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Abstract. For an odd prime p , 5, the structures of cyclic codes of length 5ps over R = Fpm + uFpm (u2 = 0)
are completely determined. Cyclic codes of length 5ps over R are considered in 3 cases, namely, p ≡ 1
(mod 5), p ≡ 4 (mod 5), p ≡ 2 or 3 (mod 5). When p ≡ 1 (mod 5), a cyclic code of length 5ps over R
can be expressed as a direct sum of a cyclic code and γps

i -constacyclic codes of length ps over R, where
γps

i = −
i(pm
−1)ps

10 , i = 1, 3, 7, 9. When p ≡ 4 (mod 5), it is equivalent to pm
≡ 1 (mod 5) when m is even and

pm
≡ 4 (mod 5) when m is odd. If pm

≡ 1 (mod 5) when m is even, then a cyclic code of length 5ps over
R can be obtained as a direct sum of a cyclic code and γps

i -constacyclic codes of length ps over R, where
γps

i = −
i(pm
−1)ps

10 , i = 1, 3, 7, 9. If pm
≡ 4 (mod 5) when m is odd, then a cyclic code of length 5ps over R can

be expressed as a direct sum of a cyclic code of length ps over R and an α1 and α2-constacyclic code of
length 2ps over R, for some α1, α2 ∈ Fpm \ {0}. If p ≡ 2 or 3 (mod 5) such that pm . 1 (mod 5), then a
cyclic code of length 5ps over R can be expressed as C1 ⊕ C2, where C1 is an ideal of R[x]

⟨xps
−1⟩

and C2 is an

ideal of R[x]
⟨(x4+x3+x2+x+1)ps

⟩
. We also investigate all ideals of R[x]

⟨(x4+x3+x2+x+1)ps
⟩

to study detail structure of a cyclic
code of length 5ps over R. In addition, dual codes of all cyclic codes of length 5ps over R are also given.
Furthermore, we give the number of codewords in each of those cyclic codes of length 5ps over R. As cyclic
and negacyclic codes of length 5ps over R are in a one-by-one equivalent via the ring isomorphism x 7→ −x,
all our results for cyclic codes hold true accordingly to negacyclic codes.
Keywords. Cyclic codes, constacyclic codes, dual codes, repeated-root codes.

1. Introduction

Let p be a prime number and Fpm a finite field. An [n, k] linear code C over Fpm is a k-dimensional
subspace of Fn

pm . A linear code C of length n over Fpm is called a cyclic code, negacyclic code and λ-constacyclic

code if it is an ideal of the ring
Fpm [x]
⟨xn−1⟩ ,

Fpm [x]
⟨xn+1⟩ , and

Fpm [x]
⟨xn−λ⟩ , respectively. The classes of cyclic and negacyclic

codes have been well studied since the late 1960’s.
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Cyclic codes are the most studied of all codes. Many well-known codes, such as BCH, Kerdock, Golay,
Reed-Muller, Preparata, Justesen, and binary Hamming codes, are either cyclic codes or constructed from
cyclic codes. The class of cyclic codes is very interesting because cyclic codes are easy to encode and decode.
Cyclic codes are especially fast when implemented in hardware. Therefore, they are a good option for many
networks.

In 1957, Prange [40] first studied the class of cyclic codes over finite fields. In 1968, Berlakamp [5] first
initiated the class of negacyclic codes over finite fields. In 1967, Berman [6] considered the case when
(n, p) = p yields the so-called repeated-root codes. Recently, λ-constacyclic codes of lengths 2ps, 3ps, ℓps

over Fpm are investigated in [17], [18], [13], respectively.

In 1994, Hammons et al. [28] showed that good non-linear codes can be constructed from linear codes
over Z4 via the Gray map. After that, [1], [8], [19] studied repeated-root codes over certain classes of finite
chain rings. In 1999, A. Bonnecaze and P. Udaya studied codes over F2 + uF2, where u2 = 0 and then
[2, 3] also considered codes over F2 + uF2, where u2 = 0. In 2010, Dinh [16] established the structures of
all constacyclic codes of length ps over R = Fpm + uFpm . After that, in [17], he gave the structures of all
constacyclic codes of length 2ps over the finite field Fpm . In 2018, Dinh et al. investigated all negacyclic and
constacyclic codes of length 4ps over R [20], [22], [23], [24]. In 2020, constacyclic codes of length 3ps over R
is studied in [21].

Motivated by that, in this paper, we investigate all cyclic codes of length 5ps over R for an odd prime
p , 5. The rest of the paper is arranged as follows. Section 2 gives preliminary concepts. Sections 3, 4,
5 present the main results of this paper. Section 3 provides the algebraic structures of all cyclic codes of
length 5ps over R when p ≡ 1 (mod 5). We proceed by first obtaining the algebraic structures of all cyclic
codes of length 5ps over R when p ≡ 1 (mod 5) in Theorem 3.1. All cyclic codes of length 5ps over R when
p ≡ 4 (mod 5) are studied in Section 4. Theorem 4.4 gives the structure of cyclic codes of length 5ps over R
when pm

≡ 4 (mod 5). Sections 5 focuses on the case that p ≡ 2 (mod 5) or p ≡ 3 (mod 5). The structures of
cyclic codes and their dual are given in Theorem 5.1, and the number of codewords is completely described
in Theorem 5.1. By Remark 5.15, cyclic and negacyclic codes of length 5ps over R are equivalent via the ring
isomorphism δ : R[x]

⟨x5ps
−1⟩ →

R[x]
⟨x5ps

+1⟩ given by x 7→ −x. So all the results of the paper hold true for negacyclic
codes via that isomorphism. We give some examples to illustrate our work in Section 6.

2. Preliminaries

Let R be a finite commutative ring with identity 1. An ideal I of R is said to be principal if I = ⟨x⟩, where
x ∈ R. If all ideals of R are principal, then R is called a principal ideal ring. If R has a unique maximal ideal,
R is called a local ring. Furthermore, R is called a chain ring if the set of all ideals of R is linearly ordered
under set-theoretic inclusion. The following result is given in [19, Proposition 2.1].

Proposition 2.1. Let R be a finite commutative ring, then the following conditions are equivalent:
(i) R is a local ring and the maximal ideal M of R is principal, i.e., M = ⟨γ⟩ for some γ ∈ R,
(ii) R is a local principal ideal ring,
(iii) R is a chain ring whose ideals are ⟨γi

⟩, 0 ≤ i ≤ N(γ), where N(γ) is the nilpotency of γ.

Recall that a code C of length n over R is a nonempty subset of Rn. A code C is called linear if the subset
of Rn is an R-submodule of Rn. For a unit λ of R, the λ-constacyclic (λ-twisted) shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C. If λ = 1, those λ-constacyclic codes are called cyclic
codes, and if λ = −1, such λ-constacyclic codes are called negacyclic codes.

The following proposition is given in [30, 33].

Proposition 2.2. [30, 33] A linear code C of length n is λ-constacyclic over R if and only if C is an ideal of R[x]
⟨xn−λ⟩ .
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Given n-tuples v = (v0, v1, . . . , vn−1), t = (t0, t1, . . . , tn−1) ∈ Rn, their inner product or dot product is defined
as follows

v · t = v0t0 + v1t1 + · · · + vn−1tn−1.

Two n-tuples v, t are called orthogonal if v · t = 0. For a linear code C over R, its dual code C⊥ is the set of
n-tuples over R that are orthogonal to all codewords of C, i.e.,

C⊥ = {v | v · t = 0,∀t ∈ C}.

A code C is called self-orthogonal if C ⊆ C⊥, and it is called self-dual if C = C⊥. The following result is
provided in [14]).

Proposition 2.3. Let R be a finite chain ring of size pω, where p be a prime. Then a linear code C has pt codewords,
for some integer t ∈ {0, 1, . . . , ωn}. Moreover, |C| · |C⊥| = |R|n.

The following proposition allows us to determine the dual of a λ-constacyclic code in general.

Proposition 2.4. [16, Proposition 2.4] The dual of a λ-constacyclic code is a λ−1-constacyclic code.

The definition of reciprocal polynomials is given as follows.

Definition 2.5. Let
m(x) = m0 +m1x + · · · +mtxt

then the reciprocal of m(x) is the polynomial

m∗(x) = mt +mt−1x +mt−2x2 + · · · +m0xt.

We see that m∗(x) = xtm( 1
x ). Assume that J is an ideal of R, then J∗ = {m∗(x) : m(x) ∈ J} is also an ideal.

Definition 2.6. Let J be an ideal of R. We define A(J) = {v(x)|m(x)v(x) = 0,∀m(x) ∈ J}. Then A(J) is called the
annihilator of J, which is also an ideal of R.

Using the above definition, the associated ideal of C⊥ isA(J)∗, where C is a constacyclic code of length
n over R with associated ideal J. Then we provide two following lemmas which will be used in Section 5.

Lemma 2.7. a) If deg m ≥ deg v, then

(m(x) + v(x))∗ = m∗(x) + xdeg m−deg vv∗(x).

b) (m(x)v(x))∗ = m∗(x)v∗(x).

Lemma 2.8. Assume that J = ⟨m(x),uv(x)⟩, then J∗ = {h∗(x)|h(x) ∈ J} = ⟨m∗(x),uv∗(x)⟩.

The following lemma is given in [45, Chapter 21].

Lemma 2.9. [45, Chapter 21] For any odd prime p , 5, we have two cases as follows:

(i) If p ≡ 1 (mod 5) or p ≡ 4 (mod 5), then 5 is a square in Fp.

(ii) If p ≡ 2 or 3 (mod 5), then 5 is not a square in Fp.

We have a small lemma as follows.

Lemma 2.11. Let ξ be a primitive (p − 1)th root of unity, so that Fp = {0, ξ, ξ2, . . . , ξp−2, ξp−1 = 1}.

(i) If p ≡ 1 (mod 5), then x5
− 1 factors into linear polynomials over Fp.

(ii) If p ≡ 4 (mod 5), then x5
− 1 factors into a linear polynomial and two quadratic irreducible polynomials over

Fp and x5
− 1 = (x − 1)(x2 +

1+γ
2 x + 1)(x2 +

1−γ
2 x + 1), where γ2 = 5.
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(iii) If p ≡ 2 or 3 (mod 5), then x5
− 1 factors into a linear and degree 4 irreducible polynomial over Fp and

x5
− 1 = (x − 1)(x4 + x3 + x2 + x + 1).

Proof.

(i) If p ≡ 1 (mod 5), then ξ
p−1

2 = −1. We see that (−ξ
(p−1)

10 )5 = 1, i.e., −ξ
(p−1)

10 is a root of the equation x5
− 1 = 0.

Similar to −ξ
(p−1)

10 , it is easy to see that −ξ
3(p−1)

10 ,−ξ
7(p−1)

10 ,−ξ
9(p−1)

10 are also roots of the equation x5
− 1 = 0.

Put γ1 = −ξ
(p−1)

10 , γ3 = −ξ
3(p−1)

10 , γ7 = −ξ
7(p−1)

10 , and γ9 = −ξ
9(p−1)

10 . Then x5
− 1 can express as follows:

x5
− 1 = (x − 1)

(
x − γ1

) (
x − γ3

) (
x − γ7

) (
x − γ9

)
,

proving (i).

(ii) Suppose that x4 + x3 + x2 + x + 1 = (x2 + a1x + a2)(x2 + a3x + a4) = x4 + (a1 + a3)x3 + (a4 + a1a3 + a2)x2 +
(a1a4 + a2a3)x + a2a4. It implies that

a1 + a3 = 1
a1a3 + a2 + a4 = 1
a1a4 + a2a3 = 1
a2a4 = 1.

(1)

Hence,
a1 = 1 − a3

a1a3 + a2 + a4 = 1
a1a4 + a2a3 = 1
a4 =

1
a2
.

(2)

This implies that a1
a2
+ a2(1 − a1) = 1, i.e., (1 − a1)a2

2 − a2 + a1 = 0. It means that a2 = 1 or a2 =
a1

1−a1
.

If a2 = 1, we have a2
1 − a1 − 1 = 0. By Lemma 2.9, there exists γ ∈ Fp such that γ2 = 5. Therefore,

a1 =
1±γ

2 . If a1 =
1+γ

2 , then a3 = 1 − 1+γ
2 =

1−γ
2 and a4 = 1. If a1 =

1−γ
2 , then a3 =

1+γ
2 and a4 = 1.

Therefore, if p ≡ 4 (mod 5), then x5
− 1 factors into (x − 1), (x2 +

1+γ
2 x + 1) and (x2 +

1−γ
2 x + 1) over

Fp. Assume that x2 +
(
1 + γ

)
2−1x + 1 is reducible over Fp. Then there exists α ∈ Fp such that

α2 +
(
1 + γ

)
2−1α + 1 = 0. This implies that α5

− 1 = 0, and so α5 = 1. It is easy to check that α = 1 is
not a root of the equation α2 +

(
1 + γ

)
2−1α + 1 = 0 because 5+γ

2 , 0, i.e., α , 1. Since p ≡ 4 (mod 5),
the order of the multiplicative group of Fp is not divisible by 5. It means that α < Fp, which is a
contradiction. Therefore, x2 +

(
1 + γ

)
2−1x + 1 is irreducible over Fp. Using similar argument, we get

that x2 +
(
1 − γ

)
2−1x + 1 is irreducible over Fp, showing (ii).

(iii) Put f (x) = x4 + x3 + x2 + x + 1. Since x5
− 1 = (x − 1) f (x), we see that any root of f (x) = 0 has order 5

or 1. Assume that f (x) has a linear factor over Fp[x]. Then f (x) = 0 has a root in Fp. It is easy to see
that 1 is not a root of f (x) = 0 because 1 + 1 + 1 + 1 + 1 , 0. Therefore, any possible root must have
order 5. Since 5 is not divisible p − 1, f (x) = 0 has not a root in Fp, i.e., f (x) has not a linear factor in
Fp[x]. Assume that f (x) has an irreducible quadratic factor 1(x) in Fp[x]. Then f (x) = 0 has a root in
a quadratic extension k of Fp. Since [k : Fp] = 2, the field k has p2 elements, and the cardinality of the
multiplicative group of k is |k⋆| = p2

− 1 = (p − 1)(p + 1). By using Lagrange’s theorem, the order of
any element of k⋆ is a divisor of p2

− 1. Since p ≡ 2 (mod 5) or p ≡ 3 (mod 5), we see that 5 does not
divide p2

−1, i.e., there is no element in k of order 5, a contradiction. Hence, f (x) has not an irreducible
quadratic factor, proving (iii). □

We end this section by the following lemma.

Lemma 2.12. [32, Theorem 1.69] The polynomial f (x) ∈ F[x] of degree 2 or 3 is irreducible in F[x] if and only if
f (x) has no root in F.
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3. p ≡ 1 (mod 5)

It is well-known from Proposition 2.2 that cyclic codes of length 5ps over R are ideals of the ring
R1 =

R[x]
⟨x5ps

−1⟩ .We see that x5
− 1 = (x − 1)

(
x4 + x3 + x2 + x + 1

)
. Let ξ be a primitive (pm

− 1)th root of unity,
so that Fpm = {0, ξ, ξ2, . . . , ξpm

−2, ξpm
−1 = 1}. Throughout this section, we always assume that p ≡ 1 (mod 5),

i.e., pm
≡ 1 (mod 5), where m is a positive integer. This means that pm

≡ 1 (mod 10) and pm
≡ 1 (mod 2).

Hence, ξ
pm
−1

2 = −1. We see that (−ξ
(pm
−1)

10 )5 = 1, i.e., −ξ
(pm
−1)

10 is a root of the equation x5
− 1 = 0. Similar to

−ξ
(pm
−1)

10 , it is easy to see that −ξ
3(pm

−1)
10 ,−ξ

7(pm
−1)

10 ,−ξ
9(pm

−1)
10 are also roots of the equation x5

− 1 = 0. By Remark

2.10, the equation x5
− 1 = 0 has five distinct roots in R. They are 1,−ξ

(pm
−1)

10 ,−ξ
3(pm

−1)
10 ,−ξ

7(pm
−1)

10 ,−ξ
9(pm

−1)
10 . Put

γ1 = −ξ
(pm
−1)

10 , γ3 = −ξ
3(pm

−1)
10 , γ7 = −ξ

7(pm
−1)

10 , and γ9 = −ξ
9(pm

−1)
10 . Then (x4 + x3 + x2 + x + 1)ps

can express as
follows:

(x4 + x3 + x2 + x + 1)ps
=

(
xps
− γps

1

) (
xps
− γps

3

) (
xps
− γps

7

) (
xps
− γps

9

)
.

This implies that

x5ps
− 1 =

(
x5
− 1

)ps

=
(
xps
− 1

) (
xps
− γps

1

) (
xps
− γps

3

) (
xps
− γps

7

) (
xps
− γps

9

)
.

By Chinese Reimainder Theorem, we have

R1 =
R [x]
⟨x5ps

− 1⟩

�
R [x]

⟨(xps
− 1)⟩

⊕
R [x]

⟨(xps
− γps

1 )⟩

⊕
R [x]

⟨(xps
− γps

3 )⟩

⊕
R [x]

⟨(xps
− γps

7 )⟩

⊕
R [x]

⟨(xps
− γps

9 )⟩

� R+
⊕
Rγ1

⊕
Rγ3

⊕
Rγ7

⊕
Rγ9 ,

whereR+ =
R[x]
⟨(xps
−1)⟩ andRγi =

R[x]

⟨(xps
−γ

ps

i )⟩
(i = 1, 3, 7, 9). Hence, ideals ofR1 are of the form C+

⊕
Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9 ,

where C+ is a cyclic code of length ps overR and Cγi is a γi-constacyclic code of length ps overR (i = 1, 3, 7, 9).
Then the algebraic structures of all constacyclic codes of length ps over R studied in [16] allow us to de-
termine the algebraic structure of all cyclic codes of length 5ps over R when p ≡ 1 (mod 5). In [16], Dinh
determined the number of codewords in each constacyclic code of length ps over R. Therefore, the number
of codewords in each cyclic code of length 5ps overR can be obtained. Then we have the following theorem.

Theorem 3.1. Let C be a cyclic code of length 5ps over R. Then

C = C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9 ,

where C+ is a cyclic code, Cγ1 is a γ1-constacyclic code, Cγ3 is a γ3-constacyclic code, Cγ7 is a γ7-constacyclic code, Cγ9

is a γ9-constacyclic code of length ps over R.Moreover, |C| = |C+||Cγ1 ||Cγ3 ||Cγ7 ||Cγ9 | and C⊥ = C⊥+
⊕

C⊥γ1

⊕
C⊥γ3
⊕

C⊥γ7

⊕
C⊥γ9

.

Proof. It is easy to verify that C⊥+
⊕

C⊥γ1

⊕
C⊥γ3
⊕ C⊥γ7

⊕
C⊥γ9
⊆ C⊥.We now consider

|C⊥+
⊕

C⊥γ1

⊕
C⊥γ3
⊕ C⊥γ7

⊕
C⊥γ9
| = |C⊥+ ||C

⊥

γ1
||C⊥γ3
||C⊥γ7
||C⊥γ9
|

=
|R|

ps

|C+|
|R|

ps

|Cγ1 |

|R|
ps

|Cγ3 |

|R|
ps

|Cγ7 |

|R|
ps

|Cγ9 |

=
|R|

5ps

|C+||Cγ1 ||Cγ3 ||Cγ7 ||Cγ9 |

=
|R|

5ps

|C|
= |C⊥|,
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proving that C⊥ = C⊥+
⊕

C⊥γ1

⊕
C⊥γ3
⊕ C⊥γ7

⊕
C⊥γ9
. □

Using Theorem 3.1, we have the following result.

Theorem 3.2. Let C = C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9 be a cyclic code of length 5ps over R, where C+ is a cyclic

code, Cγ1 is a γ1-constacyclic code, Cγ3 is a γ3-constacyclic code, Cγ7 is a γ7-constacyclic code, Cγ9 is a γ9-constacyclic
code of length ps over R. Then C is a self-dual cyclic code of length 5ps over R if and only if

(i) C = C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9 , where C+ = ⟨uR+⟩ and Cγi = ⟨uRi⟩ (i = 1, 3, 7, 9).

(ii) C = C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9 , where C+ = ⟨(x − 1)t,u(x − 1)ω⟩ and Cγi = ⟨uRi⟩ (i = 1, 3, 7, 9) such

that t + ω = ps, where 1 ≤ t ≤ ps
− 1, and ω < t.

(iii) C = C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9 , where C+ =

〈
(x − 1)v + u

∑ω−1
j=0 c j(x − 1) j,u(x − 1)ω

〉
and Cγi =

⟨uRi⟩ (i = 1, 3, 7, 9) such that v + ω = ps, and M(v, ω)(c0, c1, . . . , cv−1)T = (0, 0, . . . , 0)T, for any p > 5, s ≥ 1,
where M(v, ω)(c0, c1, . . . , cv−1)T is given in [25]).

Proof. Assume that C = C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9 is a cyclic code of length 5ps over R. By using [16,

Lemma 4.1], we can see that C+ = ⟨uR+⟩ is a self-dual cyclic code of length ps over R and Cγi = ⟨uRi⟩ (i =
1, 3, 7, 9) is a self-dual γ1-constacyclic code, γ3-constacyclic code, γ7-constacyclic code, γ9-constacyclic code
of length ps over R, respectively. From Theorem 3.1, we have C⊥ = C⊥+ ⊕ C⊥γ1

⊕ C⊥γ3
⊕ C⊥γ7

⊕ C⊥γ9
= ⟨uR1⟩ = C.

Hence, C is a self-dual cyclic code of length 5ps over R, showing (i). If C+ = ⟨(x − 1)t,u(x − 1)ω⟩ and
Cγi = ⟨uRi⟩ (i = 1, 3, 7, 9) satisfying t + ω = ps, where 1 ≤ t ≤ ps

− 1, and ω < t, by Theorem 4.12 in [25], then

C⊥ = C⊥+ ⊕ C⊥γ1
⊕ C⊥γ3

⊕ C⊥γ7
⊕ C⊥γ9

= C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9

= C.

Hence, C is a self-dual cyclic code of length 5ps overR, proving (ii). If C+ =
〈
(x − 1)v + u

∑ω−1
j=0 c j(x − 1) j,u(x − 1)ω

〉
,

by applying Theorem 4.15 in [25], C⊥+ = C+. Then

C⊥ = C⊥+ ⊕ C⊥γ1
⊕ C⊥γ3

⊕ C⊥γ7
⊕ C⊥γ9

= C+
⊕

Cγ1

⊕
Cγ3

⊕
Cγ7

⊕
Cγ9

= C,

showing (iii). □

It is well-known from [25, Theorem 4.4] that the number of distinct constacyclic codes of length ps over
Fpm is computed as follows.

Theorem 3.3. (cf. [25, Theorem 4.4]) Let p be an odd prime. The number of distinct constacyclic codes of length ps

over R is
2(pm + 1)(pm)

ps
−1
2 − 2p2m

− 2
(pm − 1)2 +

(2pm + 3)(pm)
ps
−1
2 − 2ps

− 1
pm − 1

+ (pm)
ps
−1
2 + 2.

From Theorem 3.3, the number of cyclic codes of length 5ps over R is determined as follows.

Theorem 3.4. The number of cyclic codes of length 5ps over R is2(pm + 1)(pm)
ps
−1
2 − 2p2m

− 2
(pm − 1)2 +

(2pm + 3)(pm)
ps
−1
2 − 2ps

− 1
pm − 1

+ (pm)
ps
−1
2 + 2


5

.

Proof. Applying Theorems 3.1 and 3.3, we complete our proof. □
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4. p ≡ 4 (mod 5)

Assume that p ≡ 4 (mod 5), i.e., pm
≡ 4 (mod 5) when m is odd and pm

≡ 1 (mod 5) when m is even. If
pm
≡ 1 (mod 5) when m is even, then cyclic codes of length 5ps overR are studied in Section 3. Therefore, in

this section, we consider the remaining case that is pm
≡ 4 (mod 5) when m is odd. By Lemma 2.11, x5ps

− 1
can be expressed as

x5ps
− 1 =

(
xps
− 1

) (
x2 +

(
1 − γ

)
2−1x + 1

)ps (
x2 +

(
1 + γ

)
2−1x + 1

)ps

.

To obtain cyclic codes of length 5ps over R, we need to have the following lemma.

Lemma 4.1. The polynomials x2 +
(
1 − γ

)
2−1x + 1 and x2 +

(
1 + γ

)
2−1x + 1 are irreducible over R.

Proof. First, we prove that x2 +
(
1 − γ

)
2−1x+ 1 and x2 +

(
1 + γ

)
2−1x+ 1 are irreducible over Fpm . Assume

that x2 +
(
1 − γ

)
2−1x + 1 is reducible over Fpm . Then there exists α ∈ Fpm such that α2 +

(
1 − γ

)
2−1α + 1 = 0.

This implies that α5
− 1 = 0, and so α5 = 1. It is easy to check that α = 1 is not a root of the equation α2 +(

1 − γ
)

2−1α + 1 = 0 because 5−γ
2 , 0, i.e., α , 1. Since pm

≡ 4 (mod 5), the order of the multiplicative group
of Fpm is not divisible by 5. It means that α < Fpm , which is a contradiction. Therefore, x2 +

(
1 − γ

)
2−1x+ 1 is

irreducible over Fpm .Assume that x2 +
(
1 − γ

)
2−1x+ 1 is reducible over R. Then there exists η ∈ R satisfying

η2 +
(
1 − γ

)
2−1η+ 1 = 0,where η = λ+ uβ and λ, β ∈ Fpm . Since η2 +

(
1 − γ

)
2−1η+ 1 = 0, we have η5 = 1, i.e.,

(λ + uβ)5 = λ5 + 5λ4βu = 1. Hence, λ5 = 1 and 5λ4βu = 0. As λ5 = 1, we have λ , 0. Using p , 5, we see
that β = 0. This implies that η = λ ∈ Fpm . Hence, λ2 +

(
1 − γ

)
2−1λ + 1 = 0, which is a contradiction because

x2 +
(
1 − γ

)
2−1x + 1 is irreducible over Fpm . It means that x2 +

(
1 − γ

)
2−1x + 1 is irreducible over R. Using

similar argument, we get that x2 +
(
1 + γ

)
2−1x + 1 is irreducible over R. □

We consider the map Θ1 : R[x]
⟨(x2+(1−γ)2−1x+1)ps

⟩
→

R[x]
⟨(x2+(5+γ)2−3)ps

⟩
defined by f (x) → f (x − (1 − γ)2−2). For

polynomials f (x), 1(x) ∈ R [x], then f (x) ≡ 1(x) (mod
(
x2 +

(
1 − γ

)
2−1x + 1

)ps

) if and only if there exists

q(x) ∈ R [x] such that f (x) − 1(x) = q(x)
((

x2 +
(
1 − γ

)
2−1x + 1

)ps)
. Then we have

f (x −
(
1 − γ

)
2−2) − 1(x −

(
1 − γ

)
2−2) = q

(
x −

(
1 − γ

)
2−2

) [(
x −

(
1 − γ

)
2−2

)2
+

(
1 − γ

)
2−1

(
x −

(
1 − γ

)
2−2

)
+ 1

]ps

= q
(
x −

(
1 − γ

)
2−2

) [
x2
−

(
1 − γ

)2 2−4 + 1
]ps

= q
(
x −

(
1 − γ

)
2−2

) [
x2
−

(
6 − 2γ

)
2−4 + 1

]ps

= q
(
x −

(
1 − γ

)
2−2

) (
x2 +

(
5 + γ

)
2−3

)ps

.

This implies that f (x − (1 − γ)2−2) ≡ 1(x − (1 − γ)2−2 (mod (x2 + (5 + γ)2−3)ps
). Hence, Θ1( f (x)) = Θ1(1(x)) in

R[x]
⟨(x2+(5+γ)2−3)ps

⟩
if and only if f (x) ≡ 1(x) in R[x]

⟨(x2+(1−γ)2−1x+1)ps
⟩
. Therefore, Θ1 is well-defined and one-to-one. It is

easy to see thatΘ1 is onto andΘ1 is a ring homomorphism. It means thatΘ1 is a ring isomorphism. Similar
to the mapΘ1, we consider the mapΘ2 : R[x]

⟨(x2+(1+γ)2−1x+1)ps
⟩
→

R[x]
⟨(x2−(γ−5)2−3)ps

⟩
defined by f (x)→ f (x− (1+γ)2−2).

Then we can prove that Θ2 is a ring isomorphism. We summarize the discussion above by the following
theorem.

Theorem 4.2.

(i) The map Θ1 : R[x]
⟨(x2+(1−γ)2−1x+1)ps

⟩
→

R[x]
⟨(x2+(5+γ)2−3)ps

⟩
defined by f (x)→ f (x − (1 − γ)2−2) is a ring isomorphism.

(ii) The map Θ2 : R[x]
⟨(x2+(1+γ)2−1x+1)ps

⟩
→

R[x]
⟨(x2+(γ−5)2−3)ps

⟩
defined by f (x)→ f (x − (1 + γ)2−2) is a ring isomorphism.
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From Theorem 4.2, we have a direct consequence.

Corollary 4.3.

(i) Let A ⊆ R[x]
⟨(x2+(1−γ)2−1x+1)ps

⟩
,B ⊆ R[x]

⟨(x2+(5+γ)2−3)ps
⟩
. If Θ1(A) = B, then A is an ideal of R[x]

⟨(x2+(1−γ)2−1x+1)ps
⟩

if and only if

B is an ideal of R[x]
⟨(x2+(5+γ)2−3)ps

⟩
.

(ii) Let D ⊆ R[x]
⟨(x2+(1+γ)2−1x+1)ps

⟩
,E ⊆ R[x]

⟨(x2+(γ−5)2−3)ps
⟩
. If Θ2(D) = E, then D is an ideal of R[x]

⟨(x2+(1+γ)2−1x+1)ps
⟩

if and only if

E is an ideal of R[x]
⟨(x2+(γ−5)2−3)ps

⟩
.

Since x5ps
− 1 =

(
xps
− 1

) (
x2 +

(
1 − γ

)
2−1x + 1

)ps (
x2 +

(
1 + γ

)
2−1x + 1

)ps

,we have

R1 =
R[x]
⟨x5ps

− 1⟩
�

R[x]
⟨(xps

− 1)⟩
⊕

R[x]

⟨
(
x2 +

(
1 − γ

)
2−1x + 1

)ps
⟩
⊕

R[x]

⟨
(
x2 +

(
1 + γ

)
2−1x + 1

)ps
⟩
.

By Corollary 4.3, we have R1 �
R[x]
⟨(xps
−1)⟩ ⊕

R[x]
⟨(x2ps

−α1)⟩ ⊕
R[x]

⟨(x2ps
−α2)⟩ , where α1 = [−(γ + 5)2−3]ps

and α2 =

[−(γ − 5)2−3]ps
. Then we see that a cyclic code of length 5ps over R is of the form C+

⊕
Cα1

⊕
Cα2 , where

C+ is an ideal of R[x]
⟨(xps
−1)⟩ , Cα1 is an ideal of R[x]

⟨(x2ps
−α1)⟩ , and Cα2 is an ideal of R[x]

⟨(x2ps
−α2)⟩ . The algebraic structures

of all constacyclic codes of lengths ps, 2ps over R studied in [16], [12] allow us to determine the algebraic
structure of all cyclic codes of length 5ps over R. [16] and [12] determined the number of codewords in
each constacyclic code of lengths ps, 2ps over R. Therefore, the number of codewords in each cyclic code of
length 5ps over R can be obtained in the following theorem.

Theorem 4.4. If C is a cyclic code of length 5ps over R, then C can be represented as C = C+
⊕

Cα1

⊕
Cα2 , where

C+ is a cyclic code of length ps over R, Cα1 is an α1-constacyclic code and Cα2 is an α2-constacyclic code of length 2ps

over R.Moreover, |C| = |C+||Cα1 ||Cα2 | and C⊥ = C⊥+
⊕

C⊥α1

⊕
C⊥α2
. In particular, C = ⟨u⟩ is a self-dual cyclic code

of length 5ps over R.

Proof. It is clear to see that C⊥+
⊕

C⊥α1

⊕
C⊥α2
⊆ C⊥.We now consider

|C⊥+
⊕

C⊥α1

⊕
C⊥α2
| = |C⊥+ ||C

⊥

α1
||C⊥α2
|

=
|R|

ps

|C+|
|R|

2ps

|Cα1 |

|R|
2ps

|Cα2 |

=
|R|

5ps

|C+||Cα1 ||Cα2 |

=
|R|

5ps

|C|
= |C⊥|,

proving that C⊥ = C⊥+
⊕

C⊥α1

⊕
C⊥α2
. From [12], C+ = ⟨u⟩ is a self-dual cyclic code of length ps over R,

Cα1 = ⟨u⟩ is a self-dual code of length 2ps over R and Cα2 = ⟨u⟩ is a self-dual code of length 2ps over R. Then
C = C+

⊕
Cα1

⊕
Cα2 = ⟨u⟩ is a self-dual code of length 5ps over R. □

The number of constacyclic codes of length 2ps over R is given as follows.

Theorem 4.5. The number of distinct constacyclic codes of length 2ps over R is

(pm + 1)

2(pm + 1)(pm)
ps
−1
2 − 2p2m

− 2
(pm − 1)2 +

(2pm + 3)(pm)
ps
−1
2 − 2ps

− 1
pm − 1

+ (pm)
ps
−1
2

 − pm(ps
− 1)ps

2
− pm(2ps

− 1) + 2.
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Proof. In [12], constacyclic codes of length 2ps over R are classified into 4 distinct types of ideals.
• Type 1 constacyclic codes of length 2ps over R are ⟨0⟩, ⟨1⟩, which are two distinct codes.
• Type 2 constacyclic codes of length 2ps over R are ⟨u(x2

− λ0)i
⟩, where 0 ≤ i ≤ ps

− 1. Therefore, there are
ps distinct constacyclic codes.
• Type 3 constacyclic codes of length 2ps overR are ⟨(x2

−λ0)i+u(x2
−λ0)th(x)⟩, where 1 ≤ i ≤ ps

−1, 0 ≤ t ≤ i,
and h(x) is 0 or a unit.
◦ Case 3a: If h(x) = 0, then the constacyclic codes of length 2ps over R are of the form ⟨(x2

− λ0)i
⟩, where

1 ≤ i ≤ ps
− 1. It implies that there are ps

− 1 distinct codes.
◦Case 3b: If h(x) is a unit, then h(x) can be expressed as h(x) =

∑
j
(h0 jx+h1 j)(x2

−λ0) j, where h0 j, h1 j ∈ Fpm and

h00x + h10 , 0. Let T be the smallest integer such that u(x2
− λ0)T

∈ ⟨(x2
− λ0)i + u(x2

− λ0)th(x)⟩. Using [12,
Proposition 5.4], we have T = min{i, ps

− i + t}. In order for the ideals to be distinct, we must have t + j < T,
i.e., 0 ≤ j ≤ T − t − 1. This means that the number of distinct ideals of this form is

S1 =

ps
−1
2∑

i=1

i−1∑
t=0

(p2m
− 1)(pm)i−t−1 +

ps
−1∑

i= ps+1
2

2i−ps
−1∑

t=0

(p2m
− 1)(pm)ps

−i−1 +

ps
−1∑

i= ps+1
2

i−1∑
t=2i−ps

(p2m
− 1)(pm)i−t−1

= (pm + 1)


ps
−1
2∑

i=1

(pm
− 1)

i−1∑
t=0

(pm)i−t−1 + (pm
− 1)


ps
−1∑

i= ps+1
2

2i−ps
−1∑

t=0

(pm)ps
−i−1

 +
ps
−1∑

i= ps+1
2

(pm
− 1)

i−1∑
i=2i−ps

(pm)i−t−1

 .
From this, we have

S1 = (pm + 1)

2(pm + 1)(pm)
ps
−1
2 − 4

pm − 1
+ (pm)

ps
−1
2 − 2ps

− 1

 .
• Type 4 constacyclic codes are ⟨(x2

− λ0)i + u(x2
− λ0)th(x),u(x2

− λ0)κ⟩, where 1 ≤ i ≤ ps
− 1, 0 ≤ t < i, h(x) is

0 or a unit, 0 ≤ κ < T.
◦Case 4a: By using [12, Proposition 5.4], if h(x) = 0, then T = i. It implies that ⟨(x2

−λ0)i+u(x2
−λ0)th(x),u(x2

−

λ0)κ⟩ = ⟨(x2
− λ0)i,u(x2

− λ0)κ⟩, where 1 ≤ i ≤ ps
− 1 and 0 ≤ κ < i. Hence, the number of distinct codes of

this form is
ps
−1∑

i=1
i = ps(ps

−1)
2 .

◦ Case 4b: By using [12, Proposition 5.4], if h(x) is a unit, then T = min{i, ps
− i + t}. Hence, h(x) can be

expressed as h(x) =
∑

j
(h0 jx + h1 j)(x2

− λ0) j, where h0 j, h1 j ∈ Fpm and h00x + h10 , 0. In order for the ideals to

be distinct, t + j < κ, i.e., 0 ≤ j ≤ κ − t − 1. It follows that the number of distinct ideals of this form

S2 = (pm + 1)


ps
−1
2∑

i=2

i−2∑
t=0

(pm(i−t−1)
− 1) +

ps
−2∑

i= ps+1
2

2i−ps
−1∑

t=0

(pm(ps
−i−1)
− 1) +

ps
−2∑

i= ps+1
2

i−2∑
t=2i−ps

(pm(i−t−1)
− 1)

 .
We abbreviate and hence,

S2 = (pm + 1)

2(pm + 1)(pm)
ps
−1
2 − 2p2m

− 2
(pm − 1)2 +

(pm)
ps
−1
2 − 2ps + 3
pm − 1

+
ps
− p2s

2
+ 2

 .
Then the number of distinct constacyclic codes of length 2ps over R is the sum of numbers of distinct
constacyclic codes of each type:

S = (pm + 1)
[

2(pm+1)(pm)
ps
−1
2 −2p2m

−2
(pm−1)2 +

(2pm+3)(pm)
ps
−1
2 −2ps

−1
pm−1 + (pm)

ps
−1
2

]
−

pm(ps
−1)ps

2 − pm(2ps
− 1) + 2. □

Using Theorems 3.4 and 4.5, we determine the number of cyclic codes of length 5ps over R.
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Theorem 4.6. The number of cyclic codes of length 5ps over R is[
(pm + 1)

(
2(pm+1)(pm)

ps
−1
2 −2p2m

−2
(pm−1)2 +

(2pm+3)(pm)
ps
−1
2 −2ps

−1
pm−1 + (pm)

ps
−1
2

)
−

pm(ps
−1)ps

2 − pm(2ps
− 1) + 2

]2

·

[
2(pm+1)(pm)

ps
−1
2 −2p2m

−2
(pm−1)2 +

(2pm+3)(pm)
ps
−1
2 −2ps

−1
pm−1 + (pm)

ps
−1
2 + 2

]
.

Proof. From Theorem 4.4, if C is a cyclic code of length 5ps over R, then C = C+
⊕

Cα1

⊕
Cα2 where

C+ is a cyclic code of length ps over R, Cα1 is an α1-constacyclic code and Cα2 is an α2-constacyclic code of
length 2ps over R, where α1 = [−(γ + 5)2−3]ps

and α2 = [−(γ − 5)2−3]ps
. Using Theorems 3.3 and 4.5, we can

compute the number of cyclic codes of length 5ps over R. □

5. p ≡ 2 or 3 (mod 5)

Throughout this section, p ≡ 2 or 3 (mod 5) and v(x) = x4 + x3 + x2 + x + 1. We divide p ≡ 2 (mod 5)
into 4 cases, namely, pm

≡ 1 (mod 5) when m = 4t, pm
≡ 2 (mod 5) when m = 4t + 1, pm

≡ 4 (mod 5) when
m = 4t + 2 and pm

≡ 3 (mod 5) when m = 4t + 3, where t ∈N. Similar to the case p ≡ 2 (mod 5), we divide
p ≡ 3 (mod 5) into 4 cases, namely, pm

≡ 1 (mod 5) when m = 4t, pm
≡ 2 (mod 5) when m = 4t + 3, pm

≡ 4
(mod 5) when m = 4t + 2 and pm

≡ 3 (mod 5) when m = 4t + 1. The case pm
≡ 1 (mod 5) is investigated

in Section 3. Therefore, from now on, we proceed to obtain all cyclic codes of length 5ps over R when
p ≡ 2 or 3 (mod 5) such that pm . 1 (mod 5). To do so, we need to have the following proposition.

Proposition 5.1 Assume that p ≡ 2 or 3 (mod 5) such that pm . 1 (mod 5). Then

(i) The polynomial v(x) is irreducible over R.

(ii) There does not exist an element γ ∈ Fpm such that γ2 = 5.

Proof. (i) We see that x5
− 1 can be expressed as x5

− 1 = (x − 1)v(x). Assume that v(x) is reducible
over Fpm . Then there exists α ∈ Fpm such that α4 + α3 + α2 + α + 1 = 0. This implies that α5

− 1 = 0, i.e.,
α5 = 1. From p , 5, we have α , 1. Since p ≡ 2 (mod 5) or p ≡ 3 (mod 5) (pm . 1 (mod 5)), the order
of the multiplicative group of Fpm is not divisible by 5. It follows that α < Fpm , which is a contradiction.
Therefore, v(x) is irreducible over Fpm . Assume that v(x) is reducible over R. Then there exists η ∈ R
satisfying η4 + η3 + η2 + η + 1 = 0, where η = λ + uβ and λ, β ∈ Fpm . Since η4 + η3 + η2 + η + 1 = 0, we have
η5 = 1. As mentioned in the proof of Lemma 4.1, we see that β = 0. This implies that η = λ ∈ Fpm . Hence,
λ4 + λ3 + λ2 + λ + 1 = 0, which is a contradiction because v(x) is irreducible over Fpm . It means that the
polynomial v(x) is irreducible over R.
(ii) Assume that there is a γ ∈ Fpm such that γ2 = 5. Using same argument as in the proof of Lemma 2.11
part (ii), we have v(x) = (x2 + (1 − γ)2−1x + 1)(x2 + (1 + γ)2−1x + 1), which is a contradiction with (i). Hence,
it does not exist a γ ∈ Fpm such that γ2 = 5. □

Using Proposition 5.1, by the Chinese Remainder Theorem, we have the isomorphism:

R[x]
⟨x5ps

− 1⟩
�

R[x]
⟨(xps

− 1)⟩

⊕
R[x]
⟨(v(x))ps

⟩
.

Then cyclic codes and their dual of length 5ps over R are studied in the following theorem.

Theorem 5.2. Let C be a cyclic code of length 5ps over R with associated ideal I. Then the following hold:

(i) I = I1 ⊕ I2, where I1 is an ideal of the ring R[x]
⟨(xps
−1)⟩ and I2 is an ideal of the ring R[x]

⟨(v(x))ps
⟩
.

(ii) |I| = |I1||I2|.
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(iii)A(I) = A(I1)
⊕
A(I2).

Proof. We have
R[x]
⟨x5ps

− 1⟩
�

R[x]
⟨(x − 1)ps

⟩

⊕
R[x]
⟨(v(x))ps

⟩
.

Then I = I1 ⊕ I2, where I1 is an ideal of the ring R[x]
⟨(x−1)ps

⟩
and I2 is an ideal of the ring R[x]

⟨(v(x))ps
⟩
, proving (i). (ii)

and (iii) can be easily seen from (i), completing our proof. □

Put Rγ =
R[x]
⟨(v(x))ps

⟩
. We will investigate all ideals of Rγ. In order to do so, we need to prove that any

nonzero polynomial of degree less than 4 in Fpm [x] is invertible in Rγ.

Proposition 5.3. Any nonzero polynomial of degree less than 4 in Fpm [x] is invertible in Rγ.

Proof. Assume that f (x) = ax3 + bx2 + cx + d is a nonzero polynomial in Fpm [x]. This means that
a, b, c, d ∈ Fpm such that not all of them are zero. If deg( f ) = 0, then a = b = c = 0 and d , 0. It is clear that
f (x) = d , 0 which is invertible. We consider 3 cases, namely, deg( f ) = 1, 2 and 3.

• Case 1: deg ( f ) = 1. Since deg ( f ) = 1, we have a = b = 0, and c , 0, i.e, f (x) can be expressed as
f (x) = cx + d. In Rγ, we see that

c−1(x + c−1d)−1 = c−1(x + c−1d)ps
−1

(
x3 + (1 − c−1d)x2 +

(
(c−1d)2

− c−1d + 1
)

x −
(
(c−1d)3

− (c−1d)2 + c−1d − 1
))ps

× (x + c−1d)−ps (
x3 + (1 − c−1d)x2 +

(
(c−1d)2

− c−1d + 1
)

x −
(
(c−1d)3

− (c−1d)2 + c−1d − 1
))−ps

= −c−1(x + c−1d)ps
−1

(
x3 + (1 − c−1d)x2 +

(
(c−1d)2

− c−1d + 1
)

x −
(
(c−1d)3

− (c−1d)2 + c−1d − 1
))ps

×

[
(c−1d)4

− (c−1d)3 + (c−1d)2
− c−1d + 1

]−ps

.

It is easy to see that cx + d is invertible in Rγ if and only if
[
(c−1d)4

− (c−1d)3 + (c−1d)2
− c−1d + 1

]−ps

is
invertible inFpm . Since x4+x3+x2+x+1 is irreducible overFpm , (−c−1d)4+(−c−1d)3+(−c−1d)2+(−c−1d)+1 ,
0. Hence, (c−1d)4

− (c−1d)3 + (c−1d)2
− c−1d+ 1 is invertible in Fpm , proving that cx+ d is invertible in Rγ.

•Case 2: deg ( f ) = 2. Since deg ( f ) = 2, we have a = 0, and b , 0. Hence, f (x) = bx2+cx+d. InRγ, we see that

f (x)−1 = (bx2 + cx + d)−1

= b−1
(
x2 + b−1cx + b−1d

)−1

= b−1
(
x2 + c2x + d2

)−1
,where c2 = b−1c and d2 = b−1d

= b−1
(
x2 + c2x + d2

)ps
−1 (

x2 + c2x + d2

)−ps [
x2 + (1 − c2)x + (c2

2 − c2 − d2 + 1)
]ps

×

[
x2 + (1 − c2)x + (c2

2 − c2 − d2 + 1)
]−ps

= b−1
(
x2 + c2x + d2

)ps
−1 [

x2 + (1 − c2)x + (c2
2 − c2 − d2 + 1)

]ps

×

[
(c3

2 − c2
2 − 2c2d2 + c2 + d2 − 1)x + (c2

2d2 − c2d2 − d2
2 + d2 − 1)

]−ps

.

Hence, f (x) is invertible if and only if (c3
2−c2

2−2c2d2+c2+d2−1)x+ (c2
2d2−c2d2−d2

2+d2−1) is invertible,
which, by Case 1, is equivalent to (c3

2−c2
2−2c2d2+c2+d2−1)x+(c2

2d2−c2d2−d2
2+d2−1) , 0. If d2 = 0, then

c2
2d2− c2d2−d2

2+d2−1 , 0 implying f (x) is invertible. If d2 = 1, then c2
2d2− c2d2−d2

2+d2−1 = c2
2− c2−1.

By Proposition 5.1 (ii), there is not a γ ∈ Fpm such that γ2 = 5. Hence, c2
2 − c2 − 1 , 0. Therefore,

c2
2d2 − c2d2 − d2

2 + d2 − 1 , 0 when d2 = 1. Thus, f (x) is invertible when d2 = 1. Suppose that
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(c3
2 − c2

2 − 2c2d2 + c2 + d2 − 1)x + (c2
2d2 − c2d2 − d2

2 + d2 − 1) = 0 and d2 < {0, 1}. That means that
c3

2 − c2
2 − 2c2d2 + c2 + d2 − 1 = 0 and c2

2d2 − c2d2 − d2
2 + d2 − 1 = 0, where d2 < {0, 1}. As the equation

c2
2d2 − c2d2 − d2

2 + d2 − 1 = 0 has a root, it has two roots c2 =
d2±e
2d2

, where 4d3
2 − 3d2

2 + 4d2 = e2 and e ∈ Fpm .
We consider the first case of c2, namely, c2 =

d2+e
2d2

. Since c3
2 − c2

2 − 2c2d2 + c2 + d2 − 1 = 0, using c2 =
d2+e
2d2

,
we must have

0 =
(d2 + e

2d2

)3
−

(d2 + e
2d2

)2
− 2

(d2 + e
2d2

)
d2 +

(d2 + e
2d2

)
+ d2 − 1

= (d2 + e)3
− 2d2(d2 + e)2

− (2d2)3(d2 + e) + 4d2
2(d2 + e) + 8d3

2(d2 − 1)

= d3
2 + 3d2

2e + 3d2e2 + e3
− 2d3

2 − 4d2
2e − 2d2e2

− 8d4
2 − 8d3

2e + 4d3
2 + 4d2

2e + 8d4
2 − 8d3

2

= −5d3
2 + 3d2

2e + d2e2
− 8d3

2e + e3

= e(e2
− 8d3

2 + 3d2
2) − 5d3

2 + d2e2

= ed2(−4d2
2 + 4) + 4d4

2 − 8d3
2 + 4d2

2.

This implies that 4d3
2 − 8d2

2 + 4d2 + e(−4d2
2 + 4) = 0. Therefore, e(−4d2

2 + 4) = −4d3
2 + 8d2

2 − 4d2. It follows
that e2(−4d2

2 + 4)2 = (−4d3
2 + 8d2

2 − 4d2)2. Hence, (4d2
2 − 3d2 + 4)(−4d2

2 + 4)2
− d2(4d2

2 − 8d2 + 4)2 = 0, i.e.,
(d2−1)2(d4

2+d3
2+d2

2+d2+1) = 0. From d2 , 1, we have d4
2+d3

2+d2
2+d2+1 = 0, which is a contradiction

with Proposition 5.1 (i). Similar to the case c2 =
d2+e
2d2

, we have a contradiction to Proposition 5.1 (ii)
when c2 =

d2−e
2d2

. Hence, Hence, (c3
2 − c2

2 − 2c2d2 + c2 + d2 − 1)x+ (c2
2d2 − c2d2 − d2

2 + d2 − 1) , 0, i.e., f (x) is
invertible.

• Case 3: deg( f ) = 3. Since deg( f ) = 3, we have a , 0. Hence, f (x) = ax3 + bx2 + cx + d. In Rγ, we see that

f (x)−1 = (ax3 + bx2 + cx + d)−1

= a−1
(
x3 + a−1bx2 + a−1cx + a−1d

)−1

= a−1
(
x3 + b3x2 + c3x + d3

)−1
,where b3 = a−1b, c3 = a−1c and d3 = a−1d

= a−1
(
x3 + b3x2 + c3x + d3

)ps
−1 (

x3 + b3x2 + c3x + d3

)−ps

[x + (−b3 + 1)]ps
[x + (−b3 + 1)]−ps

= a−1
(
x3 + b3x2 + c3x + d3

)ps
−1

(x + (−b3 + 1))ps [(
x3 + b3x2 + c3x + d3

) (
x + (−b3 + 1)

)]−ps

= a−1
(
x3 + b3x2 + c3x + d3

)ps
−1

(x + (−b3 + 1))ps

×

[
(−b2

3 + b3 + c3 − 1)x2 + (−b3c3 + c3 + d3 − 1)x + (−b3d3 + d3 − 1)
]−ps

.

This shows that f (x) is invertible if and only if (−b2
3+b3+c3−1)x2+ (−b3c3+c3+d3−1)x+ (−b3d3+d3−1)

is invertible, i.e., by Case 2, (−b2
3 + b3 + c3 − 1)x2 + (−b3c3 + c3 + d3 − 1)x + (−b3d3 + d3 − 1) , 0.

Suppose that (−b2
3 + b3 + c3 − 1)x2 + (−b3c3 + c3 + d3 − 1)x + (−b3d3 + d3 − 1) = 0. It implies that

−b2
3 + b3 + c3 − 1 = 0,−b3c3 + c3 + d3 − 1 = 0 and −b3d3 + d3 − 1 = 0. If b3 = 1, then d3 − d3b3 − 1 = −1 , 0,

which is a contradiction. Hence, b3 , 1, implying d3 =
1

1−b3
. From −b3c3 + c3 + d3 − 1 = 0, it follows
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that c3 =
1−d3
1−b3
= − b3

(1−b3)2 . Thus, we have

0 = − b2
3 + b3 + c3 − 1

= −b2
3 + b3 +

−b3

(1 − b3)2 − 1

= b4
3 − 3b3

3 + 4b2
3 − 2b3 + 1

=
(
b4

3 +
9
4

b2
3 +

9
4
− 3b3

3 + 3b2
3 −

9
2

b3

)
−

5
4

(
b2

3 − 2b3 + 1
)

=
(
b2

3 −
3
2

b3 +
3
2

)2

−
5
4

(b3 − 1)2 .

That means

5 =

(
b2

3 −
3
2 b3 +

3
2

)2

4 (b3 − 1)2 ,

which is a square. By Proposition 5.1 (ii), this is impossible. Therefore, f (x) is invertible. □

Proposition 5.4. The polynomial v(x) is nilpotent in R[x]
⟨(v(x))ps

⟩
with nilpotency index ps. R[x]

⟨(v(x))ps
⟩

is a local ring with
maximal ideal ⟨v(x),u⟩, but it is not a chain ring.

Proof. In R[x]
⟨(v(x))ps

⟩
, (v(x))ps

= 0. Hence, v(x) is nilpotent in R[x]
⟨(v(x))ps

⟩
with nilpotency index ps. Assume that

f (x) is an arbitrary element of R[x]
⟨(v(x))ps

⟩
. Then f (x) can be seen as a polynomial of degree up to 4ps

− 1 of R[x],
and so f (x) = f1(x) + u f2(x), where f1(x), f2(x) are polynomials of degrees up to 4ps

− 1 of Fpm [x]. Thus,

f (x) =
ps
−1∑

i=0

(a0ix3 + b0ix2 + c0ix + d0i)(v(x))i + u
ps
−1∑

i=0

(a1ix3 + b1ix2 + c0ix + d0i)(v(x))i

= (a00x3 + b00x2 + c00x + d00) + (v(x))
ps
−1∑

i=1

(a0ix3 + b0ix2 + c0ix + d0i)(v(x))i−1

+ u
ps
−1∑

i=0

(a1ix3 + b1ix2 + c0ix + d0i)(v(x))i,

where a0i, a1i, b0i, b1i, c0i, c1i, d0i, d1i ∈ Fpm . Since both v(x) and u are nilpotent in R[x]
⟨(v(x))ps

⟩
, f (x) is non-invertible

if and only if a00 = b00 = c00 = d00 = 0, i.e., f (x) ∈ ⟨v(x),u⟩. It means that ⟨v(x),u⟩ forms the set of all
non-invertible elements of R[x]

⟨(v(x))ps
⟩
. Thus, R[x]

⟨(v(x))ps
⟩

is a local ring with maximal ideal ⟨v(x),u⟩. Moreover,
it is easy to see that u< ⟨v(x)⟩, and v(x)< ⟨u⟩. Hence, the maximal ideal ⟨v(x),u⟩ is not principal, hence,
Proposition 2.1 implies that R[x]

⟨(v(x))ps
⟩

is not a chain ring. □

Theorem 5.5. Ideals of R[x]
⟨(v(x))ps

⟩
are

• Type 1: (trivial ideals)
⟨0⟩, ⟨1⟩.

• Type 2: (principal ideals with nonmonic polynomial generators)〈
u(v(x))i

〉
,

where 0 ≤ i ≤ ps
− 1.
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• Type 3: (principal ideals with monic polynomial generators)〈
(v(x))i + u(v(x))th(x)

〉
,

where 1 ≤ i ≤ ps
− 1, 0 ≤ t < i, and either h(x) is 0 or h(x) is a unit which can be represented as h(x) =∑

j(h3 jx3 + h2 jx2 + h1 jx + h0 j)(v(x)) j, with h3 j, h2 j, h1 j, h0 j ∈ Fpm , and h30x3 + h20x2 + h10x + h00 , 0.

• Type 4: (nonprincipal ideals) 〈
(v(x))i + u

ω−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j,u(v(x))ω
〉
,

where 1 ≤ i ≤ ps
− 1, a j, b j, c j, d j ∈ Fpm , and ω < T, where T is the smallest integer such that

u(v(x))T
∈ ⟨(v(x))i + u

i−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j
⟩;

or equivalently, 〈
(v(x))i + u(v(x))th(x),u(v(x))ω

〉
,

with h(x) as in Type 3, and deg h(x) ≤ ω − t − 1.

Proof. We see that ideals of Type 1 are ⟨0⟩, ⟨1⟩.. Let I be an arbitrary nontrivial ideal of R[x]
⟨(v(x))ps

⟩
. We

consider all possible forms that the ideal I can have.
Case 1. I ⊆ ⟨u⟩ : Then any element of I must be of the form u

∑ps
−1

i=0 (a1ix3 + b1ix2 + c1ix + d1i)(v(x))i, where
a1i, b1i, c1i, d1i ∈ Fpm . Then there is an element a ∈ I that has the smallest k satisfying a1ix3+b1ix2+c0ix+d0i , 0.
Therefore, for any c(x) ∈ I, it has the form c(x) = u(v(x))k ∑ps

−1
i=k (a′1ix

3 + b′1ix
2 + c′1ix+ d′1i)(v(x))i−k, which implies

I ⊆ ⟨u(v(x))k
⟩. However, we have a ∈ I with

a = u(v(x))k
ps
−1∑

i=k

(a1ix3 + b1ix2 + c1ix + d1i)(v(x))i−k

= u(v(x))k

a1kx3 + b1kx2 + c1kx + d1k +

ps
−1∑

i=k+1

(a1ix3 + b1ix2 + c1ix + d1i)(v(x))i−k

 .
Since a1kx3+b1kx2+ c1kx+d1k , 0, a1kx3+b1kx2+ c1kx+d1k+

∑ps
−1

i=k+1(a1ix3+b1ix2+ c1ix+d1i)(v(x))i−k is invertible,
hence, u(v(x))k

∈ I. Therefore, I = ⟨u(v(x))k
⟩, which means that the nontrivial ideals of R[x]

⟨(v(x))ps
⟩

contained in

⟨u⟩ are ⟨u(v(x))k
⟩, 0 ≤ k ≤ ps

− 1, which are ideals of Type 2.

Case 2. I ⊈ ⟨u⟩ : Let Iu denote the set of elements in I reduced modulo u. Then Iu is a nonzero ideal of
the ring

Fpm [x]
⟨(v(x))ps

⟩
, which is a finite chain ring with ideals ⟨(v(x)) j

⟩, where 0 ≤ j ≤ ps. Hence, there is an integer

i ∈ {0, 1, . . . , ps
− 1} such that Iu = ⟨(v(x))i

⟩ ⊆
Fpm [x]
⟨(v(x))ps

⟩
. Therefore, there exists an element c(x) ∈ R[x]

⟨(v(x))ps
⟩

and c(x)
can be expressed as

c(x) =
ps
−1∑

j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j + u
ps
−1∑

j=0

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x)) j,
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where a0 j, a1 j, b0 j, b1 j, c0 j, c1 j, d0 j, d1 j ∈ Fpm , such that (v(x))i + uc(x) ∈ I. Since

(v(x))i + uc(x) = (v(x))i + u
ps
−1∑

j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j
∈ I,

and
u(v(x))k = u

[
(v(x))i + uc(x)

]
(v(x))k−i

∈ I

with i ≤ k ≤ ps
− 1, it implies that that

(v(x))i + u
i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j
∈ I.

We now consider two subcases.

Case 2a. I =
〈
(v(x))i + u

∑i−1
j=0(a jx3 + b jx2 + c jx + d j)(v(x)) j

〉
. Hence,

I =
〈
(v(x))i + u(v(x))th(x)

〉
,

where h(x) is 0 or a unit which can be represented as h(x) =
∑

j(h0 jx3 + h1 jx2 + h2 jx + h3 j)(v(x)) j, with
h0 j, h1 j, h2 j, h3 j ∈ Fpm and h00x3 + h10x2 + h20x + h30 , 0. Thus, I is of Type 3.

Case 2b.
〈
(v(x))i + u

∑i−1
j=0(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

〉
⊊ I.

Since
〈
(v(x))i + u

∑i−1
j=0(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

〉
⊊ I, there exists

f (x) ∈ I \
〈
(v(x))i + u

i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j
〉
.

Hence, there exists a polynomial 1(x) ∈ R[x]
⟨(v(x))ps

⟩
satisfying

0 , h(x) = f (x) − 1(x)

(v(x))i + u
i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

 ∈ I.

It shows that

h(x) =
i−1∑
j=0

(h0 jx3 + h1 jx2 + h2 jx + h3 j)(v(x)) j + u
i−1∑
j=0

(h′0 jx
3 + h′1 jx

2 + h′2 jx + h′3 j)(v(x)) j,

where h0 j, h1 j, h2 j, h3 j, h′0 j, h
′

1 j, h
′

2 j, h
′

3 j ∈ Fpm . Hence, h(x) reduced modulo u is in Iu = ⟨(v(x))i
⟩, and thus,

h0 j = h1 j = h2 j = h3 j = 0 for all 0 ≤ j ≤ i − 1, i.e., h(x) = u
∑i−1

j=0(h′0 jx
3 + h′1 jx

2 + h′2 jx + h′3 j)(v(x)) j. As h(x) , 0,
there exists a smallest integer k, 0 ≤ k ≤ i − 1, such that h′0kx3 + h′1kx2 + h′2kx + h′3k , 0. Then

h(x) = u
i−1∑
j=k

(h′0 jx
3 + h′1 jx

2 + h′2 jx + h′3 j)(v(x)) j

= u(v(x))k
[
h′0kx3 + h′1kx2 + h′2kx + h′3k

]
+ u(v(x))k

 i−1∑
j=k+1

(h′0 jx
3 + h′1 jx

2 + h′2 jx + h′3 j)(v(x)) j−k

 .
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Since h′0kx3 + h′1kx2 + h′2kx + h′3k , 0, h′0kx3 + h′1kx2 + h′2kx + h′3k +
∑i−1

j=k+1(h′0 jx
3 + h′1 jx

2 + h′2 jx + h′3 j)(v(x)) j−k is an

invertible element in R[x]
⟨(v(x))ps

⟩
. Put

m(x) = h′0kx3 + h′1kx2 + h′2kx + h′3k +

i−1∑
j=k+1

(h′0 jx
3 + h′1 jx

2 + h′2 jx + h′3 j)(v(x)) j−k.

Then
u(v(x))k =

(
(m(x)) j−k

)−1
h(x) ∈ I.

We have shown that for any

f (x) ∈ I \
〈
(v(x))i + u

i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j
〉
,

there is an integer k with 0 ≤ k ≤ i − 1 such that u(v(x))k
∈ I. Let

ω = min

k| f (x) ∈ I \ ⟨(v(x))i + u
i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j
⟩

 .
Then 〈

(v(x))i + u
i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j,u(v(x))ω
〉
⊆ I.

Moreover, by the above construction, for any f (x) ∈ I, there is a polynomial 1(x) ∈ I such that

f (x) − 1(x)[(v(x))i + u
i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j] ∈ ⟨u(v(x))ω⟩,

showing that

f (x) ∈ ⟨(v(x))i + u
i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j,u(v(x))ω⟩.

Thus,

I =
〈
(v(x))i + u

i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j,u(v(x))ω
〉

=

〈
(v(x))i + u

ω−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j,u(v(x))ω
〉
.

Let T be the smallest integer such that

u(v(x))T
∈ ⟨(v(x))i + u

i−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j
⟩.

If ω ≥ T, then

I =
〈
(v(x))i + u

ω−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j,u(v(x))ω
〉

=

〈
(v(x))i + u

i−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j
〉
,



H. Q Dinh et al. / Filomat 37:26 (2023), 9009–9038 9025

which contradicts the assumption of this case. Hence ω < T, proving that I is of Type 4, as required. □

The following result helps us to determine T.

Proposition 5.6. Let T be the smallest integer satisfying

u(v(x)))T
∈ ⟨(v(x)))i + u(v(x)))th(x)⟩.

Then

T =
{

i, if h(x) = 0,
min{i, ps

− i + t}, if h(x) , 0.

Proof. Since u(v(x)))i = u[(v(x)))i + u(v(x)))th(x)] ∈ C, we see that T ≤ i. If h(x) = 0, then C = ⟨(v(x)))i
⟩,

showing that T = i. Assume that h(x) is a unit, i.e., h(x) , 0. Since

u(v(x)))T
∈ ⟨(v(x)))i + u(v(x)))th(x)⟩,

there exists a polynomial f (x) ∈ R[x]
⟨(v(x))ps

⟩
such that

u(v(x)))T = f (x)[(v(x)))i + u(v(x)))th(x)].

Then

f (x) =
ps
−1∑

j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j + u
ps
−1∑

j=0

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x)) j,
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where a0 j, a1 j, b0 j, b1 j, c0 j, c1 j, d0 j, d1 j ∈ Fpm . From this, we have

u(v(x))T =

ps
−1∑

j=0

(a0 jx3 + b0 jz2 + c0 jx + d0 j)(v(x)) j


×

[
(v(x))i + u(v(x))th(x)

]
+

u ps
−1∑

j=0

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x)) j


×

[
(v(x))i + u(v(x))th(x)

]
= (v(x))i

ps
−1∑

j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

+ u(v(x))i
ps
−1∑

j=0

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x)) j

+ u(v(x))th(x)
ps
−1∑

j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

= (v(x))i
ps
−i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

+ (v(x))ps
ps
−1∑

j=ps−i

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x))i+ j−ps

+ u(v(x))i
ps
−i−1∑
j=0

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x)) j

+ u(v(x))ps
ps
−1∑

j=ps−i

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x))i+ j−ps

+ u(v(x))th(x)
ps
−i−1∑
j=0

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

+ u(v(x))th(x)
ps
−1∑

j=ps−i

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

= u(v(x))i
ps
−i−1∑
j=0

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x)) j

+ u(v(x))th(x)
ps
−1∑

j=ps−i

(a0 jx3 + b0 jx2 + c0 jx + d0 j)(v(x)) j

= u(v(x))i
ps
−i−1∑
j=0

(a1 jx3 + b1 jx2 + c1 jx + d1 j)(v(x)) j

+ u(v(x))ps
−i+th(x)

i−1∑
j=0

q0,ps−i+t(x)(v(x)) j,
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where q0,ps−i+t(x) = a0,ps−i+ jx3 + b0,ps−i+ jx2 + c0,ps−i+ jx + d0,ps−i+ j. Thus, T ≥ min{i, ps
− i + t}. Moreover,[

(v(x))i + u(v(x))th(x)
]

(v(x))ps
−i = u(v(x))ps

−i+th(x).

Therefore,
u(v(x))ps

−i+t =
[
(v(x))i + u(v(x))th(x)

]
(v(x))ps

−ih(x)−1
∈ C.

Thus, T ≤ ps
− i + t, proving that T = min{i, ps

− i + t}. □

Let C be a code of length n over R. We recall torsion and residue codes of C as follows:

Tor(C) = {a ∈ Fn
pm |u a ∈ C},

Res(C) = {a ∈ Fn
pm | ∃b : a+u b ∈ C}.

The reduction modulo u from C to Res(C) is given by

ϕ : C −→ Res(C), ϕ(a+u b) = a .

Clearly, ϕ is well-defined and onto, with Ker(ϕ) = Tor(C), and ϕ(C) = Res(C). Therefore, |Res(C)| = |C|
|Tor(C)| .

Thus, we have:

Proposition 5.7. Let C be a code of length n over R, whose torsion and residue codes are Tor(C) and Res(C). Then
|C| = |Tor(C)| · |Res(C)|.

We can now give the enumeration of elements in each ideal of the ring R[x]
⟨(v(x))ps

⟩
.

Theorem 5.8. Let I be an ideal of the ring R[x]
⟨(v(x))ps

⟩
. Then the numbers of elements of I, denoted by nI is determined as

follows.

• If I = ⟨0⟩, then nI = 1.

• If I = ⟨1⟩, then nI = p8mps .

• If I = ⟨u(v(x))i
⟩, where 0 ≤ i ≤ ps

− 1, then nI = p4m(ps
−i).

• If I = ⟨(v(x))i
⟩, where 1 ≤ i ≤ ps

− 1, then nI = p8m(ps
−i).

• If I = ⟨(v(x))i + u(v(x))th(x)⟩, where 1 ≤ i ≤ ps
− 1, 0 ≤ t < i, and h(x) is a unit, then

nI =

p8m(ps
−i), if 1 ≤ i ≤ ps−1 + t

2

p4m(2ps
−i−T), if ps−1 + t

2 < i ≤ ps
− 1
.

• If I = ⟨(v(x))i + u(v(x))th(x),u(v(x))κ⟩, where 1 ≤ i ≤ ps
− 1, 0 ≤ t < i, either h(x) is 0 or h(x) is a unit, and

κ < T =

i, if h(x) = 0
min{i, ps

− i + t}, if h(x) , 0 ,

then nI = p4m(2ps
−i−κ).

Proof.

(i) Type 1:

• If I = ⟨0⟩, then Res(I) = Tor(I) = ⟨0⟩, proving (i).

• If I = ⟨1⟩, then Res(I) = Tor(I) = ⟨1⟩.
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(ii) Type 2: If I = ⟨u(v(x))i
⟩, where 0 ≤ i ≤ ps

− 1, then Res(I) = ⟨0⟩ and Tor(I) = ⟨(v(x))i
⟩.

(iii) Type 3: If I = ⟨(v(x))i + u(v(x))th(x)⟩, where 1 ≤ i ≤ ps
− 1, 0 ≤ t < i and either h(x) is 0 or h(x) is a unit.

Then Res(I) = ⟨(v(x))i
⟩ and Tor(I) = ⟨(v(x))T

⟩, where T is the smallest integers such that u(v(x))T
∈ I,

which is given by

T =

i, if h(x) = 0
min{i, ps

− i + t}, if h(x) , 0 ,

(iv) Type 4: If I = ⟨(v(x))i + u(v(x))th(x),u(v(x))κ⟩, where 1 ≤ i ≤ ps
− 1, 0 ≤ t < i, either h(x) is 0 or h(x) is a

unit, and κ < T, then Res(I) = ⟨(v(x))i
⟩ and Tor(I) = ⟨(v(x))κ⟩. □

We need to have two following lemmas to determine the duals of all λ-constacyclic codes with respect to
four types as classified in Theorem 5.5.

Lemma 5.9. Let f (x) = (v(x))i
− u

∑t
j=0(a jx3 + b jx+ c jx+ d j)(v(x)) j be a polynomial over R[x]

⟨(v(x))ps
⟩
, where t < i. Then

f ∗(x) = (v(x))i
− u

t∑
j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4 j−3.

Proof. Using Lemma 2.8,
[
(v(x))k

]∗
= [(v(x))∗]k = (v(x))k. Applying Lemma 2.8 again, we have

f ∗(x) =
[
(v(x))i

]∗
− u

t∑
j=0

(a jx3 + b jx + c jx + d j)∗
[
(v(x)) j

]∗
x4i−4 j−3

= (v(x))i
− u

t∑
j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4 j−3. □

Lemma 5.10. If I = ⟨(v(x))i + u(v(x))th(x),u(v(x))ω⟩, then ps
− i is the smallest positive integer r such that

u(v(x))r
∈ A(I).

Proof. Assume that [
(v(x))i + u(v(x))th(x)

]
u(v(x))r = 0.

Since the nilpotency index of v(x) is ps, i + r ≥ ps, i.e., r ≥ ps
− i, as required. □

Theorem 5.11. Let I = ⟨u(v(x))i
⟩ be an ideal of the ring R[x]

⟨(v(x))ps
⟩
, then I⊥ = ⟨(v(x))ps

−i,u⟩.

Proof. As I ⊆ ⟨u⟩ and I ⊆ ⟨(v(x))i
⟩, we see that ⟨(v(x))ps

−i
⟩ = ⟨(v(x))i

⟩
⊥
⊆ I⊥ and ⟨u⟩ = ⟨u⟩⊥ ⊆ I⊥.

So ⟨(v(x))ps
−i,u⟩ ⊆ I⊥. The other inequality follows from the fact that the coefficient vector of (v(x))ps

−i is
orthogonal to the coefficient vector of u(v(x))i. □

Theorem 5.12. Let I = ⟨(v(x))i + u(v(x))th(x)⟩ be an ideal of the ring R[x]
⟨(v(x))ps

⟩
, where h(x) is 0 or h(x) is a unit. Then

the dual idealA(I)∗, determinded as follows.

1) If h(x) is 0, thenA(I)∗ = ⟨(v(x))ps
−i
⟩.

2) If h(x) is a unit and 1 ≤ i ≤ ps+t
2 , thenA(I)∗ = ⟨a(x)⟩, where

a(x) = (v(x))ps
−i

− u(v(x))ps
−2i+t

i−t−1∑
j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4t−4 j−3.
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3) If h(x) is a unit and ps+t
2 < i ≤ ps

− 1, thenA(I)∗ = ⟨b(x),u(v(x))ps
−i
⟩,where

b(x) = (v(x))i−t

− u
ps
−i−1∑
j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4t−4 j−3.

Proof. We see that 1) is obvious. We continue to prove 2) and 3). Let h(x) be a unit. Since

[(v(x))i + u(v(x))th(x)][(v(x))ps
−i
− u(v(x))ps

−2i+th(x)] = 0,

it implies that
⟨(v(x))ps

−i
− u(v(x))ps

−2i+th(x)⟩ ⊆ A(I).

We see that A(I) can express as A(I) = ⟨ f (x),u(v(x))k
⟩, where f (x) = (v(x))a + u(v(x))b1(x). We give the

simpliest form for the generators f (x) and u(v(x))k. Using Lemma 5.10, ps
− i is the smallest integer r such

that u(v(x))r
∈ A(I). Hence, k = ps

− i. On the other hand,

f (x)[(v(x))i + u(v(x))th(x)] = [(v(x))a + u(v(x))b1(x)]

× [(v(x))i + u(v(x))th(x)]

= (v(x))a+i + u(v(x))a+th(x)

+ u(v(x))b+i1(x)
= 0.

It is easy to see that a + i ≥ ps, i.e., a ≥ ps
− i. We consider two ranges of i, namely, 1 ≤ i ≤ ps+t

2 and
ps+t

2 < i ≤ ps
− 1.

◦ 1 ≤ i ≤ ps+t
2 : Since a ≥ ps

− i, we can choose a = ps
− i. Then we can set b = ps

− 2i + t and 1(x) = −h(x).
Hence,

f (x) = (v(x))a + u(v(x))b1(x)

∈

〈
(v(x))ps

−i
− u(v(x))ps+t−2ih(x),u(v(x))ps

−i
〉

and
A(I) = ⟨(v(x))ps

−i
− u(v(x))ps+t−2ih(x),u(v(x))ps

−i
⟩.

As u(v(x))ps
−i = u

[
(v(x))ps

−i
− u(v(x))ps+t−2ih(x)

]
, it implies that u(v(x))ps

−i
∈

〈
(v(x))ps

−i
− u(v(x))ps+t−2ih(x)

〉
.

Hence, we have
A(I) =

〈
(v(x))ps

−i
− u(v(x))ps+t−2ih(x)

〉
.

Let h(x) =
∑

j(a jx3 + b jx2 + c jx + d j)(v(x)) j, where a0x3 + b0x2 + c0x + d0 , 0 and a j, b j, c j, d j ∈ Fpm . Since

1 ≤ i ≤ ps+t
2 , t + j < T = min{i, ps

− i + t} = i. Therefore j ≤ i − t − 1. Let

ℓ1(x) = (v(x))ps
−i
− u(v(x))ps

−2i+t
i−t−1∑

j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j.

Then ⟨A(I)∗⟩ = ⟨ℓ∗1(x)⟩, and by Lemma 5.8, we have

ℓ∗1(x) = (v(x))ps
−i

− u(v(x))ps
−2i+t

i−t−1∑
j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4t−4 j−3,

proving 2).
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◦
ps+t

2 < i ≤ ps
− 1: In this case, ps

− i < i − t, so we can choose a = i − t. That means, we need b and 1(x)
such that

u(v(x))ih(x) + u(v(x))b+i1(x) = 0.

Thus, we can choose b = 0 and 1(x) = −h(x). Hence, f (x) = (v(x))i−t
− uh(x). Let h(x) =

∑
j(a jx3 +

b jx2 + c jx + d j)(v(x)) j, where a0x3 + b0x2 + c0x + d0 , 0 and a j, b j, c j, d j ∈ Fpm . Since ps+t
2 < i ≤ ps

− 1,
t + j < T = min{i, ps

− i + t} = ps
− i + t, showing j ≤ ps

− i − 1. Let

ℓ2(x) = (v(x))i−t
− u

ps
−i−1∑
j=0

(a jx + b j)(v(x)) j.

Now ⟨A(I)∗⟩ = ⟨ℓ∗2(x),u(v(x))ps
−i
⟩, and by Lemma 5.9, we have

ℓ∗2(x) = (v(x))i−t

− u
ps
−i−1∑
j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4t−4 j−3,

which proves 3). □

Theorem 5.13. Let I = ⟨(v(x))i + u(v(x))th(x),u(v(x))ω⟩ be an ideal of the ring R[x]
⟨(v(x))ps

⟩
, where h(x) is 0 or h(x) is a

unit. Then the dual idealA(I)∗ is determinded as follows.

(1) If h(x) = 0, thenA(I)∗ =
〈
(v(x))ps

−ω,u(v(x))ps
−i
〉
.

(2) If h(x) is a unit, thenA(I)∗ =
〈
c(x),u(v(x))ps

−i
〉
,where

c(x) = (−γ0)i−t(v(x))ps
−ω

− u(v(x))ps
−i−ω+t

ω−t−1∑
j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4t−4 j−3.

Proof. If h(x) = 0, then I = ⟨(v(x))i,u(v(x))ω⟩. Hence,

A(I) =
〈
(v(x))ps

−ω,u(v(x))ps
−i
〉
.

Therefore,

A(I)∗ =
〈[

(v(x))ps
−ω

]∗
,
[
u(v(x))ps

−i
]∗〉

=
〈
(v(x))ps

−ω,u(v(x))ps
−i
〉

=
〈
(v(x))ps

−ω,u(v(x))ps
−i
〉
,

proving (1). Let h(x) be a unit. Put

E =
〈
(v(x))ps

−ω
− u(v(x))ps

−i−ω+th(x),u(v(x))ps
−i
〉
.

Then |E| = p4m(i+ω). It is easy to verify that E ⊆ A(I). On the other hand, we see that

p4m(i+ω) = |E| ≤ |A(I)| = |A(I)∗| =
p8mps

nI
≤

p8mps

p4m(2ps−i−ω)
= p4m(i+ω).
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It implies that E = A(I), i.e., 〈
(v(x))ps

−ω
− u(v(x))ps

−i−ω+th(x),u(v(x))ps
−i
〉
= A(I).

Let h(x) =
∑

j(a jx3 + b jx2 + c jx + d j)(v(x)) j, where a0x3 + b0x2 + c0x + d0 , 0 and a j, b j, c j, d j ∈ Fpm . In this case,
we have j ≤ ω − t − 1. Let

ℓ(x) = (v(x))ps
−ω
− u(v(x))ps

−i−ω+t
ω−t−1∑

j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j.

ThenA(I)∗ =
〈
ℓ∗(x),u(v(x))ps

−i
〉
. From Lemma 5.8,

ℓ∗(x) = (v(x))ps
−ω
− u(v(x))ps

−i−ω+t
ω−t−1∑

j=0

(d jx3 + c jx2 + b jx + a j)(v(x)) jx4i−4t−4 j−3,

completing the proof of (2). □

Summarizing Theorems 5.2, 5.5, 5.12 and 5.13, we give the structure of cyclic codes of length 5ps over R
as follows.

Theorem 5.14. Let C be a cyclic code of length 5ps over R. Then we have:

(i) Cyclic codes of length 5ps over R can be represented as C = C1
⊕

C2, where C1 is an ideal of the ring R[x]
⟨xps
−1⟩

which is determined in [16] and C2 is an ideal of the ring R[x]
⟨(v(x))ps

⟩
which is determined as in Theorem 5.5.

(ii) |C| = |C1||C2|, where |C1| is given in [16], and |C2| is determined as in Theorem 5.8.

(iii) C⊥ = C⊥1
⊕

C⊥2 , where C⊥1 is determined in [16] and C⊥2 is determined as in Theorems 5.12 and 5.13.

Remark 5.15. Consider the map δ : R[x]
⟨x5ps

−1⟩ →
R[x]
⟨x5ps

+1⟩ given by x 7→ −x. We see that δ is a ring isomorphism. Hence,
cyclic and negacyclic codes of length 5ps over R are equivalent via the ring isomorphism δ. So all the results of the
paper hold true for negacyclic codes of length 5ps over R via that isomorphism.

6. Examples

We give some examples to illustrate our results in Sections 3, 4 and 5.

Example 6.1. Let C be a cyclic code of length 35 over R = F7 + uF7. Here, p = 7, s = 1 and m = 1. Then we
have a factorization of x35

− 1 as follows:

x35
− 1 = (x7

− 1)(v(x))7,

where v(x) = x4 + x3 + x2 + x + 1. By the Chinese Remainder Theorem,

R1 �
R[x]

⟨(x7 − 1)⟩

⊕
R[x]
⟨(v(x))7⟩

.

By Theorem 5.14, C = C1
⊕

C2, where C1 is an ideal of the ring R[x]
⟨(x7−1)⟩ , whose structure is given in [16] and

C2 is an ideal of R[x]
⟨(v(x))7⟩

. Using Theorem 5.5, ideals of R[x]
⟨(v(x))7⟩

are

• Type 1:
⟨0⟩, ⟨1⟩.
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• Type 2: 〈
u(v(x))i

〉
,

where 0 ≤ i ≤ 6.

• Type 3: 〈
(v(x))i + u(v(x))th(x)

〉
,

where 1 ≤ i ≤ 6, 0 ≤ t < i, and either h(x) is 0 or h(x) is a unit and h(x) =
∑

j(h3 jx3+h2 jx2+h1 jx+h0 j)(v(x)) j,
with h3 j, h2 j, h1 j, h0 j ∈ F7, and h30x3 + h20x2 + h10x + h00 , 0.

• Type 4: 〈
(v(x))i + u

ω−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j,u(v(x))ω
〉
,

where 1 ≤ i ≤ 6, a j, b j, c j, d j ∈ F7, and ω < T, where T is the smallest integer satisfying

u(v(x))T
∈ ⟨(v(x))i + u

i−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j
⟩;

or equivalently, 〈
(v(x))i + u(v(x))th(x),u(v(x))ω

〉
,

with h(x) as in Type 3, and deg h(x) ≤ ω − t − 1.

By part (ii) of Theorem 5.14, we see that |C| = |C1||C2|, where |C1| is given in [16], and |C2| is determined as
follows:

• |C2| = 1 when C2 = ⟨0⟩.

• |C2| = 756 when C2 = ⟨1⟩.

• |C2| = 74(7−i) when C2 = ⟨u(v(x))i
⟩, where 0 ≤ i ≤ 6.

• |C2| = 78(7−i) when C2 = ⟨(v(x))i
⟩, where 1 ≤ i ≤ 6.

• |C2| =

78(7−i), in this case, 1 ≤ i ≤ 1 + t
2

74(14−i−T), in this case, 1 + t
2 < i ≤ 6

when C2 = ⟨(v(x))i + u(v(x))th(x)⟩, where 1 ≤ i ≤ 6, 0 ≤ t < i,

and h(x) is a unit.

• |C2| = 74(14−i−κ) when C2 = ⟨(v(x))i + u(v(x))th(x),u(v(x))κ⟩, where 1 ≤ i ≤ 6, 0 ≤ t < i, either h(x) is 0 or h(x)
is a unit, and

κ < T =

i, if h(x) = 0
min{i, 7 − i + t}, if h(x) , 0

.

Example 6.2. Let C be a cyclic code of length 65 over R = F13 + uF13. Here, p = 13, s = 1 and m = 1. Then
we have a factorization of x65

− 1 as follows:

x65
− 1 = (x13

− 1)(v(x))13,

where v(x) = x4 + x3 + x2 + x + 1. By the Chinese Remainder Theorem,

R1 �
R[x]

⟨(x13 − 1)⟩

⊕
R[x]
⟨(v(x))13⟩

.

By applying Theorem 5.14, C = C1
⊕

C2, where C1 is an ideal of the ring R[x]
⟨(x13−1)⟩ , whose structure is given

in [16] and C2 is an ideal of R[x]
⟨(v(x))13⟩

. Using Theorem 5.5, ideals of R[x]
⟨(v(x))13⟩

are
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• Type 1:
⟨0⟩, ⟨1⟩.

• Type 2: 〈
u(v(x))i

〉
,

where 0 ≤ i ≤ 12.

• Type 3: 〈
(v(x))i + u(v(x))th(x)

〉
,

where 1 ≤ i ≤ 12, 0 ≤ t < i, and either h(x) is 0 or h(x) is a unit and h(x) =
∑

j(h3 jx3+h2 jx2+h1 jx+h0 j)(v(x)) j,
with h3 j, h2 j, h1 j, h0 j ∈ F13, and h30x3 + h20x2 + h10x + h00 , 0.

• Type 4: 〈
(v(x))i + u

ω−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j,u(v(x))ω
〉
,

where 1 ≤ i ≤ 12, a j, b j, c j, d j ∈ F13, and ω < T, where T is the smallest integer satisfying

u(v(x))T
∈ ⟨(v(x))i + u

i−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j
⟩;

or equivalently, 〈
(v(x))i + u(v(x))th(x),u(v(x))ω

〉
,

with h(x) as in Type 3, and deg h(x) ≤ ω − t − 1.

By part (ii) of Theorem 5.14, we see that |C| = |C1||C2|, where |C1| is given in [16], and |C2| is determined as
follows:

• |C2| = 1 when C2 = ⟨0⟩.

• |C2| = 1356 when C2 = ⟨1⟩.

• |C2| = 134(13−i) when C2 = ⟨u(v(x))i
⟩, where 0 ≤ i ≤ 12.

• |C2| = 138(13−i) when C2 = ⟨(v(x))i
⟩, where 1 ≤ i ≤ 12.

• |C2| =

138(13−i), in this case, 1 ≤ i ≤ 1 + t
2

134(26−i−T), in this case, 1 + t
2 < i ≤ 12

when C2 = ⟨(v(x))i + u(v(x))th(x)⟩, where 1 ≤ i ≤ 12, 0 ≤

t < i, and h(x) is a unit.

• |C2| = 134(26−i−κ) when C2 = ⟨(v(x))i + u(v(x))th(x),u(v(x))κ⟩, where 1 ≤ i ≤ 12, 0 ≤ t < i, either h(x) is 0 or
h(x) is a unit, and

κ < T =

i, if h(x) = 0
min{i, 13 − i + t}, if h(x) , 0

.

Example 6.3. Let C be a cyclic code of length 115 over R = F23 + uF23. Here, p = 23, s = 1 and m = 1. Then
we have a factorization of x115

− 1 as follows:

x115
− 1 = (x23

− 1)(v(x))23,
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where v(x) = x4 + x3 + x2 + x + 1. From the Chinese Remainder Theorem,

R1 �
R[x]

⟨(x23 − 1)⟩

⊕
R[x]
⟨(v(x))23⟩

.

By using Theorem 5.14, C = C1
⊕

C2, where C1 is an ideal of the ring R[x]
⟨(x23−1)⟩ , whose structure is given in

[16] and C2 is an ideal of R[x]
⟨(v(x))23⟩

. Using Theorem 5.5, ideals of R[x]
⟨(v(x))23⟩

are

• Type 1:
⟨0⟩, ⟨1⟩.

• Type 2: 〈
u(v(x))i

〉
,

where 0 ≤ i ≤ 22.

• Type 3: 〈
(v(x))i + u(v(x))th(x)

〉
,

where 1 ≤ i ≤ 22, 0 ≤ t < i, and either h(x) is 0 or h(x) is a unit and h(x) =
∑

j(h3 jx3+h2 jx2+h1 jx+h0 j)(v(x)) j,
with h3 j, h2 j, h1 j, h0 j ∈ F23, and h30x3 + h20x2 + h10x + h00 , 0.

• Type 4: 〈
(v(x))i + u

ω−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j,u(v(x))ω
〉
,

where 1 ≤ i ≤ 22, a j, b j, c j, d j ∈ F23, and ω < T, where T is the smallest integer satisfying

u(v(x))T
∈ ⟨(v(x))i + u

i−1∑
j=0

(a jx3 + b jx2 + c jx + d j)(v(x)) j
⟩;

or equivalently, 〈
(v(x))i + u(v(x))th(x),u(v(x))ω

〉
,

with h(x) as in Type 3, and deg h(x) ≤ ω − t − 1.

By part (ii) of Theorem 5.14, we see that |C| = |C1||C2|, where |C1| is given in [16], and |C2| is determined as
follows:

• |C2| = 1 when C2 = ⟨0⟩.

• |C2| = 2356 when C2 = ⟨1⟩.

• |C2| = 234(23−i) when C2 = ⟨u(v(x))i
⟩, where 0 ≤ i ≤ 22.

• |C2| = 238(23−i) when C2 = ⟨(v(x))i
⟩, where 1 ≤ i ≤ 22.

• |C2| =

238(23−i), in this case, 1 ≤ i ≤ 1 + t
2

234(46−i−T), in this case, 1 + t
2 < i ≤ 22

when C2 = ⟨(v(x))i + u(v(x))th(x)⟩, where 1 ≤ i ≤ 22, 0 ≤

t < i, and h(x) is a unit.

• |C2| = 234(46−i−κ) when C2 = ⟨(v(x))i + u(v(x))th(x),u(v(x))κ⟩, where 1 ≤ i ≤ 22, 0 ≤ t < i, either h(x) is 0 or
h(x) is a unit, and

κ < T =

i, if h(x) = 0
min{i, 23 − i + t}, if h(x) , 0

.
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Example 6.4. Let C be a cyclic code of length 55 over R = F11 + uF11. Then C is an ideal of R1 =
(F11+uF11)[x]
⟨x55−1⟩ .

Here, p = 11, s = 1 and m = 1. We see that

v(x) = (x − 4)(x − 5)(x − 9)(x − 3).

Then we have a factorization of x55
− 1 as follows:

x55
− 1 = (x11

− 1)(x11
− 4)(x11

− 5)(x11
− 9)(x11

− 3),

where v(x) = x4 + x3 + x2 + x + 1. By the Chinese Remainder Theorem, we have

R1 �
R[x]

⟨(x11 − 1)⟩

⊕
R[x]

⟨(x11 − 4)⟩

⊕
R[x]

⟨(x11 − 5)⟩

⊕
R[x]

⟨(x11 − 9)⟩

⊕
R[x]

⟨(x11 − 3)⟩
.

By Theorem 3.1, C = C+
⊕

C1 +
⊕

C2
⊕

C3
⊕

C4, where C+ is a cyclic code of length 11 over R, C1 is a
4-constacyclic code of length 11 over R, C2 is a 5-constacyclic code of length 11 over R, C3 is a 9-constacyclic
code of length 11 over R and C4 is a 3-constacyclic code of length 11 over R. Their structures are given in
[16]. By applying Theorem 3.1, C⊥ = C⊥+

⊕
C⊥1

⊕
C⊥2

⊕
C⊥3

⊕
C⊥4 , where C⊥+ is a cyclic code of length 11

over R, C⊥1 is a 3-constacyclic code of length 11 over R, C⊥2 is a 9-constacyclic code of length 11 over R, C⊥3
is a 5-constacyclic code of length 11 over R and C⊥4 is a 4-constacyclic code of length 11 over R.

Example 6.5. Let C be a cyclic code of length 95 over R = F19 + uF19. Then C is an ideal of R1 =
(F19+uF19)[x]
⟨x95−1⟩ .

Here, p = 19, s = 1 and m = 1. Put γ = 9 ∈ F19. Then γ2 = 92 = 5 ∈ F19. Put α1 = [−(γ + 5)2−3]19 = 319 = 3 ∈
F19 and α2 = [−(γ − 5)2−3]19 = −1019 = −13 = 6 ∈ F19. Then we have a factorization of x95

− 1 as follows:

x95
− 1 = (x19

− 1)(x2
− 4x + 1)19(x2 + 5x + 1)19.

By the Chinese Remainder Theorem,

R1 �
R[x]

⟨(x19 − 1)⟩

⊕
R[x]

⟨(x2 − 4x + 1)19⟩

⊕
R[x]

⟨(x2 + 5x + 1)19⟩
.

From Theorem 4.2, we have

R1 �
R[x]

⟨(x19 − 1)⟩

⊕
R[x]

⟨(x2 − 4x + 1)19⟩

⊕
R[x]

⟨(x2 + 5x + 1)19⟩

�
R[x]

⟨(x19 − 1)⟩

⊕
R[x]

⟨(x38 − 3)⟩

⊕
R[x]

⟨(x38 − 6)⟩
.

By using Theorem 4.4, C = C+
⊕

Cα1

⊕
Cα2 , where C+ is a cyclic code of length 19 over R, Cα1 is a 3-

constacyclic code of length 38 over R and Cα2 is a 6-constacyclic code of length 38 over R. Their structures
are given in [12].

7. Conclusion

In this paper, for an odd prime p , 5, we study all cyclic codes of length 5ps over R, where R =
Fpm + uFpm (u2 = 0). We divide our considerations into 4 cases, namely, p ≡ 1 (mod 5) (Section 3), p ≡ 4
(mod 5) (Section 4), and p ≡ 2 or 3 (mod 5) (Section 5). When p ≡ 1 (mod 5), we see that the polynomial
x5ps
− 1 can be expressed as

x5ps
− 1 = (x5

− 1)ps
= (xps

− 1)(xps
− γps

1 )(xps
− γps

3 )(xps
− γps

7 )(xps
− γps

9 ),

where γps

1 = −
(pm
−1)ps

10 , γps

3 = −
3(pm
−1)ps

10 , γps

7 = −
7(pm
−1)ps

10 , γps

9 = −
9(pm
−1)ps

10 . By Theorem 3.1, the algebraic
structures of all cyclic codes of length 5ps over R when p ≡ 1 (mod 5) are given. Following Theorem 3.1, a
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cyclic code of length 5ps over R is a direct sum of C+,Cγ1 ,Cγ3 ,Cγ7 ,Cγ9 , where C+ is a cyclic code of length
ps over R and Cγi is a γi-constacyclic code of length ps over R (i = 1, 3, 7, 9). From Theorem 3.1, we also see
that the dual of all cyclic codes of length 5ps over R is determined as

C⊥ = C⊥+
⊕

C⊥γ1

⊕
C⊥γ3

⊕
C⊥γ7

⊕
C⊥γ9
,

where C⊥+ is the dual code of C+ and C⊥γi
is the dual code of Cγi (i = 1, 3, 7, 9). In Section 3, Theorem 3.2

presents necessary and sufficient conditions for a self-dual cyclic code of length 5ps over R and Theorem
3.4 provides the number of cyclic codes of length 5ps over R. When p ≡ 4 (mod 5), we divide into 2 cases,
namely, pm

≡ 1 (mod 5) when m is even and pm
≡ 4 (mod 5) when m is odd. If pm

≡ 1 (mod 5) when m is
even, then cyclic codes of length 5ps over R are studied in Section 3. Therefore, in Section 4, we study the
remaining case that is pm

≡ 4 (mod 5) when m is odd. Since pm
≡ 4 (mod 5), there exists γ ∈ Fpm such that

γ2 = 5. Then the polynomial x5ps
− 1 can be expressed as

x5ps
− 1 = (x − 1)ps (

x2 +
(
1 − γ

)
2−1x + 1

)ps (
x2 +

(
1 + γ

)
2−1x + 1

)ps

.

By constructing the ring isomorphism Θ1 : R[x]
⟨(x2+(1−γ)2−1x+1)ps

⟩
→

R[x]
⟨(x2+(5+γ)2−3)ps

⟩
defined by f (x) → f (x − (1 −

γ)2−2) and the ring isomorphism Θ2 : R[x]
⟨(x2+(1+γ)2−1x+1)ps

⟩
→

R[x]
⟨(x2+(γ−5)2−3)ps

⟩
defined by f (x) → f (x − (1 + γ)2−2)

(Theorem 4.2), we investigate all cyclic codes of length 5ps over R when pm
≡ 4 (mod 5) in Theorem

4.4. Theorem 4.4 shows that if C is a cyclic code of length 5ps over R, then C can be represented as
C = C+

⊕
Cα1

⊕
Cα2 where C+ is a cyclic code of length ps over R, Cα1 is an α1-constacyclic code and Cα2 is

an α2-constacyclic code of length 2ps over R (α1 = [−(γ+ 5)2−3]ps
and α2 = [−(γ− 5)2−3]ps

). Theorem 4.4 also
allows us to determine the dual of all cyclic codes of length 5ps over R when pm

≡ 4 (mod 5) as follows:

C⊥ = C⊥+
⊕

C⊥α1

⊕
C⊥α2
,

where C⊥+ is the dual code of C+, C⊥α1
is the dual code of Cα1 , and C⊥α2

is the dual of Cα2 . In Theorem 4.6,
we give the mass formulas to count all cyclic codes of length 5ps over R when pm

≡ 4 (mod 5). When
p ≡ 2 or 3 (mod 5) such that pm . 1 (mod 5), cyclic codes and their dual of length 5ps overR are studied in
Theorem 5.14. By part (i) of Theorem 5.14, cyclic codes of length 5ps over R is determined as C = C1

⊕
C2,

where C1 is an ideal of the ring R[x]
⟨xps
−1⟩ which is determined in [16], and C2 is an ideal of the ring R[x]

⟨(v(x))ps
⟩

which is determined in Theorem 5.5. By part (ii) of Theorem 5.14, we have |C| = |C1||C2|, where |C1| is
computed in [16] and |C2| is determined in Theorem 5.8. In addition, from part (iii) of Theorem 5.14, C⊥ can
be represented as C⊥ = C⊥1

⊕
C⊥2 , where C⊥1 is an ideal of the ring R[x]

⟨xps
−1⟩ and C⊥2 is determined in Theorems

5.12 and 5.13.
As discussed in Remark 5.15, cyclic and negacyclic codes are equivalent via the ring isomorphism

δ : R[x]
⟨x5ps

−1⟩ →
R[x]
⟨x5ps

+1⟩ given by x 7→ −x. So all the results of the paper hold true for negacyclic codes via that
isomorphism.

For future work, it is interesting to investigate λ-constacyclic codes of length 5ps over R, where λ ∈
Fpm \ {0} or λ = α + uβ (α, β ∈ Fpm \ {0}).
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