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Root-multiplicity and root iterative refinement
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Abstract. We discuss root-finding algorithms for multiple zeros of nonlinear equations in one variable. Re-
cent investigations regarding this problem were mainly aimed at deriving schemes that use the beforehand
knowledge of root multiplicity. In this communication we investigate several such root-finding methods
under the assumption that the multiplicity of the sought root is not early known. We analyze strategies
where root refinement is calculated along side to its multiplicity assessment, and put them to use through
numerical experiments. Presented results go in favor of a more realistic use of the analysed methods.

Let f : [a, b] ⊂ R 7→ R be a real valued function, and the task is to approximate a solution α to the
equation f (x) = 0, isolated in the interval [a, b]. When the solution α is a simple zero of the function
f , iterative refinement algorithms are very well investigated (see for example [2], [15], [16], [17] and
references therein). In the construction of root-finding algorithms Kung-Traub conjecture ([9]) has steered
investigations in previous decades.

Kung-Traub conjecture: Multipoint iterative methods without memory, costing n+ 1 function evaluations
per iteration, have order of convergence at most 2n.

In the case of multiple roots, for the sake of the optimal convergence order, constructed root-finding methods
assume a priori the knowledge of root’s multiplicity m, (see for example [1], [5], [6], [12], [13], [19], [21], [22],
[26], [27] and references therein). When solving real-life problems, beforehand root multiplicity is seldom
known. For this reason we investigate behaviour of the existing two-point optimal methods for multiple
zeros when root multiplicity is yet to be determined. In such case both approximation to the root α and
its multiplicity m have to be simultaneously improved through iterations ( [8], [23], [25]). Following the
analysis presented in [19] we restrict our attention to non root-ratio optimal methods.

Note that in the absence of m value there are other ways to approximate only the sought root α. One
approach is to transform the function f to relieve α of its multiplicity ([19], [28], [29]). However, we do not
consider it in this communication.

The paper is organized as follows: in the first section we introduce a list of basic notions and statements
regarding iterative methods and root multiplicity. In the second section strategies for multiplicity assess-
ment are analyzed. The third section deals with a general family of two-point iterative methods presented
in [30]. A hybrid scheme is compiled and analyzed. Particular methods of such hybrid scheme are put to
work on several test functions. Numerical results are presented in the fourth section.
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1. Preliminaries

Throughout the paper we will use f [x, y] to denote the first order divided difference

f [x, y] =


f (y) − f (x)

y − x
, x , y,

f ′(x), x = y.

Next, we introduce the relevant terminology.

Definition 1.1. Let a function f be sufficiently differentiable. Number α that satisfies f (α) = 0 is the zero of the
function f , or the root of an equation f (x) = 0. Zero α is of multiplicity m ∈N if

f (α) = f ′(α) = · · · = f (m−1)(α) = 0, f (m)(α) , 0.

For m = 1, the zero α is called simple.

Definition 1.2. For a sequence {xk} ⊂ R, generated by an iterative formula

xk+1 = φ(xk, xk−1, . . . , xk−m), m ≥ 0, (1)

that converges to α, we say that it is of order of convergence r > 0 if

∆k+1 = |xk+1 − α| = O(∆k)r = O(|xk − α|)r, k→∞.

In other words, for the sequence {xk} there exists a constant Cr ≥ 0 such that for k large enough the
following holds

∆k+1 ≤ Cr(∆k)r.

When r ≤ 1 for the convergence lim
k→∞

xk = α it is necessary to have Cr < 1. Specially, when the following is

valid

∆k+1 ≤ ck∆k, ck → 0, k→∞,

we say that convergence is superlinear.

Theorem 1.3 ([16]). Let the sequence {xk} generated by an iterative procedure (1) be convergent to α. If there exists
a constant γ > 0, and some non-negative integers si, 0 ≤ i ≤ m, such that the inequality holds

∆k ≤ γ
m∏

i=0

(∆k−i)si ,

then the order of convergence r of (1) satisfies inequality

r ≥ s∗,

where s∗ is the unique positive root of

tm+1
−

m∑
i=0

sitm−i = 0.

Having recalled the basics regarding root iterative refinement, we now turn our attention to root-
multiplicity assessment. Results that follow were proven in [28].
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Corollary 1.4. For m + 1 times continuously differentiable function f with zero α of multiplicity m there exists a
unique function 10(x) such that

f (x) = (x − α)m10(x), lim
x→α
10(x) , 0,

and 1′0(x) is bounded in some neighbourhood of α.

Lemma 1.5. Let α be the zero of f (x) of multiplicity m ≥ 1, and define function

D(x) = f [x + γ1 f (x), x − γ2 f (x)], γ1, γ2 ≥ 0.

Then, α is the simple zero of u(x) =
f (x)

D(x)
, where

u(α) =
f (α)
f ′(α)

= lim
x→α

f (x)
D(x)

.

What is more,

lim
x→α

u′(x) =
1
m

(2)

and u′′(x) exists and is bounded in some neighbourhood of α.

From (2) of lemma 1.5 we conclude that a good approximation of u′(α) = lim
x→α

u′(x) is required in order

to obtain a good estimate of the multiplicity m.

Note that for γ1 = γ2 = 0, function u(x) =
f (x)
f ′(x)

is the Newton’s correction and is used in the modified

Newton’s method for multiple zeros [20]

xk+1 = xk −m
f (xk)
f ′(xk)

.

When γ2 = 0 and γ1 , 0 we have u(x) =
f (x)

f [x + γ1 f (x), f (x)]
, thus it represents a correction in the Traub-

Steffensen’s modified method for multiple zeros ([4], [7], [11], [29], etc.),

xk+1 = xk −m
f (xk)

f [xk + γ f (xk), xk]
.

We investigate optimal non root-ratio methods presented in [10], [21] and their generalization from [30].
These two-point optimal methods obtain order of convergence 4 when the multiplicity m is known. The
Zhou et al. family of methods is of the form

yk = xk − t uk, uk =
f (xk)
f ′(xk)

,

xk+1 = xk −Q(vk)uk, vk =
f ′(yk)
f ′(xk)

,
(3)

where t ∈ R is a parameter, and properties of the weight function Q(v) are described through its Taylor
series expansion. Optimal value of t, and particular forms of the weight function were suggested in [30]
and specific derivative values of Q were managed through more parameter values.

In [30] an error relation for (3) was obtained1)

εk+1 =

(
1 −

Q(c)
m

)
εk + O(εk)2, εs = xs − α, (4)

1)In [30] an error relation was given with coefficients of higher order terms, up to ε4
k .
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where c =
(
1 −

t
m

)m−1
.Obviously, when Q(c)→ m, k→∞ the method is of superlinear convergence. When

Q(c) = m method (3) is at least of second order.
From the complete error relation of the method (3) it was concluded in [30] that the coefficient t and

the weight function Q(v) have to satisfy the following conditions in order to obtain the fourth order of
convergence,

t =
2m

2 +m
, c =

( m
2 +m

)m−1
,

Q(c) = m, Q′(c) = −
1
4

m3−m(2 +m)m,

Q′′(c) =
1
4

m4
( m

2 +m

)−2m
.

Parameters contained in the definition of Q(v) have high dependence on the multiplicity m. Thus, when
m is not known, the weight function Q(v) needs to be updated through iterations to obtain better con-
vergence speed. This is done by improving m−value approximations. For this reason we first discuss
m−approximation.

2. Strategies for multiplicity assessment

For the multiplicity m assessment, from Lemma 1.5 we consider Newton’s correction u(x) =
f (x)
f ′(x)

.

Therefore,

u′(α) ≈ u′(xk) ≈ u[xk, xk−1] =
uk − uk−1

xk − xk−1
.

The estimate of multiplicity m can be obtained in each iteration as proposed in [7], here only using the
rounding:

mk = Round
∣∣∣∣∣ xk − xk−1

uk − uk−1

∣∣∣∣∣ , (5)

or, as in [23] only using the rounding,
µk =

µk−1∣∣∣∣∣1 − uk

uk−1

∣∣∣∣∣ ,
mk = Round

(
µk

)
.

(6)

Note that an initial approximation m0 = 1 makes a good choice based on (4). We now analyze approximation
formulas (5) and (6). We use the rounding function for m−strategies with mainly polynomials in mind.
The work presented in [18] can be thus modified for the simultaneous approximation of all polynomial
zeros and their multiplicity based on the analysis conducted here. When the function f contains radicals,
definition 1.1 may not be applicable to all zeros of f , the rounding in (5) and (6) should be omitted. This
observation is supported through numerical experiments.

Theorem 2.1. Let {xk} be a sequence that converges to α which is the zero of f of multiplicity m. Then for mk defined
in (5) the following is valid

m −mk ≤ O(xk−1 − α).
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Proof. According to Corollary 1.4, we can write f (x) = (x − α)m10(x), leading to

f ′(x) = m(x − α)m−110(x) + (x − α)m1′0(x)

= (x − α)m−1
(
m 10(x) + (x − α)1′0(x)

)
= (x − α)m−111(x), 11(x) = m 10(x)

(
1 + (x − α)

1′0(x)
m 10(x)

)
.

Let us denote the error x − α = ε. Then,

u(x) =
f (x)
f ′(x)

=
x − α

m
(
1 + (x − α)

1′0(x)
m10(x)

) = ε
m

(
1 + O(ε)

)
=
ε
m
+ O(ε)2.

Introduce the iteration subscripts: εk = xk − α and uk =
f (xk)
f ′(xk)

. We assume εk = O(εk−1)r, r ≥ 1, for large

enough k ∈N.

uk =
εk

m

(
1 + O(εk)

)
=
εk

m
+ O(εk)2, (7)

uk−1 =
εk−1

m

(
1 + O(εk−1)

)
=
εk−1

m
+ O(εk−1)2, (8)

uk − uk−1 =
εk − εk−1

m
+ O(εk−1)2 =

εk − εk−1

m

(
1 + O(εk−1)

)
,

xk − xk−1

uk − uk−1
=

εk − εk−1
εk − εk−1

m

(
1 + O(εk−1)

) = m
(
1 + O(εk−1)

)
,

mk = Round
∣∣∣∣∣ xk − xk−1

uk − uk−1

∣∣∣∣∣ = Round
∣∣∣∣m(

1 + O(εk−1)
)∣∣∣∣ . (9)

For k large enough, that is for |mO(εk−1)| = |O(εk−1)| <
1
2
, based on (9) the formula (5) gives the exact

multiplicity value m. Otherwise, when mk , m we have mk = m + O(1) due to rounding.

We note from (4) and (9) that the m approximation (5) is enhanced by the improvement in α approxima-
tion and vice versa.

It is of interest to analyze the formula (6), as well.

Theorem 2.2. Let {xk} be a sequence that converges to α which is the zero of f of multiplicity m. Then for mk defined
in (6) the following is valid

m −mk ≤ O(1).

Proof. Assume again εk = O(εk−1)r, r ≥ 1, for large enough k ∈ N. Let us first observe that when mk−1 , m,
due to the rounding process we have

m −mk−1 = O(1). (10)

If mk is calculated with (6) then, based on (7) and (8),
uk

uk−1
=
εk

εk−1

(
1 + O(εk−1)

)
= εr−1

k−1

(
1 + O(εk−1)

)
,

µk =
µk−1∣∣∣∣∣1 − uk

uk−1

∣∣∣∣∣ =
µk−1∣∣∣∣1 − εr−1

k−1

(
1 + O(εk−1)

)∣∣∣∣
= µk−1

∣∣∣∣1 + εr−1
k−1

(
1 + O(εk−1)

)∣∣∣∣ = µk−1

∣∣∣1 + O(εk−1)r−1
∣∣∣,

m − µk = m − µk−1 + O(εk−1)r−1.
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After the rounding process

mk = Round(µk) = m + Round
(
O(1) + O(εk−1)r−1

)
, (11)

a very rough estimate is obtained.

We can conclude that once a high quality approximation of α is obtained it may not influence much the
quality of m approximation through formula (6). We expect for this reason that (5) proves itself as the better
choice for the root-finding procedures. This assumption will be tested through numerical examples.

3. Compiling the root-finding methods

The family of methods (3) is here combined with the m−strategies (5) and (6) to produce hybrid schemes
where approximations of m and α are produced through iterations. For some initial value x0 and m0 = 1,
the transformed iterative schemes read

uk =
f (xk)
f ′(xk)

, mk = Round
∣∣∣∣∣ xk − xk−1

uk − uk−1

∣∣∣∣∣ , k ≥ 1,

yk = xk − 2tkuk, tk =
mk

mk + 2
, vk =

f ′(yk)
f ′(xk)

,

xk+1 = xk −Q(vk)uk,

(12)

and 

uk =
f (xk)
f ′(xk)

,


µk =

µk−1∣∣∣∣∣1 − uk

uk−1

∣∣∣∣∣ ,
mk = Round

(
µk

)
.

, k ≥ 1,

yk = xk − 2tkuk, tk =
mk

mk + 2
, vk =

f ′(yk)
f ′(xk)

,

xk+1 = xk −Q(vk)uk,

(13)

where the weight function Q satisfies conditions

c =
(
1 −

2tk

m

)m−1

, Q(c) = mk,

Q′(c) = −
1
4

m3
kt−mk

k , Q′′(c) =
1
4

m4
kt−2mk

k .

Different particular methods of (12) and (13) are obtained for particular choices of the weight function Q.
Obviously, once mk = m is obtained in either of iterative schemes (12) and (13) order of convergence will be
4, as proven in [30]. It is of relevance to estimate convergence speed before mk = m occurs.

The error relation (4) suggests that when mk , m we have mk = m + O(1). Thus, steps in the first few
iterations of schemes (12) and (13) are of linear convergence. However, since we are dealing with multipoint
iterations, we can expect more then linear convergence of these methods quite soon.

In the case when rounding is not applied in m−strategy, we use error relations from the previous section

xk − xk−1

uk − uk−1
= m + O(εk−1) , µk = µk−1

∣∣∣1 + O(εk−1)r−1
∣∣∣

Using Theorem 1.3 and error relation (4), leads to εk+1 ∼ εkεk−1. Thus, we can conclude that order of
convergence of the method with the first m−strategy is not smaller then the positive root of the equation

t2
− t − 1 = 0, s∗ =

1 +
√

5
2

≈ 1.62.
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For the other m−strategy:

µk = µk−1

∣∣∣1 + O(εk−1)r−1
∣∣∣

= µk−2

∣∣∣1 + O(εk−1)r−1
∣∣∣ ∣∣∣1 + O(εk−2)r−1

∣∣∣
= µ0

k∏
i=1

∣∣∣1 + O(εk−i)r−1
∣∣∣

= m(1 + δ)
k∏

i=1

∣∣∣1 + O(εk−i)r−1
∣∣∣

εk+1 ∼ εkδ.

For this reason we can only guarantee linear convergence with the second m−strategy. However, for both
strategies, it is likely that order 4 is not achieved when rounding isn’t applied.

4. Numerical experiments

Algorithms investigated have been implemented in Wolfram Mathematica language for its ability to
deliver results in arithmetic of arbitrary precision. This is very convenient when testing high order methods.
We used transformed iterative schemes (12) and (13) with particular choices of the weight function. Methods
were tested with and without rounding the values of mk. Also, results for methods (3) with the exact
m−values were included.

For the tested methods of schemes (12) and (13) we will just give particular form of the weight function
Q(v).

1. Sharma et al. [21]

(M1) :



Q(v) = Ak +
Bk

v
+

Ck

v2 ,

Ak =
mk

8

(
m3

k − 4mk + 8
)
,

Bk = −
mk

4
(mk − 1)(mk + 2)2tm

k

Ck =
mk

8
(mk + 2)3t2m

k .

2. Li et al. [10]

(M2) :



Q(v) =
Ak

v
+

1
Bk + Ckv

,

Ak = −
mk(mk − 2)(mk + 2)3

2
(
m3

k − 4mk + 8
) tmk

k ,

Bk = −

(
m3

k − 4mk + 8
)2

mk

(
m2

k + 2mk − 4
)3 ,

Ck =
m2

k

(
m3

k − 4mk + 8
)

(
m2

k + 2mk − 4
)3 t−mk

k .
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3. Li et al. [11]

(M3) :



Q(v) =
Bk + Ckv
1 + Akv

,

Ak = −t−mk
k , Bk = −

m2
k

2
,

Ck =
1
2

mk(mk − 2)t−mk
k .

4. Zhou et al. [30]

(M4) :



Q(v) = Akv +
Bk

v
+ Ck,

Ak =
m4

k

8
t−mk
k , Bk =

mk(mk + 2)3

8
tmk
k ,

Ck = −
mk

(
m3

k + 3m2
k + 2mk − 4

)
4

.

5. Zhou et al. [30]

(M5) :



Q(v) = Akv2 + Bkv + Ck,

Ak =
m4

k

8
t−2mk
k , Bk = −

m3
k(mk + 3)

4
t−mk
k ,

Ck =
mk

(
m3

k + 6m2
k + 8mk + 8

)
8

.

Selected particular methods are of low combinatorial complexity. Note that Zhou et al. [30] incorporates
all known optimal multipoint methods of order four that use derivatives. Therefore, for comparison
purposes in numerical tests we included some non optimal methods of the similar type (using derivatives).

1. Modified Newton’s method r = 2 when mk = m, [24]

(M6) :


uk =

f (xk)
f ′(xk)

,

xk+1 = xk −mkuk

2. Chebishev’s method r = 3 when mk = m, [24]

(M7) :


uk =

f (xk)
f ′(xk)

,

xk+1 = xk −
mk

2
uk

(
3 −mk +mkuk

f ′′(xk)
f ′(xk)

)
3. Halley’s method r = 3 when mk = m, [24]

(M8) :


uk =

f (xk)
f ′(xk)

,

xk+1 = xk − 2m
uk

m + 1 −m uk
f ′′(xk)
f ′(xk)

4. Osada r = 3 when mk = m, [14]

(M9) :


uk =

f (xk)
f ′(xk)

,

xk+1 = xk −
mk(mk + 1)

2
uk +

(mk − 1)2

2
f ′(xk)
f ′′(xk)
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5. Dong r = 3 when mk = m, [3]

(M10) :



uk =
f (xk)
f ′(xk)

,

yk = xk −
mk

mk + 1
uk,

vk =
f ′(yk)
f ′(xk)

,

xk+1 = yk −
mk

mk + 1
uk( mk

mk + 1

)−mk

vk − 1

6. Neta-Li et al. r = 4 when mk = m, [12], [10]

(M11) :



uk =
f (xk)
f ′(xk)

, tk =
mk

mk + 2

yk = xk − 2tkuk,

vk =
f ′(yk)
f ′(xk)

zk = yk + 2tmk
k

f (xk)
f ′(yk)

,

wk =
f ′(zk)
f ′(xk)

xk+1 = xk −
uk

ak + bkvk + ckwk
,

ak = −
3m4

k + 16m3
k + 40m2

k − 176

16mk(mk + 8)
,

bk =
m4

k + 3m3
k + 10m2

k − 4mk + 8

8mk(mk + 8)
t−mk
k ,

ck =
(mk − 2)(mk + 2)4

16m2
k(mk + 8)
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7. Neta-Li et al. r = 4 when mk = m, [12], [10]

(M12) :



uk =
f (xk)
f ′(xk)

, tk =
mk

mk + 2

yk = xk − 2tkuk,

vk =
f ′(yk)
f ′(xk)

zk = xk − 2tmk
k

f (xk)
f ′(yk)

,

wk =
f ′(zk)
f ′(xk)

xk+1 = xk −
uk

ak + bkvk + ckwk
,

ak =
m6

k −m5
k − 14m4

k + 12m3
k + 48m2

k − 80mk + 32

8mk(m3
k + 2m2

k − 8mk + 4)
,

bk = −
mk

(
3m4

k − 6m3
k − 20m2

k + 40mk − 16
)

16(m3
k + 2m2

k − 8mk + 4)
t−mk
k ,

ck =
m3

k

(
m2

k − 4
)

16(m3
k + 2m2

k − 8mk + 4)
t−mk
k

8. Neta-Li et al. r = 4 when mk = m, [13], [10]

(M13) :



uk =
f (xk)
f ′(xk)

, tk =
mk

mk + 2

yk = xk − 2tkuk,

vk =
f ′(yk)
f ′(xk)

zk = yk + 2tmk
k

f (xk)
f ′(yk)

,

wk =
f ′(zk)
f ′(xk)

xk+1 = xk − uk

(
ak +

bk

vk
+

ck

wk

)
,

ak =
mk

(
m4

k + 4m3
k − 8mk + 48

)
8
(
m2

k + 2mk + 6
) ,

bk =
mk

(
m3

k + 12m2
k + 36mk + 32

)
4
(
m2

k + 2mk + 6
) tmk

k ,

ck = −
m2

k

(
m3

k + 6m2
k + 12mk + 8

)
8
(
m2

k + 2mk + 6
)
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9. Neta-Li et al. r = 4 when mk = m, [13], [10]

(M14) :



uk =
f (xk)
f ′(xk)

, tk =
mk

mk + 2

yk = xk − 2tkuk,

vk =
f ′(yk)
f ′(xk)

zk = xk − 2tmk
k

f (xk)
f ′(yk)

,

wk =
f ′(zk)
f ′(xk)

xk+1 = xk − uk

(
ak +

bk

vk
+

ck

wk

)
,

ak = −
mk

(
2m4

k −m3
k − 12m2

k + 20mk − 8
)

4
(
m2

k − 4mk + 2
) ,

bk =
mk

(
5m4

k + 10m3
k − 16m2

k − 24mk + 16
)

8
(
m2

k − 4mk + 2
) tmk

k ,

ck = −
m3

k(mk + 2)2

8
(
m2

k − 4mk + 2
) tmk

k

One more method was included into tests. It does not require the knowledge of the multiplicity m :
Modified Newton’s method r = 2, [24]

(M15) :
{

xk+1 = xk −
u(xk)
u′(xk)

= xk −
f (xk) f ′(xk)

f ′(xk)2 − f (xk) f ′′(xk)

In total 15 iterative methods were tested under the same initial conditions. For those that require
multiplicity m, strategies (5) and (6) were employed. Formulas (5) and (6) with and without rounding were
tested, and some test functions with non integer multiplicity m were included in the tests.

Iterations were performed until at least one of the conditions was fulfilled:

no.iter. ≥ 10, |xk − xk−1| ≤ 10−200, | f (xk)| ≤ 10−200.

Computational order of convergence [16]

rC =
log | f (xk+1)/ f (xk)|
log | f (xk)/ f (xk−1)|

,

was calculated in each example, for each iteration, to verify conclusions derived in theory. Along side, a
variant of the COR was calculated, as well: [16]

rα =
log |(xk+1 − α)/(xk − α)|
log |(xk − α)/(xk−1 − α)|

.
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The following test functions were used with integer multiplicities.

f1(x) = (x − 2)10(x4 + x + 1)e−x2
−4x, α = 2 m = 10

x0 = 0.55, m0 = 1;

f2(x) =
(
e−x4+x+2

− cos(x + 1) + x7 + 1
)5
, α = −1, m = 5,

x0 = −2.5, m0 = 1;

f3(x) = (x − 1)13(x10 + x3 + 1) sin x, α = 1, m = 13,
x0 = 0.1, m0 = 1;

f4(x) = ex2
−1(sin x)4 + x4 log(x2 + 1), α = 0, m = 4,

x0 = 1.3, m0 = 1;

f5(x) = x2
− (1 − x)25, α = 0.143739 . . . , m = 1,

x0 = 1.25, m0 = 1;

f6(x) =
(

sin2 x − x2 + 1
)2
, α = 1.4044916 . . . , m = 2,

x0 = 0.75, m0 = 1;

f7(x) =
(
x2
− ex
− 3x + 2

)5
, α = 0.257530 . . . , m = 5,

x0 = 1.25, m0 = 1;

f8(x) = (cos x − x)3, α = 0.739085 . . . , m = 3,
x0 = 1.25, m0 = 1;

f9(x) =
(
xex2
− sin2 x + 3 cos x + 5

)4
, α = −1.20764 . . . , m = 4,

x0 = 1.25, m0 = 1;

f10(x) =
(
ex2+7x−30

− 1
)4
, α = 3, m = 4,

x0 = 1.25, m0 = 1;

f11(x) =
(

ln x +
√

x − 5
)4
, α = 8.309432 . . . , m = 4,

x0 = 1.25, m0 = 1.

The set of test functions also included ones with rational root multiplicity:

f12(x) = (x − 2)3/2
(
x4 + x + 1

)
e−x2

−4x, α = 2, m = 3/2,

x0 = 1.75, m0 = 1;

f13(x) =
(
x5
− 8x4 + 24x3

− 34x2 + 23x − 6
)5/2
, α = 1, m = 15/2,

x0 = 0, m0 = 1;

f14(x) =
(
x2ex
− sin x + x

)2/3
, α = 0, m = 4/3,

x0 = 1, m0 = 1;

f15(x) =
(
(x − 1)3

− 1
)9/4
, α = 2, m = 27/4,

x0 = 3, m0 = 1

Results of the numerical experiments are given in the supplementary data sheet. We can note excellent
convergence properties of the transformed methods. Methods (M6)−M(14) were not analyzed through their

https://docs.google.com/spreadsheets/d/1XlTFpzDprnPAvIo0cfrukThb0nc3EG0Z/edit?usp=share_link&ouid=117721768271166247006&rtpof=true&sd=true
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error relations, however m−strategies hold applicable as can be seen from the data. Analysis presented in
section 3 can be similarly conducted for methods (M6)−M(14) to obtain convergence rate with m−strategies.

Conclusions drawn from numerical results confirm theoretical findings of sections two and three.
m−strategy (5) remains stronger through experiments. Multipoint methods show supremacy in perfor-
mance over one-point methods. As anticipated, the approximation quality of a particular method highly
depends on the test function to which it was employed. As for any numerical method, it is a tool that
should be designed to a particular application. Then it is most likely to perform at its best. However,
during numerical trials (M3), (5) scheme (both with and without rounding) has stood out as a particularly
reliable and with excellent convergence rate. These are the results and conclusions based on the given test
set and in the very high precision computing environment.

5. Acknowledgments

This research was supported by the Serbian Ministry of Education, Science and Technological Devel-
opment under grant 451-03-68/2022-14/ 200102. Author wishes to thank the referees for their valuable
comments. They have contributed largely to an improved content and presentation of this work.

References

[1] H. Arora, A. Cordero, J.R. Torregrosa, R. Behl, S. Alharbi, Derivative-Free Iterative Schemes for Multiple Roots of Nonlinear, Mathe-
matics 10 (2022), 1530.

[2] C. Chun, B. Neta, Comparative study of eighth-order methods for finding simple roots of nonlinear equations, Numer. Algor. 74 (2017),
1169–1201.

[3] C. Dong, A family of multipoint iterative functions for finding multiple roots of equations, Int. J. Comput. Math. 21 (1987), 363–367.
[4] H. Esser, Eine stets quadratisch konvergente Modifikation des Steffensen Verfahrens, Computing 14 (1975), 367–369.
[5] Y.H. Geum, Y.I. Kim, B. Neta, A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics,

Appl. Math. Comput. 70 (2015), 387–400.
[6] J.L. Hueso, E. Martı́nez, C. Teruel, Determination of multiple roots of nonlinear equations and applications, J. Math. Chem. 53 (2015),

880–892.
[7] R. F. King, A secant method for multiple roots, BIT 17 (1977), 321–328.
[8] R. F. King, Improving the Van de Vel Root-Finding Method, Computing 30 (1983), 373–378.
[9] H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. ACM 21 (1974) 643–651.

[10] S. Li, L. Cheng, B. Neta, Some fourth-order nonlinear solvers with closed formulae for multiple roots, Comp. Math. Appl. 59 (2010),
126–135.

[11] S. Li, X. Liao, L. Cheng, A new-fourth-order iterative method for finding multiple root of nonlinear equations, Appl. Math. Comput. 215
(2009), 1288–1292.

[12] B. Neta, A.N. Johnson, High-order nonlinear solvers for multiple roots, Comput. Math. Comput. 55 (2008), 2012–2017.
[13] B. Neta, Extension of Murakamis high-order nonlinear solver to multiple roots, Int. J. Comput. Math. 8 (2010), 1023–1031.
[14] N. Osada, An optimal multiple root-finding method of order three, J. Comput. Appl. Math., 51 (1994), 131–133.
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