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The multiplicity and asymptotic forms of eigenvalues of vectorial
diffusion equations with some certain assumptions
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Abstract. The main motivation point of this study is to obtain some novel results on the multiplicity of
eigenvalues of diffusion equations. A diffusion equation with some boundary and jump conditions have
been analyzed and integral equations have been obtained for the solution under certain initial conditions.
Later, integral representations of these solutions have been provided. Finally, asymptotic formulas of
eigenvalues with zeros of the characteristic have been considered. A brief conclusion has been given.

1. Introduction

Spectral theory of differential operators is an important field that has many applications in physics,
mechanics, geophysics, electronics, mathematics and engineering, which is divided into two parts as
direct and reverse spectral problems. For example, in mechanics, learning the density distribution in an
inhomogeneous arc according to the given wavelengths, determining the interaction forces between the
particles according to the energy levels of the particles; finding field potentials according to scattering
data in quantum physics; determination of underground mines according to distribution characteristics of
underground elements in geophysics; can be given as examples of inverse problems.
In addition to classical boundary value problems, discontinuous boundary value problems are important
problems that both provide solutions to new concrete problems of mathematical physics and contribute to
the development of theoretical mathematics. Boundary value problems with discontinuity in the interior of
the interval are frequently encountered problems in mathematics, physics, geophysics and many branches of
natural sciences in [2–4]. In general, these problems are associated with discontinuous material properties.
For example; In electronics, the discontinuous inverse problem is applied to determine the parameters of
the power line. Another example is geophysical models for the earth’s oscillation. The discontinuity here is
related to the reflection of shear waves at the base of the earth’s crust. Now, an important diffusion problem
in this direction is presented as follows.
We will start with the m-dimensional vectorial diffusion equation given by:

−y′′ + [2ϑℏ (x) + Υ (x)] y = ϑ2y (1)

with the boundary conditions:

y′ (0) = θ (2)
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y′ (π) = θ (3)

and the jump conditions:

y (a + 0) = νy (a − 0) , y′ (a + 0) = ν−1y′ (a − 0) (4)

where ϑ is the spectral parameter and y =
(
y1, y2, ...ym

)T is an m-dimensional vector function. Hence, we
assume that ν > 0 , ν , 1 and a ∈ (0, π). The potential matrix ℏ (x) andΥ (x) are m×m real symmetric matrix
functions. Let us recall that ℏ(x) ∈ W1

2 [0, π], Υ(x) ∈ L2 [0, π] . Besides, without loss of generality, we denote
the matrix function as Υ(x) that is defined positively and the m-dimensional zero vector as θ.
Several researchers have been studied on scalar and vectorial Sturm-Liouville problems extensively in
the papers [1 − 19]. Vectorial Sturm-Liouville equations have wide applications in many areas. In [23],
the author have investigated the importance of multi-particle problems in quantum mechanics. In [7], the
authors have focused these important problems in terms of the hydrogen molecular ion. Also, several novel
results have been considered on the diffusion equation in [16–19]. In [19], Mukhtarov and Yakubov have
given some new findings on boundary value problems with discontinuous conditions in varied assortment
of physical transfer problems. In [9], the author has investigated the problem that is given in (1) − (4) in
scaler case. It is not easy to extend all classical Sturm-Liouville theories and inverse spectral theories to the
vectorial case. The origin of the difficulties arises from the multiplicity of the eigenvalues. In [20], Shen
and Shies studied the multiplicity of eigenvalues of the m-dimensional vectorial Sturm-Liouville problem

y′′ + Υ (x) y = ϑy , y (0) = y (1) = θ

where Υ is continuous and m × m Jacobi matrix-valued function defined on 0 ≤ x ≤ 1. Then, in [15],
the author generalized the case when Υ is real symmetric. In [22], the authors extended the findings of
the paper [20] to the Sturm-Liouville equations with a weight function, a leading coefficient and general
seperation conditions. On all of these brief historical background, we know that there are no such result
for the discontinuous problem (1) − (4).

The paper is organized as follows: Firstly, we define the characteristic function of the eigenvalues
of the problem given in (1) − (4). We provide the eigenvalues of the problem overlap with the zeros of
characteristic function. Then, we demonstrate the asymptotic forms of the solutions and obtain novel
results on the multiplicity of the eigenvalues. Finally, we give a brief conclusion.

2. Characteristic function and asymptotics of solutions

We will start with remembering the Hilbert space H = L2 (I,Cm) with the scalar product

(
f , 1

)
=

∫ a

0
1∗l fldx +

∫ π

a
1∗r frdx =

∫ π

0
1∗ f dx

where f =
(

f1, f2, ..., fm
)T , 1 =

(
11, 12, ...1m

)T and fi, 1i ∈ L2 (I) ,
fl (x) = f (x)

∣∣∣
(0,a) and fr (x) = f (x)

∣∣∣
(a,π). L is an operator associated with the problem (1)−(4) on H as following:

Ly := −y′′ + [2ϑℏ (x) + Υ (x)] y, y ∈ D (L),
D (L) =

{
y ∈ H; y, y′ ∈ AC [I,Cm] , Ly ∈ L2 [I,Cm] , y′ (0) = y′ (π) = θ,

y (a + 0) = νy (a − 0) , y′ (a + 0) = ν−1y′ (a − 0)
}
.

Lemma 2.1 The eigenvalues of the problem given by (1) − (4) are real, nonzero, and simple.
Proof. We can define the operator L0y = −y′′ + Υ (x) y in D (L0) as:

D (L0) =
{
y (x) ∈W2

2 ; L0y ∈ [I,Cm] , y′ (0) = y′ (π) = 0,
y (a + 0) = νy (a − 0) , y′ (a + 0) = ν−1y′ (a − 0)

} .
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Υ (x) defined positively and symmetric (Hermitian matrix function). It is clear that the operator L0 is
a self-adjoint (see [21]). Hence, it is obvious that

(
L0y, y

)
> 0 for ∀y (x) ∈ D (L0). Namely, L0 is positively

defined.
Assume that ϑ is the eigenvalue of the problem (1) − (4) and y (x) is the eigenfunction corresponding to ϑ
and holds the condition

(
y, y

)
= 1. In this case, from (1) we conclude that:

ϑ2
− 2ϑ

(
ℏy, y

)
−

(
L0y, y

)
= 0

Moreover, we have

ϑ =
(
ℏy, y

)
±

√(
ℏy, y

)2 +
(
L0y, y

)
.

From the facts that
(
L0y, y

)
> 0 and ℏ (x) is real and symmetric, we haveachieved to show that ϑ is real and

nonzero.
Now we are in a position that to show the eigenvalue ϑ is simple. Let’s assume for a moment that the
reverse is true. Suppose that y1 (x) and y2 (x) are the linear independent eigenfunctions corresponding to
the eigenvalue ϑ. Then, due to each y (x) solution of equation (1) will be a linear combination of functions
y1 (x) and y2 (x), it must satisfy the boundary conditions (2)− (3) and discontinuity conditions (4). However,
this is not true. Thus, the eigenvalues ϑ are simple. This completes the proof.
Em will be m ×m identify matrix and θm will be m ×m zero matrix, in this case we investigate the problem
(0, a) and (a, π), respectively. The matrix initial value problem is given by{

−Y′′ + (2ϑℏ (x) + Υ (x)) Y = ϑ2Y , x ∈ (0, a)
Y (0, ϑ) = Em ,Y′ (0, ϑ) = θm

(5)

on (0, a) has a unique solution as κ1 (x, ϑ). Furthermore, κ1 (x, ϑ) is an entire matrix function in ϑ for any
fixed x ∈ (0, a)

(
see [1] , p17

)
. By changing of the constants, we obtain

κ1 (x, ϑ) = cosϑxEm +
1
ϑ

∫ x

0
sinϑ (x − t) (2ϑℏ (t) + Υ (t))κ1 (t, ϑ) dt (6)

on (a, π). Then, the matrix initial value problem
−Y′′ + (2ϑℏ (x) + Υ (x)) Y = ϑ2Y , x ∈ (a, π)
Y (a + 0, ϑ) = νY (a − 0, ϑ)
Y′ (a + 0, ϑ) = ν−1Y′ (a − 0, ϑ)

(7)

has a unique solution κ2 (x, ϑ). Again, κ2 (x, ϑ) is an entire matrix function in ϑ for any fixed x ∈ (a, π). By a
similar way, changing of the constants, we get

κ2 (x, ϑ) = 1
2

(
ν + 1

ν

)
cosϑxEm +

1
2

(
ν − 1

ν

)
cosϑ(2a − x)Em

+ 1
2

(
ν + 1

ν

) ∫ a

0
sinϑ(x−t)

ϑ (2ϑℏ (t) + Υ (t))κ1 (t, ϑ) dt
+ 1

2

(
ν − 1

ν

) ∫ a

0
sinϑ(x+t−2a)

ϑ (2ϑℏ (t) + Υ (t))κ1 (t, ϑ) dt
+

∫ x

a
sinϑ(x−t)

ϑ (2ϑℏ (t) + Υ (t))κ2 (t, ϑ) dt

(8)

or

κ2 (x, ϑ) = ν cosϑ (x − a)κ1 (a − 0, ϑ) Em +
ν−1

ϑ sinϑ (x − a)κ′1 (a − 0, ϑ) Em

+ 1
ϑ

∫ x

a sinϑ (x − t) (2ϑℏ (t) + Υ (t))κ2 (t, ϑ) dt.
(9)

As a consequence, one can write

κ (x, ϑ) =
{
κ1 (x, ϑ) , x ∈ (0, a)
κ2 (x, ϑ) , x ∈ (a, π)
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Then, any solution of the equations (1) under the conditions that are given in (2) and (4) can be expressed
as

y (x, ϑ) = κ (x, ϑ) c1 =

{
κ1 (x, ϑ) c1, x ∈ (0, a)
κ2 (x, ϑ) c1, x ∈ (a, π) (10)

where c1 is an arbitrary m-dimensional constant vector. If ϑ is an eigenvalue of the problem (1) − (4), then
c1 , θ and y (x, ϑ) holds the boundary condition at x = π, that is,

y′ (π, ϑ) = κ′ (π, ϑ) c1 = κ
′

2 (π, ϑ) c1 = θ.

Hence, we have

det
(
κ′2 (π, ϑ)

)
= 0.

Similarly, on (a, π), consider the matrix initial value problem given by{
−Y′′ + (2ϑℏ (x) + Υ (x)) Y = ϑ2Y , x ∈ (a, π)
Y (π, ϑ) = Em ,Y′ (π, ϑ) = θm.

(11)

The problem (11) has a unique solution ψ2 (x, ϑ). What’s more, for any fixed x ∈ (a, π), τ2 (x, ϑ) is an entire
matrix function in ϑ. Consider the matrix initial value problem

−Y′′ + (2ϑℏ (x) + Υ (x)) Y = ϑ2Y , x ∈ (0, a)
Y (a − 0, ϑ) = ν−1Y (a + 0, ϑ)
Y′ (a − 0, ϑ) = νY′ (a + 0, ϑ) .

(12)

The problem (12) has a unique solution τ1 (x, ϑ). What’s more, for any fixed x ∈ (0, a), τ1 (x, ϑ)is an entire
matrix function in ϑ. We can deduce

τ (x, ϑ) =
{
τ1 (x, ϑ) , x ∈ (0, a)
τ2 (x, ϑ) , x ∈ (a, π)

In this stage, any solution of the equations (1) under the conditions (3) and (4) can be stated as

y (x, ϑ) = τ (x, ϑ) c2 =

{
τ1 (x, ϑ) c2, x ∈ (0, a)
τ2 (x, ϑ) c2, x ∈ (a, π) (13)

where c2 is an arbitrary m-dimensional constant vector. If ϑ is an eigenvalue of the problem (1) − (4), then
c2 , θ and y (x, ϑ) holds the boundary condition at x = 0, namely,

y′ (0, ϑ) = τ′ (0, ϑ) c2 = τ
′

1 (0, ϑ) c2 = θ.

Then, one obtain

det
(
τ
′

1 (0, ϑ)
)
= 0.

Let ∆ j (ϑ) =W
(
κ j (x, ϑ) , τ j (x, ϑ)

)
be the Wronskian of solution matrices κ j (x, ϑ) and τ j (x, ϑ), j = 1, 2, that is,

∆1 (ϑ) =
∣∣∣∣∣ κ1 (x, ϑ) τ1 (x, ϑ)
κ′1 (x, ϑ) τ′1 (x, ϑ)

∣∣∣∣∣ . ∆2 (ϑ) =
∣∣∣∣∣ κ2 (x, ϑ) τ2 (x, ϑ)
κ′2 (x, ϑ) τ′2 (x, ϑ)

∣∣∣∣∣ . (14)

Lemma 2.2 For any ϑ ∈ C , one can write ∆1 (ϑ) = ∆2 (ϑ).
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Proof. Because, the Wronskian of the solution matrices

∆2 (ϑ) = ∆2 (ϑ)|x=a+0 =

=

∣∣∣∣∣ κ2 (a + 0, ϑ) τ2 (a + 0, ϑ)
κ′2 (a + 0, ϑ) τ′2 (a + 0, ϑ)

∣∣∣∣∣ = ∣∣∣∣∣ νκ1 (a − 0, ϑ) ντ1 (a − 0, ϑ)
ν−1κ′1 (a − 0, ϑ) ν−1τ′1 (a − 0, ϑ)

∣∣∣∣∣
=

∣∣∣∣∣ κ1 (a − 0, ϑ) τ1 (a − 0, ϑ)
κ′1 (a − 0, ϑ) τ′1 (a − 0, ϑ)

∣∣∣∣∣ = ∣∣∣∣∣ κ1 (x, ϑ) τ1 (x, ϑ)
κ′1 (x, ϑ) τ′1 (x, ϑ)

∣∣∣∣∣
x=a−0

= ∆1 (ϑ) .

This completes the proof.
We can denote ∆ (ϑ) = ∆1 (ϑ) = ∆2 (ϑ), we can write the following lemma.
Lemma 2.3 ϑ is an eigenvalue of (1) − (4) if any only if ∆ (ϑ) = 0.
Proof. Necessity. Assume that ϑ0 is an eigenvalue of (1) − (4). y (x, ϑ0) is the eigenfunctions corresponding
to ϑ0, than by (8), we obtain

y (x, ϑ0) = κ (x, ϑ0) c3 =

{
κ1 (x, ϑ0) c3, x ∈ (0, a)
κ2 (x, ϑ0) c3, x ∈ (a, π) (15)

y (x, ϑ0) = τ (x, ϑ0) c4 =

{
τ1 (x, ϑ0) c4, x ∈ (0, a)
τ2 (x, ϑ0) c4, x ∈ (a, π) (16)

c3, c4 are m-dimensional nonzero constant vector. So, from (15) and (16), we have

κ1 (x, ϑ0) c3 = τ1 (x, ϑ0) c4
κ′1 (x, ϑ0) c3 = τ′1 (x, ϑ0) c4

}
x ∈ (0, a) .

By simplfying the result, we provide(
κ1 (x, ϑ0) −τ1 (x, ϑ0)
κ′1 (x, ϑ0) −τ′1 (x, ϑ0)

)
·

(
c3
c4

)
=

(
θ
θ

)
.

Due to c3, c4 , 0, the coefficient determinant of above linear system of equations can be written as∣∣∣∣∣ κ1 (x, ϑ0) −τ1 (x, ϑ0)
κ′1 (x, ϑ0) −τ′1 (x, ϑ0)

∣∣∣∣∣ = (−1)m
∣∣∣∣∣ κ1 (x, ϑ0) τ1 (x, ϑ0)
κ′1 (x, ϑ0) τ′1 (x, ϑ0)

∣∣∣∣∣ = (−1)m ∆1 (ϑ0) .

With the help of the previous lemma, we still have ∆2 (ϑ0) = ∆1 (ϑ0) = ∆ (ϑ0) = 0.
Sufficiency. If for some ϑ0 ∈ C,∆ (ϑ0) = 0. Then, the linear systems of equations(

κ1 (x, ϑ0) τ1 (x, ϑ0)
κ′1 (x, ϑ0) τ′1 (x, ϑ0)

)
·

(
c1
c2

)
=

(
θ
θ

)
(17)

(
κ2 (x, ϑ0) τ2 (x, ϑ0)
κ′2 (x, ϑ0) τ′2 (x, ϑ0)

)
·

(
c1
c2

)
=

(
θ
θ

)
(18)

have nonzero solutions. By a direct computation, we get
κ1 (x, ϑ0) c1 = −τ1 (x, ϑ0) c2
κ′1 (x, ϑ0) c1 = −τ′1 (x, ϑ0) c2

}
x ∈ (0, a)

and

κ2 (x, ϑ0) c1 = −τ2 (x, ϑ0) c2
κ′2 (x, ϑ0) c1 = −τ′2 (x, ϑ0) c2

}
x ∈ (a, π)
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We can denote

y (x, ϑ0) =
{
κ1 (x, ϑ0) c1 = −τ1 (x, ϑ0) c2, x ∈ (0, a)
κ2 (x, ϑ0) c1 = −τ2 (x, ϑ0) c2, x ∈ (a, π) .

We conclude that y (x, ϑ0) holds the conditions (2) , (3) and jump condition (4). Namely, y (x, ϑ0) is the
eigenfunctions corresponding to ϑ0. Thus, ϑ0 is eigenvalue of the problem (1) − (4).
Remark 2.1 As two especial case

∆ (ϑ) =
∣∣∣∣∣ κ1 (x, ϑ0) τ1 (x, ϑ0)
κ′1 (x, ϑ0) τ′1 (x, ϑ0)

∣∣∣∣∣
x=0
=

∣∣∣∣∣ Em τ1 (0, ϑ0)
θm τ′1 (0, ϑ0)

∣∣∣∣∣ = det
(
τ′1 (0, ϑ)

)
∆ (ϑ) =

∣∣∣∣∣ κ2 (x, ϑ0) τ2 (x, ϑ0)
κ′2 (x, ϑ0) τ′2 (x, ϑ0)

∣∣∣∣∣
x=π
=

∣∣∣∣∣ κ2 (π, ϑ0) Em
κ′2 (π, ϑ0) θm

∣∣∣∣∣ = (−1)m det
(
κ′2 (π, ϑ)

)
.

Definition 2.1 The characteristic function of the eigenvalues of the problem given by (1) − (4) is ∆ (ϑ).
Definition 2.2 The order of ϑ as a zero of ∆ (ϑ) is the algebraic multiplicity of an eigenvalue ϑ. The number
of linearly independent solutions of the boundary value problem is the geometric multiplicity of ϑ as an
eigenvalue of the problem (1) − (4).
The geometric multiplicity of ϑ0 is equal to number of linear independent solutions of (17) or (18). If we
show 2m × 2m matrices

A (x, ϑ0) =
(
κ1 (x, ϑ0) τ1 (x, ϑ0)
κ′1 (x, ϑ0) τ′1 (x, ϑ0)

)
,B (x, ϑ0) =

(
κ2 (x, ϑ0) τ2 (x, ϑ0)
κ′2 (x, ϑ0) τ′2 (x, ϑ0)

)
and the ranks are given as R (A (x, ϑ0)), R (B (x, ϑ0)), respectively.
Obviously, we have the following corollary.
Corollary 2.1 The geometric multiplicity of ϑ0 as an eigenvalue of the problem (1) − (4) is equal to 2m −
R (A (x, ϑ0)) or 2m − R (B (x, ϑ0)).
Remark 2.2 R (A (x, ϑ0)) or R (B (x, ϑ0)) is at least equal to m, so the geometric multiplicity of ϑ0 changes from
1 to m. When the geometric multiplicity of an eigenvalue is m , also considering Corollary 2.1, it is clear
that the eigenvalue has maximal (full) multiplicity. In the sequel of the paper, the multiplicity will imply
the geometric multiplicity.
An entire function of non-integer order has an infinite set of zeros. The zeros of an analytic function which
does not vanish identically are isolated [4] . τ′1 (0, ϑ) and κ′2 (π, ϑ) are entire function of order 1

2 matrices.
The sums and products of such functions are entire of order not exceeding 1

2 . Thus, the determinants of
τ′1 (0, ϑ) and κ′2 (π, ϑ), that is, the characteristic functions are also non-integer.
Lemma 2.4 The boundary value problem of the system given by (1) − (4) has a countable number of
eigenvalues that grow infinite, when they will put in order in terms of their absolute value.

A (x) =
(
ai j

)m

i, j=1
: I→MR

mxm,, for any x ∈ I, the norm of A (x) may be taken as

∥A (x)∥ = max
1≤i≤m

m∑
j=1

∣∣∣ai j

∣∣∣ (19)

Suppose that ϑ = σ + iτ , σ, τ ∈ R. The following results can be obtained.
Lemma 2.5 When |ϑ| → ∞, the following asymptotic formulas hold on 0 ≤ x < a,

κ1 (x, ϑ) = cos
(
ϑx − β+ (x)

)
Em +O

(
|ϑ|−1 e|τ|x

)
(20)

κ′1 (x, ϑ) = (ϑ − ℏ (x)) sin
(
ϑx − β+ (x)

)
Em +O

(
e|τ|x

)
(21)
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Proof.
As in the paper [12], ℏ (x) ∈W1

2 [0, π] andΥ (x) ∈ L2 [0, π] hold the conditions κ1 (0, ϑ) = Em and κ′1 (0, ϑ) = θm
and the in this case the following representation can be obtained:

κ1 (x, ϑ) = cos
(
ϑx − β+ (x)

)
Em +

∫ x

−x
A (x, ϑ) eiϑt (22)

β+ (x) =
∫ x

0
ℏ (t) dt , AΥ (x,−x) =

1
2
ωΥℏ (0) eωΥβ

+(x) (23)

AΥ (x, x) =
1
2

{
ωΥℏ (x) +

∫ x

0

[
Υ (t) + ℏ2 (t)

]
dt

}
e−ωΥβ

+(x), (Υ = 1, 2 , ω1 = i, ω2 = −i) (24)

Besides, AΥ (x, t) have the derivatives as A′Υt (x, t) and A′Υx (x, t) in L2 [−π, π]. Here, by applying integration
by parts to the right hand side of equation (22) and by using the equations (23) and (24), we obtain

κ1 (x, ϑ) = cos
(
ϑx − β+ (x)

)
Em +

1
2 [ℏ (x) − ℏ (0)]

cos(ϑx−β+(x))
ϑ +

+ 1
2

(∫ x

0

[
Υ (t) + ℏ2 (t)

]
dt

) sin(ϑx−β+(x))
ϑ −

1
2iϑ

∫ x

−x A′t (x, t) eiϑtdt

In this case, equation (20) is correct. If we take the derivative of (22) equation with respect to x and by
taking into account the equations (23) and (24), the equality (21) is provided. Which is the desired result.
Lemma 2.6 When |ϑ| → ∞, κ2 (x, ϑ) and κ′2 (x, ϑ) have the following asymptotic formulas on a < x < π ,

κ2 (x, ϑ) =
ν+

2
exp

(
−i

(
ϑx − β+ (x)

))
Em

(
1 +O

( 1
ϑ

))
(25)

κ′2 (x, ϑ) = −
iν+

2
(ϑ − ℏ (x)) exp

(
−i

(
ϑx − β+ (x)

))
Em +O (1) (26)

where ν± = 1
2

(
ν ± 1

ν

)
and β± (x) =

∫ x
(a ∓ a)/2

ℏ (t) dt.

Proof. Since κ2 (x, ϑ) is the solution of initial value problem (7) , we obtain

κ2 (x, ϑ) = ν+ cos
(
ϑx − β+ (x)

)
Em + ν

− cos
(
ϑ (2a − x) − β− (x)

)
Em +O

( 1
ϑ

e|τ|x
)
.

We have

κ2 (x, ϑ) = ν+

2 ei[ϑx−β+(x)]Em +
ν+

2 e−i[ϑx−β+(x)]Em +
ν−

2 ei[ϑ(2a−x)−β−(x)]Em

+ ν
−

2 e−i[ϑ(2a−x)−β−(x)]Em +O
(

1
ϑ e|τ|x

) (27)

Suppose that f (x, ϑ) := O
(

1
ϑ e|τ|x

)
and

κ2 (x, ϑ) =
ν+

2
exp−i

[
ϑx − β+ (x)

]
Em +

(
1 + 1 (x, ϑ)

)
.

By a simple computation for (27), we get

1 (x, ϑ) = e2i[ϑx−β+(x)]Em +
ν−

ν+ ei[2ϑa−β−(x)−β+(x)]Em

+ ν
−

ν+ ei[−ϑa+β−(x)+β+(x)]Em +
2

ν+e−i[ϑx−β+(x)] f (x, ϑ) Em.

Let’s examine 1 (x, ϑ) = O
(

1
ϑ

)
accuracy.
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∣∣∣ ≤ ∣∣∣e2i[ϑx−β+(x)]Em

∣∣∣ + ∣∣∣ ν−
ν+ ei[2ϑa−β−(x)−β+(x)]Em

∣∣∣
+

∣∣∣ ν−
ν+ ei[−ϑa+β−(x)+β+(x)]Em

∣∣∣ + ∣∣∣∣∣ 1
ν+
2 e−i[ϑx−β+(x)] f (x, ϑ) Em

∣∣∣∣∣
≤ e−2|τ|xEm +

∣∣∣ ν−
ν+

∣∣∣ e−2|τ|xEm +
∣∣∣ ν−
ν+

∣∣∣ e−2|τ|aEm +
c
ϑ e|τ|xe|τ|xEm

Furthermore, |τ| > ε |ϑ| , ε > 0 in D. Thus, − |τ| < −ε |ϑ| and e−2|τ|x < e−ε|τ|x.
Since x

ex → 0, x < cex (c > 0). Thus, e−2|τ|x < c
ε|ϑ|x . We get

1 (x, ϑ) = O
(

1
ϑ

)
ϑ→∞ . Hence,

κ2 (x, ϑ) =
ν+

2
exp

(
−i

(
ϑx − β+ (x)

))
Em

(
1 +O

( 1
ϑ

))
, ϑ→∞.

By taking derivative the both sides of (25) and using the first formula of (27), one can get the formula of
(26). This completes the proof.

3. Multiplicities of eigenvalues of the vectorial problem

Theorem 3.1 Let m ≥ 2. Assume that, for some i, j ∈ {1, 2, ...,m}with i , j
either

(i)


∫ a

0 pi j (x) dx + (ν+)2

2

∫ π
a pi j (x) dx , 0∫ a

0 qi j (x) dx + (ν+)2

2

∫ π
a qi j (x) dx , 0

(28)

or

(ii)


∫ a

0

[
pii (x) − p j j (x)

]
dx + (ν+)2

2

∫ π
a

[
pii (x) − p j j (x)

]
dx , 0∫ a

0

[
qii (x) − q j j (x)

]
dx + (ν+)2

2

∫ π
a

[
qii (x) − q j j (x)

]
dx , 0

(29)

Then, with finite number of exceptions the multiplicities of the eigenvalues of the problem (1) − (4) are at
most m − 1.
Proof . (i) Let (28) be holds. Assume that there exists a sequence of eigenvalues {ϑn}

∞

n=1 whole multiplicities
are all m. Clearly, we can write ϑn →∞ as n→∞. By (7) and denoting κ2 (x, ϑ) =

{
y+i j (x)

}m

i, j=1
, when ϑ = ϑn

for n = 1, 2, ..., we obtain(
y+ii

)′′
(x) +

(
ϑ −

(
2ϑpii (x) + qii (x)

))
y+ii (x) −

∑
k,i

(
2ϑpii (x) + qii (x)

)
y+ki (x) = 0 (30)

and (
y+i j

)′′
(x) +

(
ϑ −

(
2ϑpii (x) + qii (x)

))
y+i j (x) −

∑
k, j

(
2ϑpii (x) + qii (x)

)
y+kk (x) = 0 (31)

Multiplying (30) and (31) by y+i j (x) and y+ii (x) respectively, then by subtracting and using (25), nothing that
the eigenvalues of the problem are all real, we have((

y+ii
)′

(x) y+i j (x) − y+ii (x)
(
y+i j

)′
(x)

)′
=

∑
k,i

(
2ϑpik (x) + qik (x)

) (
y+ki (x) y+i j (x) − y+ii (x) y+kj (x)

)
=

(
2ϑpi j (x) + qi j (x)

) [
y+i j (x) y+ji (x) − y+ii (x) y+i j (x)

]
+

∑
k,i

(
2ϑpi j (x) + qi j (x)

) (
y+ki (x) y+i j (x) − y+ii (x) y+kj (x)

)
thus,
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y+ii

)′
(x) y+i j (x) − y+ii (x)

(
y+i j

)′
(x)

)′
=

−

(
2ϑpi j (x) + qi j (x)

) [
(ν+)2

2 cos2 (
ϑx − β+ (x)

)]
+O

(
1 + 1

ϑ

)
.

(32)

Similarly, by (5) and denoting κ1 (x, ϑ) =
{
y−i j (x)

}m

i, j=1
, we have

((
y−ii

)′
(x) y−i j (x) − y−ii (x)

(
y−i j

)′
(x)

)′
=

= −
(
2ϑpi j (x) + qi j (x)

) [
cos2 (ϑx)

]
+O

(
1
ϑ

)
.

(33)

When ϑ is an eigenvalue with multiplicity m, we have

κ′2 (π, ϑ) = θm .

By integrating both sides of (32) over a to π, by taking into account ϑn → ϑ and n→∞, we obtain((
y+ii

)′
(x) y+i j (x) − y+ii (x)

(
y+i j

)′
(x)

)
=

∫ π
a

[
−

(
2ϑpi j (x) + qi j (x)

) [
(ν+)2

2 cos2 (
ϑx − β+ (x)

)]
+O

(
1
ϑ

)]
dx.

(34)

By integrating both sides of (33) over 0 to a and applying the boundary condition κ′1 (0, ϑ) = θm, we obtain,
for ϑn → ϑ and n→∞,((

y−ii
)′

(x) y−i j (x) − y−ii (x)
(
y−i j

)′
(x)

)
= −

∫ a

0

[(
2ϑpi j (x) + qi j (x)

) [
cos2 (ϑx)

]
+O

(
1
ϑ

)]
dx

(35)

By adding (34) and (35) and using the initial conditions at point x = a, we get

0 = −
∫ a

0

[(
2ϑpi j (x) + qi j (x)

) [
cos2 (ϑx)

]
+O

(
1
ϑ

)]
dx

−

∫ π
a

[(
2ϑpi j (x) + qi j (x)

) [
(ν+)2

2 cos2 (
ϑx − β+ (x)

)]
+O

(
1
ϑ

)]
dx.

By a simple computation, we deduce∫ a

0

(
2ϑpi j (x) + qi j (x)

)
dx + (ν+)2

2

∫ π
a

(
2ϑpi j (x) + qi j (x)

)
dx =

= −
∫ a

0

[(
2ϑpi j (x) + qi j (x)

)
[cos 2 (ϑx)] +O

(
1
ϑ

)]
dx

−

∫ π
a

[(
2ϑpi j (x) + qi j (x)

) [
(ν+)2

2 cos 2
(
ϑx − β+ (x)

)]
+O

(
1
ϑ

)]
dx

(36)

= −2ϑ
∫ a

0 pi j (x) cos (2ϑx) dx −
∫ a

0 qi j (x) cos (2ϑx) dx

−2ϑ (ν+)2

2

∫ π
a pi j (x) cos (2ϑx) cos 2β+ (x) dx

−2ϑ (ν+)2

2

∫ π
a pi j (x) sin (2ϑx) sin 2β+ (x) dx

−
(ν+)2

2

∫ π
a qi j (x) cos (2ϑx) cos 2β+ (x) dx

−
(ν+)2

2

∫ π
a qi j (x) sin (2ϑx) sin 2β+ (x) dx +O

(
1
ϑ

)
Then, for ϑn →∞ and n→∞, we get

= −2
∫ a

0 pi j (x) cos (2ϑx) dx − (ν+)2
∫ π

a pi j (x) cos (2ϑx) cos 2β+ (x) dx
− (ν+)2

∫ π
a pi j (x) sin (2ϑx) sin 2β+ (x) dx +O

(
1
ϑ

)
by Riemann-Lebesgue Lemma, the right side of (36) converges to 0 as ϑn = ϑ and n→∞.
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This implies that∫ a

0 pi j (x) dx + (ν+)2

2

∫ π
a pi j (x) dx = 0∫ a

0 qi j (x) dx + (ν+)2

2

∫ π
a qi j (x) dx = 0

This is a contradiction. The conclusion for this case is proved.
(ii) Next, suppose that∫ a

0

(
2ϑpi j (x) + qi j (x)

)
dx + (ν+)2

2

∫ π
a

(
2ϑpi j (x) + qi j (x)

)
dx = 0, for ∀i , j

or∫ a

0 si j (x) dx + (ν+)2

2

∫ π
a si j (x) dx = 0, for ∀i , j,where si j (x) =

(
2ϑpi j (x) + qi j (x)

)
.

and ∫ a

0

[
sii (x) − s j j (x)

]
dx +

(ν+)2

2

∫ π

a

[
sii (x) − s j j (x)

]
dx , 0,∃i , j.

Without loss of generality, we assume that for i = 1, j = 2∫ a

0
[s11 (x) − s22 (x)] dx +

(ν+)2

2

∫ π

a
[s11 (x) − s22 (x)] dx , 0.

Let

T =



1
√

2
−

1
√

2
1
√

2
1
√

2
1

. . .
1


and y = T z. Then, the system given by (1) − (4) becomes

z′′ + (ϑEm − R (x)) z = 0
z′ (0) = z′ (π) = 0
z (a + 0) = νz (a − 0)
z′ (a + 0) = ν−1z′ (a − 0)

 (37)

where R (x) = T−1S (x) T. By a simple computation, we get

R (x) =


1
2 (s11 + s22) + s12

1
2 s. . .

∗ ∗
...
. . .

∗ ∗ · · · qmm

 (x) .

We note that the two problems (1) − (4) and (37) have exactly the same spectral structure. Let us denote
R (x) =

{
ri j (x)

}m

i, j=1
. Since

∫ a

0 r12 (x) dx + (ν+)2

2

∫ π
a r12 (x) dx =

= 1
2

(∫ a

0 [s11 (x) − s22 (x)] dx + (ν+)2

2

∫ π
a [s11 (x) − s22 (x)] dx

)
, 0

By part (i), the conclusion of the theorem holds for the problem (37), and hence holds for the problem
(1) − (4).⊔⊓
Corollary 3.1 Assume that S (x) = [2ϑℏ (x) + Υ (x)] ≡ [2ϑℏ + Υ] ≡ S is a constant real symmetric matrix on
(0, a) ∪ (a, π). Then the following are equivalent:
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(i) there is an infinite number of eigenvalues of the problem (1) − (4) with multiplicity m;
(ii) the multiplicity of all eigenvalues of the problem (1) − (4) is m.
Corollary 3.2 Let m = 2, and assume that

either (i)
∫ a

0

(
2ϑp12 (x) + q12 (x)

)
dx + (ν+)2

2

∫ π
a

(
2ϑp12 (x) + q12 (x)

)
dx , 0

or (ii)
∫ a

0 [s11 (x) − s22 (x)] dx + (ν+)2

2

∫ π
a [s11 (x) − s22 (x)] dx , 0.

Then, with finitely many exceptions, all eigenvalue of the problem (1) − (4) are simple.

4. Conclusion

In this study, the solutions of the diffusion problem presented with the (1)-(4) equation system, which
satisfy certain initial and discontinuity conditions, are investigated. In addition, the important properties
of the eigenvalues and eigenfunctions of the boundary value problem have been investigated, as well as
various findings that are very useful for the solution of this problem. Researchers interested in the subject
can examine similar problems under different boundary values and conditions. In addition, it is thought
that the methodology followed is motivating in the use of integral notation in systems of equations with
inverse problems and inverse problems.
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