\right)\right\} \cong$ $H^{*}\left(B_{G}\right)$ (as a $H^{*}\left(B_{G}\right)$-module). By definition of Steenrod square in $E_{2}$, we have, $S q^{i}\left(u_{i, i} \otimes x_{1} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{m}\right)=$ $u_{i, i} \otimes S q_{1}^{i}\left(x_{1} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{m}\right)$, where $S q_{1}$ is an Steenrod square defined on $H^{*}(Y)$. By Cartan's formula of Steenrod square, we have $S q_{1}^{i}\left(x_{1} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{m}\right)=0$ for all $i>0$. Therefore, $Q$ is invariant under the action of the Steenrod algebra. By Propositions 2.2 and 2.3 , we get $q \leq m$.
Case (ii). Let $d_{n+1}\left(1 \otimes y_{i}\right)=0$ for all $i$ and $d_{n+1}\left(1 \otimes z_{i}\right) \neq 0$ for some $i$. Let $d_{n+1}\left(1 \otimes y_{i}\right)=0$ for all $i$, $d_{n+1}\left(1 \otimes z_{i}\right)=v_{i} \otimes y_{i}+\sum_{j \neq i} u_{i, j} \otimes \alpha_{i, j} x_{i} x_{j}$ for all $1 \leq i \leq k(\leq m)$, where $v_{i}, u_{i, j} \in H^{n+1}\left(B_{G}\right)$ and $\alpha_{i, j} \in\{0,1\}$ and $d_{n+1}\left(1 \otimes z_{i}\right)=0$ for all $k+1 \leq i \leq m(k<m)$. Then, we get $E_{2 n+1}^{*, *} \cong E_{n+2}^{*, *} \cong\left(E_{2}^{*, *}-S\right) / Q$, where $S$ is a graded ideal generated by $\left\{1 \otimes z_{1}, \ldots, 1 \otimes z_{k}\right\}$ and $Q$ is generated by $\left\{v_{i} \otimes y_{i}+\sum_{j \neq i}^{n+2} u_{i, j} \otimes \alpha_{i, j} x_{i} x_{j}, \beta \mid 1 \leq i \leq k\right.$ and $\left.\beta \in A\right\}$. Clearly, $d_{r}\left(1 \otimes y_{i}\right)=0$ for all $i$ and $r \geq 2$. If $d_{2 n+1}\left(1 \otimes z_{i}\right)=0$ for all $k+1 \leq i \leq m$ then as above, we get $d_{r}=0$ for all $r \geq n+2$, which contradicts Proposition 2.1. If $d_{2 n+1}\left(1 \otimes z_{i}\right) \neq 0$ for all $k+1 \leq i \leq m$ then $d_{2 n+1}\left(1 \otimes z_{i}\right)=w_{i} \otimes x_{i}$. Thus, we have $E_{2 n+2} \cong\left(E_{2 n+1}-S^{\prime}\right) / I^{\prime}$, where $S^{\prime}$ and $I^{\prime}$ are graded ideals generated by $\left\{1 \otimes z_{k+1}, \ldots, 1 \otimes z_{m}\right\}$ and $\left\{w_{k+1} \otimes x_{k+1}, \ldots, w_{m} \otimes x_{m}\right\}$, respectively. Clearly, $d_{r}=0$ for all $r \geq 2 n+2$, which is a contradiction. So, we let $d_{n+1}\left(1 \otimes z_{i}\right)=\sum_{j \neq i} u_{i, j} \otimes \alpha_{i, j} x_{i} x_{j}$, where for all $1 \leq i \leq m$ and $\alpha_{i, j}$ are not all zero. If $\alpha_{1, j}$ is not equal to zero for some $j=j_{1}$, then $d_{n+1}\left(1 \otimes z_{1} x_{2} \ldots x_{j_{1}-1} x_{j_{1}+1} \ldots x_{m}\right)=u_{1, j_{1}} \otimes x_{1} x_{2} \ldots x_{m}$. Similarly as above, $Q$ is generated by $\left\{u_{i, j i} \otimes x_{1} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{m} \mid\right.$ for all $\left.1 \leq i \leq m\right\}$ which is invariant under the action of the Steenrod algebra. Note that $\left\{u_{i, j_{i}}\right\}$ are linearly independent. This implies that $q \leq m$.
Case (iii). Let $d_{n+1}\left(1 \otimes y_{i}\right) \neq 0$ for some $i$ and $d_{n+1}\left(1 \otimes z_{j}\right) \neq 0$ for some $j$. Consider $d_{n+1}\left(1 \otimes y_{i}\right)=u_{i} \otimes \alpha_{i} x_{i}$ and $d_{n+1}\left(1 \otimes z_{i}\right)=v_{i} \otimes \gamma_{i} y_{i}+\sum_{j \neq i} w_{i, j} \otimes \beta_{i, j} x_{i} x_{j}$ for all $i$, where $u_{i}, v_{i}, w_{i, j} \in H^{n+1}\left(B_{G}\right)$ and $\alpha_{i}, \gamma_{i}, \beta_{i, j} \in\{0,1\}$. Note that if $\alpha_{i} \neq 0$ for some $i$ then $\gamma_{i}=0$. Suppose $\alpha_{i} \neq 0$ for all $1 \leq i \leq k$ and $\alpha_{i}=0$ for all $k+1 \leq i \leq m$. Then $\gamma_{i}=0$ for all $1 \leq i \leq k$.

If $\beta_{i, j}$ is not equal to zero for some $j=j_{i}$, then $d_{n+1}\left(1 \otimes\left(x_{1} \ldots x_{i-1} y_{i} x_{i+1} \ldots x_{m}+x_{1} \ldots z_{i} \ldots x_{j_{i}-1} x_{j_{i}+1} \ldots x_{m}\right)\right)=$ $\left(u_{i}+w_{i, j_{i}}\right) \otimes x_{1} x_{2} \ldots x_{m}$, for all $1 \leq i \leq k$ and $d_{n+1}\left(1 \otimes\left(x_{1} \ldots x_{i-1} z_{i} x_{i+1} \ldots x_{j_{i-1}} x_{j_{i+1}} \ldots x_{m}\right)=w_{i, j_{i}} \otimes x_{1} x_{2} \ldots x_{m}\right.$ for $k+1 \leq i \leq m$, if $\gamma_{i}=0$ and $\beta_{i, j} \neq 0$ for some $j=j_{i}$. Consider the graded ideal $Q$ generated by $\left(u_{i}+w_{i, j_{i}}\right) \otimes x_{1} x_{2} \ldots x_{m}$ for all $1 \leq i \leq k$ and $w_{i, j_{i}} \otimes x_{1} x_{2} \ldots x_{m}$ for $k+1 \leq i \leq m$. As in Case (1), $Q$ is invariant
under the action of the Steenrod algebra. We have chosen $u_{i}+w_{i, j_{i}}$ for all $1 \leq i \leq k$ and $w_{i, j_{i}}$ for $k+1 \leq i \leq m$ such that they are linearly independent. Consequently, we have $q \leq m$.

From the above theorem, it is clear that if $G$ acts freely on $Y=\prod_{i=1}^{m} X_{n}^{i}$ and trivially on $H^{*}(Y)$, then $\operatorname{rk}(G) \leq m$. For spaces of cohomology type $(0,0)$, we have following result:

Theorem 3.2. Let $X_{n}^{i}$ be a finite CW complex with cohomology type ( 0,0 ), for every $i$. Let $G$ be a finite group acting freely on a space $Y=\prod_{i=1}^{m} X_{n}^{i}$. If $n$ is even and $G$ acts trivially on $H^{*}(Y)$ then $G=\left(\mathbb{Z}_{2}\right)^{q}$ and $q \leq m$.

Proof. Let $p$ be an odd prime and $p \| G \mid$ then by the Flyod's formula, $\chi\left(X^{G}\right) \equiv 2^{2 m}(\bmod p)$. This gives that the fixed point set is nonempty. Therefore, the order of $G$ is a power of 2 . Suppose $H$ is a cyclic subgroup of $G$ of order 4 and $K$ is a subgroup of $H$ of order 2 . Note that $H^{*}\left(B_{H}\right) \cong \mathbb{Z}_{2}[t] \otimes \wedge(s)$, where $\operatorname{deg} t=2$ and deg $s=1$, and $H^{*}\left(B_{K}\right) \cong \mathbb{Z}_{2}[t]$, where deg $t=1$. Let $i^{*}: H^{*}\left(B_{H}\right) \rightarrow H^{*}\left(B_{K}\right)$ be the homomorphism induced by the inclusion map $i: K \hookrightarrow H$. Then $i^{*}(s)=0$ and $i^{*}(t)=t^{\prime 2}$. Since fibrations $X \hookrightarrow X_{H} \rightarrow B_{H}$ and $X \hookrightarrow X_{K} \rightarrow B_{K}$ have simple system of local coefficient, so $E_{2}^{k, l}=H^{k}\left(B_{H}\right) \otimes H^{l}(X)$ and $\bar{E}_{2}^{k, l}=H^{k}\left(B_{K}\right) \otimes H^{l}(X)$. By the naturality of the spectral sequence, we have the following commutative diagram

$$
\begin{array}{ccc}
E_{r}^{k, l} & \xrightarrow{d_{r}} & E_{r}^{k+r, l+1-r} \\
\downarrow \alpha & & \downarrow \alpha \\
\bar{E}_{r}^{k, l} & \xrightarrow{\bar{d}_{r}} & \bar{E}_{r}^{k+r, l+1-r}
\end{array}
$$

where $\alpha=i^{*} \otimes 1$ in $E_{2}$-term. As $i^{*}(s)=0$, we have $\bar{d}_{n+1}\left(\overline{1} \otimes y_{i}\right)=\bar{d}_{n+1}\left(\alpha\left(1 \otimes y_{i}\right)\right)=\alpha\left(d_{n+1}\left(1 \otimes y_{i}\right)\right)=0$. Therefore, $\bar{d}_{n+1}\left(\overline{1} \otimes y_{i}\right)=0$ for all $i$. Similarly, $\bar{d}_{n+1}\left(\overline{1} \otimes z_{i}\right)=0$ for all $i$. By the proof of above theorem, we know that $\bar{d}_{n+1}\left(\overline{1} \otimes y_{i}\right)$ and $\bar{d}_{n+1}\left(\overline{1} \otimes z_{i}\right)$ can't be trivial simultaneously for all $i$. Thus $G$ contains no element of order 4. The result follows from Theorem 3.1.

The above result generalizes Theorem 3.8 [17].
An example of free action of $G=\mathbb{Z}_{2}$ on spaces of cohomology type ( 0,0 ), and the cohomological structure of orbit space has been discussed in [12]. Here, we give an example of orbit space of free involution on spaces of cohomology type $(0,0)$.

Example 3.3. Consider the antipodal action of $\mathbb{Z}_{2}$ on $\mathbb{S}^{2 n}$ and $\mathbb{S}^{3 n}$, where $n>1$. Then, $\mathbb{S}^{n-1} \subset \mathbb{S}^{2 n} \cap \mathbb{S}^{3 n}$ is invariant under this action. So, we have a free $\mathbb{Z}_{2}$-action on $X_{n}=\mathbb{S}^{2 n} \cup_{\mathbb{S}^{n-1}} \mathbb{S}^{3 n}$ which is obtained by attaching the spheres $\mathbb{S}^{2 n}$ and $\mathbb{S}^{3 n}$ along $\mathbb{S}^{n-1}$. We have shown that $X_{n}$ is a space of type ( 0,0 ) [17]. It is easy to show that $X_{n} / \mathbb{Z}_{2}$ is homeomorphic to $Y=\mathbb{R} P^{2 n} \cup_{\mathbb{R} P^{(n-1)}} \mathbb{R} P^{3 n}$, which is obtained by attaching the real projective spaces $\mathbb{R} P^{2 n}$ and $\mathbb{R} P^{3 n}$ along $\mathbb{R} P^{n-1}$. Now, we determine the cohomology structure of $X_{n} / \mathbb{Z}_{2}$. As $X_{n}$ is connected, $H^{0}\left(X_{n} / \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$. Note that $i: \mathbb{S}^{3 n} \hookrightarrow X_{n}$ is a $\mathbb{Z}_{2}$-equivariant map, therefore, $u^{i} \neq 0$ for all $i \leq 3 n$ and $u \in H^{1}\left(X_{n} / \mathbb{Z}_{2}\right)$ is the characteristic class of the principal $\mathbb{Z}_{2}$-bundle $X_{n} \rightarrow X_{n} / \mathbb{Z}_{2}$. By the Gysin-sequence of the principal $\mathbb{Z}_{2}$-bundle $X_{n} \rightarrow X_{n} / \mathbb{Z}_{2}$, we have $H^{i}\left(X_{n} / \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$, for all $i \leq n-1$ and $H^{i}\left(X_{n} / \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ for all $n \leq i \leq 2 n-1$. Also, $H^{i}\left(X_{n} / \mathbb{Z}_{2}\right)$ is generated by $u^{i}$ for all $1 \leq i \leq n-1$ and $H^{n+i}\left(X_{n} / \mathbb{Z}_{2}\right)$ is generated by $u^{n+i}$ and $u^{i} v$ for all $0 \leq i \leq n-1$, where $v \in H^{n}\left(X_{n} / \mathbb{Z}_{2}\right)$ such that $\pi^{*}(v)=x$. If $\pi^{*}: H^{2 n}\left(X_{n} / \mathbb{Z}_{2}\right) \rightarrow H^{2 n}\left(X_{n}\right)$ is nontrivial, then $H^{i}\left(X_{n} / \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ for all $2 n \leq i \leq 3 n$. This implies that $H^{3 n+1}\left(X_{n} / \mathbb{Z}_{2}\right) \neq 0$, a contradiction. Therefore, $\pi^{*}: H^{2 n}\left(X_{n} / \mathbb{Z}_{2}\right) \rightarrow H^{2 n}\left(X_{n}\right)$ must be trivial. We have $H^{2 n}\left(X_{n} / \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, H^{i}\left(X_{n} / \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$ for all $2 n+1 \leq i \leq 3 n$ and $H^{i}\left(X_{n} / \mathbb{Z}_{2}\right)=0$ for all $i>3 n$. Also, for $2 n \leq i \leq 3 n, H^{i}\left(X_{n} / \mathbb{Z}_{2}\right)$ is generated by $u^{i}$. Clearly, $u^{3 n+1}=v^{2}+\alpha u^{2 n}+\beta u^{n} v=u^{n+1} v+\gamma u^{2 n+1}=0$, where $\alpha, \beta, \gamma \in\{0,1\}$. Therefore, $H^{*}\left(X_{n} / \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[u, v] /\left\langle u^{3 n+1}, v^{2}+\beta u^{n} v, u^{n+1} v+\gamma u^{2 n+1}\right\rangle$, where $\operatorname{deg} u=1$ and $\operatorname{deg} v=n$. This realizes Theorem 4.1 [12].

Next, we observe that $G$ acts trivially on $H^{*}(Y)$. Let $Y=X_{n} \times \cdots \times X_{n}$ ( $m$ times) and $g$ be a generator of $G$. Note that the diagonal action of above action on $Y$ gives free $G=\mathbb{Z}_{2}$ action. Let $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right): \Delta^{n} \rightarrow Y$ be a $n$-simplex. Then, $g \sigma=\left(g \sigma_{1}, \ldots, g \sigma_{m}\right)=-\left(\sigma_{1}, \ldots, \sigma_{m}\right)$. Thus $g^{*}$ acts trivially on $H^{n}(Y)$. Similarly, $g^{*}$ acts trivially on $H^{2 n}(Y)$ and $H^{3 n}(Y)$. Therefore, $g^{*}$ acts trivially on $H^{*}(Y)$.

We conclude with the following generalizations:

Conjecture 3.4. Let $G$ act freely on a space $Y=\prod_{i=1}^{m} X_{n_{i}}$, where $X_{n_{i}}$ is a finite CW complex with cohomology type $(a, b)$, characterized by an integer $n_{i}$ and $a$ and $b$ are even for every $i$. Then $r k(G) \leq m$.

## References

[1] A. Adem, W. Browder, The free rank of symmetry of $\left(\mathbb{S}^{n}\right)^{k}$, Invent. Math. 92 (1988), 431-440.
[2] A. Adem, E. Yalcin, On some examples of group actions and group extensions, J. Group Theory 2 (1999), 69-79.
[3] C. Allday, V. Puppe, Cohomological methods in transformation groups, Cambridge Studies in Advanced Mathematics 32, Cambridge University Press, Cambridge, 1993.
[4] C. Allday, Elementary abelian p-group actions on lens spaces, Topology Hawaii (Honolulu, HI, 1990), 1-11, World Sci. Publishing, River Edge, NJ, 1992.
[5] D. J. Benson, J. F. Carlson, Complexity and multiple complexes, Math. Z. 195 (1987), 221-238.
[6] G. Carlsson, On the non-existence of free actions of elementary abelian groups on products of spheres, Amer. J. Math. 102 (1980), 1147-1157.
[7] P. E. Conner, On the action of a finite group on $\mathbb{S}^{n} \times \mathbb{S}^{n}$, Ann. of Math. 66 (1957), 586-588.
[8] L. W. Cusick, Elementary abelian 2-groups that act freely on products of real projective spaces, Proc. Amer. Math. Soc. 87 (1983), 728-730.
[9] L. W. Cusick, Free actions on spaces with nonzero Euler characteristic, Topology Appl. 33 (1989), 185-196.
[10] I. James, Note on cup products, Amer. Math. Soc. 14 (1957), 374-383.
[11] J. McCleary, A user's guide to spectral sequences, (IInd edition), Cambridge University Press, Cambridge, 2001.
[12] P. L. Q. Pergher, H. K. Singh, T. B. Singh, On $\mathbb{Z}_{2}$ and $\mathbb{S}^{1}$ free actions on spaces of cohomology type (a,b), Houston J. Math. 36 (2010), 137-146.
[13] B. Hanke, The stable free rank of symmetry of products of spheres, Invent. Math. 178 (2009), 265-298.
[14] A. Heller, A note on spaces with operators, Illinois J. Math. 3 (1959), 98-100.
[15] O. B. Okutan, E. Yalcın, Actions on products of spheres at high dimensions, Algebr. Geom. Topol. 13 (1959), 2087-2099.
[16] P. A. Smith, Permutable periodic transformations, Proc. Nat. Acad. Sci. USA. 30 (1944), 105-108.
[17] K. S. Singh, H. K. Singh, T. B. Singh, Free Action of Finite Groups on Spaces of Cohomology Type (0,b), Glasgow Math. J. 60 (2018), 673-680.
[18] E. Yalcın, Free actions of p-groups on products of lens spaces, Proc. Amer. Math. Soc. 129 (2002), 887-898.
[19] R. G. Swan, Periodic resolutions for finite groups, Ann. of Math. 94 (1960), 267-291.
[20] H. Toda, Note on cohomology ring of certain spaces, Proc. Amer. Math. Soc. 14 (1963), 89-95.


[^0]:    2020 Mathematics Subject Classification. Primary 57S17; Secondary 55T10, 55S10
    Keywords. Free action, Leray-Serre spectral sequence, Steenrod square
    Received: 25 December 2022; Revised: 26 April 2023; Accepted: 19 May 2023
    Communicated by Ljubiša D.R. Kočinac
    Research supported by the Science and Engineering Research Board (Department of Science and Technology, Government of India) with reference number MTR/2017/000386

    Email addresses: hemantksingh@maths.du.ac.in (Hemant Kumar Singh), ksomorjitmaths@gmail.com (Konthoujam Somorjit Singh)

