Minimum degree condition of Berge Hamiltonicity in random 3-uniform hypergraphs

Ailian Chen ${ }^{\text {a }}$, Liping Zhang ${ }^{\text {a,* }}$
${ }^{a}$ School of Mathematics and Statistics, Fuzhou University, Fujian, 350108, P. R China

Abstract

A graph H has Hamiltonicity if it contains a cycle which covers each vertex of H. In graph theory, Hamiltonicity is a classical and worth studying problem. In 1952, Dirac proved that any n-vertex graph H with minimum degree at least $\left\lceil\frac{n}{2}\right\rceil$ has Hamiltonicity. In 2012, Lee and Sudakov proved that if $p \gg \frac{\log n}{n}$, then asympotically almost surely each n-vertex subgraph of random graph $G(n, p)$ with minimum degree at least $(1 / 2+o(1)) n p$ has Hamiltonicity. In this paper, we exend Dirac's theorem to random 3-uniform hypergraphs. The random 3-uniform hypergraph model $H^{3}(n, p)$ consists of all 3-uniform hypergraphs on n vertices and every possible edge appears with probability p randomly and independently. We prove that if $p \gg \frac{\log n}{n^{2}}$, then asympotically almost surely every n-vertex subgraph of $H^{3}(n, p)$ with minimum degree at least $\left(\frac{1}{4}+o(1)\right)\binom{n}{2} p$ has Berge Hamiltonicity. The value $\frac{\log n}{n^{2}}$ and constant $1 / 4$ both are best possible.

1. Introduction

Given a graph H, if there is a cycle contains all vertices of H exactly once, then we say the cycle is a Hamilton cycle and the graph H has Hamiltonicity. If the number of edges and vertices of a graph is large enough, then find a Hamilton cycle is NP-complete [1]. So study its sufficient conditions is very important. The one of classic conclusions is Dirac's theorem [2], which stated that any graph on n vertices with minimum degree at least $\lceil n / 2\rceil$ has Hamiltonicity in 1952 . We mainly consider the applications of Dirac type in random graphs. And we say that random graph asympotically almost surely has property \mathcal{P} if the probability tends to 1 as n goes to infinity. We used $a \gg b$ to indicate $\frac{a}{b}=o(1)$. In 2012, Lee and Sudakov [3] studied the application of Dirac's theorem in random graphs, which stated that if $p \gg \frac{\log n}{n}$, then asympotically almost surely any subgraph of random graph $G(n, p)$ with minimum degree at least $(1 / 2+o(1)) n p$ has Hamiltonicity. And the value $\frac{\log n}{n}$ and $1 / 2$ both are asymptotically tight.

A k-uniform hypergraph is a tuple (V, E), which V is a vertex set, E is an edge set and every edge of E is a set of k distinct vertices. The random 3-uniform hypergraph model $H^{3}(n, p)$ consists of all 3-uniform hypergraphs on n vertices and every possible hyperedge appears with probability p randomly and independently. And Berge cycle is the first cycle defined in different cycle concepts of hypergraph [4]. A cycle

[^0]$v_{1} e_{1} v_{2} e_{2} \cdots v_{t} e_{t}\left(v_{t+1}=v_{1}\right)$ is called Berge cycle if $v_{i} \neq v_{j}, e_{i} \neq e_{j}$ and $\left\{v_{j}, v_{j+1}\right\} \subset e_{j}$ for every $i, j \in[t]$ and $i \neq j$. We say a k-uniform hypergraph H has Berge Hamiltonicity if it contains a Berge Hamilton cycle which covers all vertices of H.

One of the earlier results of Berge cycles on hypergraphs was obtained by Bermond, Germa and Heydemann [5] in 1976, they proved that for any integer $k \geq 3$ and $n \geq k+1$, if k-uniform hypergraph H has every vertex degree at least $\binom{n-2}{k-1}+k-1$, then H contains a Berge cycle of length at least n. Follows that, Clemens, Ehrenmüller and Person [6] extended the Dirac's theorem to random k-uniform hypergraph $H^{k}(n, p)$ in 2020, and showed that for every integer $k \geq 3$, if $p \gg \frac{\log ^{17 k} n}{n^{k-1}}$, then asympotically almost surely every subgraph of $H^{k}(n, p)$ with minimum degree at least $\left(\frac{1}{2^{k-1}}+o(1)\right)\binom{n-1}{k-1} p$ has Berge Hamiltonicity. The value $\frac{1}{2^{k-1}}$ is best possible and $\frac{\log ^{17 k} n}{n^{k-1}}$ is best under some polylogarithmic factor. For other results of Hamiltonicity in hypergraphs see [7, 8], and the results for Hamiltonicity of other types, see [9-14]. In this paper, we give a generalization of Dirac's theorem to Berge Hamiltonicity for random 3-uniform hypergraphs by the similar method of Lee and Sudakov [3]. Furthermore, according to the introduction of Clemens, Ehrenmüller and Person [6], the value $\frac{\log n}{n^{2}}$ and constant $1 / 4$ in the following theorem (our main result) are asymptotically tight.
Theorem 1.1. For every $\varepsilon>0$, there exists a constant $c>0$ such that if $p \geq \frac{c \log n}{n^{2}}$, then asympotically almost surely each subgraph $H \subseteq H^{3}(n, p)$ with minimum degree at least $\left(\frac{1}{4}+\varepsilon\right)\binom{n}{2} p$ has Berge Hamiltonicity.
Notation: Given a 3-uniform hypergraph H, denote by $V(H)$ the vertex set, denote by $E(H)$ the edge set and $e(H)$ be the number of edges of H. Especially, given a Berge path $P=a_{0} e_{1} a_{1} \cdots e_{l} a_{l}$, we define vertex set $V^{\prime}(P)=\left\{a_{0}, a_{1}, \cdots, a_{l}\right\}$ and denote by $|P|$ the length of P. If $V(P) \subset V(H)$, then we say P on vertex set $V(H)$.

For any disjoint subsets Y, M, S of $V(H)$, we denote by $e_{H}(Y)$ the number of edges in H whose all vertices are both in Y, and denote by $\left.e_{H}\binom{Y}{2}, M\right)$ the number of edges in H, which contains two distinct vertices of Y and one vertex of M, denote by $e_{H}(Y, M, S)$ the number of edges in H which intersects exactly one vertex with each of Y, M and S.

Given a vertex $a \in V(H)$, we define $d_{H}(a)$ as its number of edges incident to a in H and define $N_{H}(a)$ as its number of vertices adjacent to a in H. Define $N_{H}(Y)$ be the set of all vertices in $V \backslash Y$ whose adjacent to some vertices in Y. We denote by $\delta(H):=\min _{a \in V(H)}\left\{d_{H}(a)\right\}$, and denote by $\Delta(H):=\max _{a \in V(H)}\left\{d_{H}(a)\right\}$. We denote by $\omega(n)$ the arbitrary function which goes to infinity as n goes to infinity.

2. Tools

Now, we introduce a tool (Pósa rotation-extension technique, see [15]) that is important in proving the main theorem.

Let H be a connected 3-uniform hypergraph and let $P=a_{0} e_{1} a_{1} \ldots e_{l} a_{l}$ be a Berge path on the vertex $V(H)$. If there exists an edge $e_{w} \in E(H) \backslash E(P)$ satisfies $\left\{a_{0}, w\right\} \subset e_{w}$ for some $w \in V(H) \backslash V^{\prime}(P)$, then $P_{w}=w e_{w} a_{0} e_{1} a_{1} \ldots e_{l} a_{l}$ is a longer Berge path than P in $H \cup P$. In this case, we say that the path P is extended.

On the other hand, if there exists an edge $e \in E(H) \backslash E(P)$ satisfies $\left\{a_{0}, a_{i}\right\} \subset e$ for same $i \in[l-1]$, then there is another Berge path $P^{\prime}=a_{i-1} e_{i-1} a_{i-2} \ldots a_{0} e a_{i} \ldots e_{l} a_{l}$ of length $|P|$ in $H \cup P$ (see figure 2). In this case, we say that P^{\prime} is obtained from P by a rotation. We call a_{l} the fixed endpoint, a_{i} the pivot and e_{i} the broken edge of the rotation.

Based on these, there are some new definitions. Let Y be the set of endpoints obtained by some rotations of P. For each $y \in Y$, let P_{y} be the path obtained from P by some rotations. Denote by $N_{H}\left(v_{1} \mid P\right)=$ $\left\{v \mid\left(v_{1}, v\right) \subset e\right.$ for some $\left.e \in E(H) \backslash E(P)\right\}$. $N_{H}(Y \mid P)=\cup_{y \in Y} N_{H}(y \mid P) \backslash Y$. Let $X \subset V \backslash Y$, denote by $E_{H}(Y, X \mid P)=\left\{e \in E(H) \backslash E\left(P_{y}\right) \mid y \in Y, y \in e, e \cap X \neq \phi\right\}$, and denote by $e_{H}(Y, X \mid P)=\left|E_{H}(Y, X \mid P)\right|$.

The proof of Theorem 1.1 mainly depends on the following results, which will be proven in detail later.
Definition 2.1. Let $\eta>0$. A connected 3-uniform hypergraph H on n vertices is called has property $R E(\eta)$ if for every Berge path P on $V(H)$, one of the following holds in 3-uniform hypergraph $H \cup P$:

Figure 1: P^{\prime}
(i) there is a Berge path longer than P,
(ii) there is a subset $A \subseteq V(H)$ with $|A| \geq \eta n$ and for each vertex $a \in A$, there exists a set $B_{a} \subseteq V(H)$ with $\left|B_{a}\right| \geq \eta n$ such that for all $b \in B_{a}, H \cup P$ contains a Berge path $T_{a b}$ between a and b with $\left|T_{a b}\right|=|P|$.

Theorem 2.2. For every $0<\varepsilon<1$, there are constants $c>0$ and $\lambda>0$ such that if $p \geq \frac{c \log n}{n^{2}}$, then the random 3-uniform hypergraph $H=H^{3}(n, p)$ asympotically almost surely satisfies the following property. For all $H_{1} \subseteq H$ with $\Delta\left(H_{1}\right) \leq\left(\frac{3}{4}-3 \varepsilon\right)\binom{n}{2} p$, the hypergraph $H_{2}:=H-H_{1}$ contains a subgraph which has property $R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$ and at most $\lambda n^{3} p$ edges.

Definition 2.3. Let constant $\eta>0$ and let H_{0} be a n-vertex 3-uniform hypergraph with property $R E(\eta)$. A 3uniform hypergraph H_{2} on $V\left(H_{0}\right)$ is called complements H_{0} if for every Berge path P in 3-uniform hypergraph H_{0}, one of the following holds:
(i) there is a Berge path longer than P in $H_{0} \cup P$,
(ii) there are two vertex sets A and B_{a} of $V\left(H_{0}\right)$ as in Definition 2.1 and exists vertices $a \in A, b \in B_{a}$ and edge $e \notin E\left(P_{a}\right)$ such that $\{a, b\} \subseteq e$ in $H_{0} \cup H_{2}$.

Theorem 2.4. For every $0<\varepsilon<1$, there are constants $c>0$ and $\lambda>0$ such that if $p \geq \frac{c \log n}{n^{2}}$, then the random 3-uniform hypergraph $H=H^{3}(n, p)$ asympotically almost surely satisfies the following property. For each subgraph $H_{1} \subseteq H$ with $\Delta\left(H_{1}\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p$, let $H_{2}:=H-H_{1}$, then the hypergraph H_{2} complements all subgraphs $H^{\prime} \subseteq H$ which has property $R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$ and at most $\lambda n^{3} p$ edges.

Next, we introduce a modification of Proposition 3.4 in [3], and the proof is very similar to the original one.
Proposition 2.5. (Proposition 3.4 [3]) Let constant $\eta>0$. For every 3-uniform hypergraph H_{0} with $R E(\eta)$, if 3-uniform hypergraph H_{2} on $V\left(H_{0}\right)$ complementing H_{0}, then the 3-uniform hypergraph $H_{0} \cup H_{2}$ has Berge Hamiltonicity.

2.1. Properties of $H^{3}(n, p)$

Theorem 2.6. (Chernoff's inequatily, see [16][17]) Let $0<\varepsilon<1$. Suppose that $Y \sim \operatorname{Bi}(n, p)$ is a binomial random variable with parameters n and p, then

$$
\operatorname{Pr}(|Y-n p|>\varepsilon n p)<e^{-\frac{\varepsilon^{2}}{3} n p}
$$

And if $t>2 n p$, then

$$
\operatorname{Pr}(Y \geq t)<e^{-\frac{3}{16} t}
$$

Proposition 2.7. For every $0<\varepsilon<1$, there exists a constant $c>0$ such that if $p \geq \frac{c \log n}{n^{2}}$, then the random 3-uniform hypergraph $H=H^{3}(n, p)$ asympotically almost surely has the following properties:
(i) $(1-\varepsilon)\binom{n}{3} p \leq e(H) \leq(1+\varepsilon)\binom{n}{3} p$;
(ii) for each $v \in V(H),(1-\varepsilon)\binom{n}{2} p \leq d_{H}(v) \leq(1+\varepsilon)\binom{n}{2} p$;
(iii) for any disjoint subsets $Y, M, S \subseteq V(H)$ with $|Y| \leq \frac{n}{4},|M| \leq \frac{n}{4}$ and $|S| \leq \frac{n}{\log n}(\log \log n)^{1 / 2}+1$,

$$
e_{H}(Y, M, S)=|Y||M||S| p+o(|Y||M||S| p+\omega(n) n),
$$

and

$$
e_{H}\left(\binom{Y}{2}, S\right)=\frac{|Y|^{2}}{2}|S| p+o\left(\frac{|Y|^{2}}{2}|S| p+\omega(n) n\right)
$$

Proof. (i) For $\mathrm{E}(e(H))=\binom{n}{3} p$ is sufficiently large, by Theorem 2.6 we have

$$
\operatorname{Pr}\left[\left|e(H)-\binom{n}{3} p\right|>\varepsilon\binom{n}{3} p\right] \leq e^{-\frac{\varepsilon^{2}}{3}\binom{n}{3} p}=o(1)
$$

(ii) Since $\mathrm{E}\left(d_{H}(v)\right)=\binom{n-1}{2} p$, by Theorem 2.6 we have

$$
\sum_{v \in V(H)} \operatorname{Pr}\left(\left|d_{H}(v)-\binom{n}{2} p\right|>\varepsilon\binom{n}{2} p\right) \leq n \cdot e^{-\frac{\varepsilon^{2}}{3}\binom{n}{2} p}=o(1)
$$

in which the inequality holds for $c \varepsilon^{2}>7$.
(iii)Suppose that $|Y| \leq \frac{n}{4},|M| \leq \frac{n}{4}$ and $|S| \leq \frac{n}{\log n}(\log \log n)^{1 / 2}+1$, then $\mathrm{E}\left(e_{H}(Y, M, S)\right)=|Y||M||S| p$. Theorem 2.6 states that if $\mathrm{E}\left[e_{H}(Y, M, S)\right]=o(\omega(n) n)$, then

$$
2^{n} \cdot 2^{n} \cdot 2^{n} \cdot \operatorname{Pr}\left[\left|e_{H}(Y, M, S)-|Y|\right| M| | S|p| \geq \varepsilon(|Y||M||S| p+\omega(n) n)\right] \leq 2^{3 n} \cdot e^{-\frac{3}{16} \omega(n) n}=o(1)
$$

otherwise,

$$
\begin{gathered}
2^{n} \cdot 2^{n} \cdot 2^{n} \cdot \operatorname{Pr}\left[\left|e_{H}(Y, M, S)-|Y|\right| M| | S|p| \geq \varepsilon(|Y||M||S| p+\omega(n) n)\right] \\
\leq 2^{3 n} \cdot e^{-\frac{\varepsilon^{2}}{3} E\left[e_{H}(Y, M, S)\right]} \leq 2^{3 n} \cdot e^{-\frac{\varepsilon^{2}}{3} \omega(n) n}=o(1) .
\end{gathered}
$$

Also, for $\mathrm{E}\left(e_{H}\left(\binom{Y}{2}, S\right)\right)=\binom{|Y|}{2}|S| p$, Theorem 2.6 states that if $\mathrm{E}\left[e_{H}\left(\binom{Y}{2}, S\right)\right]=o(\omega(n) n)$, then

$$
2^{n} \cdot 2^{n} \cdot \operatorname{Pr}\left[\left|e_{H}\left(\binom{Y}{2}, S\right)-\frac{|Y|^{2}}{2}\right| S|p| \geq \varepsilon\left(\frac{|Y|^{2}}{2}|S| p+\omega(n) n\right)\right] \leq 2^{2 n} \cdot e^{-\frac{3}{16} \omega(n) n}=o(1)
$$

otherwise,

$$
\begin{gathered}
2^{n} \cdot 2^{n} \cdot \operatorname{Pr}\left[\left|e_{H}\left(\binom{Y}{2}, S\right)-\frac{|Y|^{2}}{2}\right| S|p| \geq \varepsilon\left(\frac{|Y|^{2}}{2}|S| p+\omega(n) n\right)\right] \\
\leq 2^{2 n} \cdot e^{-\frac{\varepsilon^{2}}{3} \mathrm{E}\left[e_{H}\left(\binom{Y}{2}, S\right)\right]} \leq 2^{2 n} \cdot e^{-\frac{\varepsilon^{2}}{3} \omega(n) n}=o(1) .
\end{gathered}
$$

Proposition 2.8. For every $0<\varepsilon<1$, there exists a constant $c>0$ such that if $p \geq \frac{c \log n}{n^{2}}$, then the random 3-uniform hypergraph $H=H^{3}(n, p)$ asympotically almost surely has the following properties: for every Berge path P on $V(H)$, and suppose that Y is the set of endpoints obtained by taking some rotations of P in H, and let $S \subset V(P) \backslash Y$,
(i) if $|Y| \leq(\log n)^{-\frac{1}{4}}(n p)^{-1}$, then $\left.(1-\varepsilon)|Y| \begin{array}{c}n \\ 2\end{array}\right) p \leq e_{H}(Y, V \backslash Y \mid P)$ and $\left|N_{H}(Y \mid P)\right| \geq(2-3 \varepsilon)|Y|\binom{n}{2} p$;
(ii) if $n(\log n)^{-1 / 2} \leq|Y| \leq \frac{\varepsilon}{6} n,|S| \geq\left(\frac{1}{2}-\frac{\varepsilon}{3}\right) n$, then

$$
e_{H}(Y, S \mid P)>|Y|\left(\frac{3}{4}-\varepsilon\right)\binom{n}{2} p
$$

(iii) if $|Y| \leq \frac{n}{4},|S| \leq \frac{n}{4}$, then

$$
e_{H}(Y, S \mid P)=|Y||S|\left(n-\frac{|Y|}{2}-\frac{|S|}{2}\right) p+o\left(|Y||S|\left(n-\frac{|Y|}{2}-\frac{|S|}{2}\right) p+\omega(n) n\right)
$$

Proof. For each $y \in Y$, let P_{y} be the path obtained from P by some rotations, in which y is one of the endpoints.
(i) Let $s_{1}=(1-\varepsilon)|Y|\binom{n}{2} p$ and $s_{2}=(2-3 \varepsilon)|Y|\binom{n}{2} p \leq n(\log n)^{-1 / 4}$. Assume that $e_{H}(Y, V \backslash Y \mid P) \geq S_{1}$ and $\left|N_{H}(Y \mid P)\right|<s_{2}$, then there exists a subgraph of H induced by $Y \cup N_{H}(Y \mid P)$ has at least s_{1} edges adjacent to Y. Therefore

$$
\left.\begin{array}{rl}
& \operatorname{Pr}\left(\left\{s_{1} \leq e_{H}(Y, V \backslash Y \mid P)\right\} \cap\left\{\left|N_{H}(Y \mid P)\right|<s_{2}\right\}\right) \\
\leq & \binom{n-|Y|}{s_{2}}\binom{\left(Y \mid+s_{2}\right.}{3}-\binom{s_{2}}{3} \\
s_{1}
\end{array}\right) p^{s_{1}} \leq\binom{ n-|Y|}{s_{2}}\binom{|Y| s_{2}^{2}}{s_{1}} p^{s_{1}} .
$$

Since $|Y|=o(n)$, on the other hand, there is

$$
\mathrm{E}\left[e_{H}(Y, V \backslash Y \mid P)\right] \geq|Y|\left[\binom{n-|Y|}{2}-3\right] p=(1-o(1))|Y|\binom{n}{2} p
$$

Theorem 2.6 implies $\operatorname{Pr}\left[s_{1}>e_{H}(Y, V \backslash Y \mid P)\right] \leq e^{-\frac{\varepsilon^{2}}{3}\left(|Y|\binom{n}{2} p\right)}$. Therefore

$$
\begin{aligned}
& \sum_{|Y|=1}^{(\log n)} \operatorname{Pr}\left(\left\{s_{1}>e_{H}(Y, V \backslash Y \mid P)\right\} \cup\left\{\left|N_{H}(Y \mid P)\right|<s_{2}\right\}\right) \\
= & \sum_{|Y|=1}^{(\log n)^{-\frac{1}{4}}(n p)^{-1}} \operatorname{Pr}\left(s_{1}>e_{H}(Y, V \backslash Y \mid P)\right)+\operatorname{Pr}\left(\left\{s_{1} \leq e_{H}(Y, V \backslash Y \mid P)\right\} \cap\left\{\left|N_{H}(Y \mid P)\right|<s_{2}\right\}\right) \\
\leq & \sum_{|Y|=1}^{(\log n)^{-1} \frac{1}{4}(n p)^{-1}}\binom{n}{|Y|} e^{-\frac{\varepsilon^{2}}{3}\left(|Y|\binom{n}{2} p\right)} e^{(1+o(1)) \varepsilon|Y|\binom{n}{2} p(-1 / 4) \log \log n} \leq \sum_{|Y|=1}^{(\log n)^{-\frac{1}{4}}(n p)^{-1}}\binom{n}{|Y|} n^{-c_{1}|Y|}=o(1),
\end{aligned}
$$

in which the inequality holds for $c_{1}=c_{1}(c, \varepsilon) \geq 2$ by choosing the appropriate constant c.
(ii) Suppose that $n(\log n)^{-1 / 2} \leq|Y| \leq \frac{\varepsilon}{6} n$ and $|S| \geq\left(\frac{1}{2}-\frac{\varepsilon}{3}\right)$. For every $y \in Y$ and $s \in S$, there are at most three edges contains $\{y, s\}$ in P_{y}, since we have

$$
\begin{aligned}
\mathrm{E}\left[e_{H}(Y, S \mid P)\right] & \geq|Y|\left[\binom{n-|Y|}{2}-\binom{n-|Y|-|S|}{2}-3\right] p \\
& \geq|Y|\left[\binom{n-\frac{\varepsilon}{6} n}{2}-\binom{n-n(\log n)^{-1 / 2}-\left(\frac{1}{2}-\frac{\varepsilon}{3}\right) n}{2}-3\right] p \\
& =(1-o(1))|Y|\left[\left(1-\frac{\varepsilon}{6}\right)^{2}-\left(\frac{1}{2}+\frac{\varepsilon}{3}-(\log n)^{-1 / 2}\right)^{2}\right]\binom{n}{2} p \\
& =(1-o(1))|Y|\left(\frac{3}{4}-\frac{5}{6} \varepsilon\right)\binom{n}{2} p
\end{aligned}
$$

by Theorem 2.6 there is

$$
2^{n} \cdot 2^{n} \cdot \operatorname{Pr}\left(e_{H}(Y, S \mid P) \leq|Y|\left(\frac{3}{4}-\varepsilon\right)\binom{n}{2} p\right) \leq 2^{2 n} \cdot \operatorname{Pr}\left(e_{H}(Y, S \mid P) \leq|Y|\left(1-\frac{\varepsilon}{5}\right) \mathrm{E}\left[e_{H}(Y, S \mid P)\right]\right)
$$

$$
\leq 2^{2 n} \cdot e^{-\frac{\varepsilon_{75}^{2}}{75}\left[e_{H}(Y, S \mid P)\right]} \leq 2^{2 n} \cdot e^{-\frac{\varepsilon_{7}^{2}}{75} c n(\log n)^{1 / 2}}=o(1)
$$

(iii) Suppose that $|Y| \leq \frac{n}{4}$ and $|S| \leq \frac{n}{4}$. For every $y \in Y$ and $s \in S$, there are at most three edges contains $\{y, s\}$ in P_{y}, thus

$$
\begin{aligned}
\mathrm{E}\left[e_{H}(Y, S \mid P)\right] & \geq\left(|Y||S| n-\binom{|Y|}{2}|S|-\binom{|S|}{2}|Y|-3|Y|\right) \\
& =(1-o(1))|Y||S|\left(n-\frac{|Y|}{2}-\frac{|S|}{2}\right) p .
\end{aligned}
$$

Define $\tau:=|Y||S|\left(n-\frac{|Y|}{2}-\frac{|S|}{2}\right)$. For $e_{H}(Y, S \mid P)$ is a binomial random variable, Theorem 2.6 implies that if $\mathrm{E}\left[e_{H}(Y, S)\right]=o(\omega(n) n)$, then

$$
2^{n} \cdot 2^{n} \cdot \operatorname{Pr}\left[\left|e_{H}(Y, S)-\tau\right| \geq \varepsilon(\tau+\omega(n) n)\right] \leq 2^{2 n} \cdot e^{-\frac{3}{16} \omega(n) n}=o(1)
$$

otherwise,

$$
2^{n} \cdot 2^{n} \cdot \operatorname{Pr}\left[\left|e_{H}(Y, S)-\tau\right| \geq \varepsilon(\tau+\omega(n) n)\right] \leq e^{-\frac{\varepsilon^{2}}{3} E\left[e_{H}(Y, S \mid P)\right]} \leq 2^{2 n} \cdot e^{-\frac{\varepsilon^{2}}{3} \omega(n) n}=o(1)
$$

Proposition 2.9. For every $0<\varepsilon<1$, there exists a constant $c>0$ such that if $p \geq \frac{c \log n}{n^{2}}$, then the random 3uniform hypergraph $H=H^{3}(n, p)$ asympotically almost surely satisfies the following properties. For each $H_{1} \subseteq H$ with $\Delta\left(H_{1}\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2}$ p, let $H_{2}:=H-H_{1}$. Let P be a Berge path on $V\left(H_{2}\right)$ and Y be the set of the endpoints obtained by taking some rotations of P in H_{2},
(i) if $|Y| \leq(\log n)^{-\frac{1}{4}}(n p)^{-1}$, then $\left|N_{H_{2}}(Y \mid P)\right| \geq\left(\frac{1}{2}+\varepsilon\right)|Y|\binom{n}{2} p$;
(ii) if $n(\log n)^{-1 / 2} \leq|Y| \leq \frac{\varepsilon}{6} n$, then $\left\lvert\, N_{H_{2}}(Y \mid P) \geq\left(\frac{1}{2}+\frac{\varepsilon}{6}\right) n\right.$;
(iii) H_{2} is connected.

Proof. (i) Let $|Y| \leq(\log n)^{-\frac{1}{4}}(n p)^{-1}$. By Proposition 2.8, we can get $(1-\varepsilon)|Y|\binom{n}{2} p \leq e_{H}(Y, V \backslash Y \mid P)$ and $\left|N_{H}(Y \mid P)\right| \geq(2-3 \varepsilon)|Y|\binom{n}{2} p$. Hence

$$
\begin{aligned}
\left|N_{H_{2}}(Y \mid P)\right| & \geq\left|N_{H}(Y \mid P)\right|-|Y| \cdot 2 \Delta\left(H_{1}\right) \\
& \geq(2-3 \varepsilon)|Y|\binom{n}{2} p-|Y| \cdot 2\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p \\
& \geq\left(\frac{1}{2}+\varepsilon\right)|Y|\binom{n}{2} p
\end{aligned}
$$

(ii) If not, assume that $\left|N_{H_{2}}(Y \mid P)\right|<\left(\frac{1}{2}+\frac{\varepsilon}{6}\right) n$, then $\left|V(H) \backslash\left(Y \cup N_{H_{2}}(Y)\right)\right| \geq\left(\frac{1}{2}-\frac{\varepsilon}{3}\right) n$ and $e_{H_{2}}(Y, V(H) \backslash$ $\left.\left(Y \cup N_{H_{2}}(Y)\right) \mid P\right)=0$. Thus

$$
e_{H}\left(Y, V(H) \backslash\left(Y \cup N_{H_{2}}(Y)\right) \mid P\right) \leq|Y| \Delta\left(H_{1}\right)=|Y|\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p
$$

which contradicts Proposition 2.8.
(iii) If H_{2} is not connected. Let H^{\prime} be the minimum connected component of H_{2}, which implies $\left|N_{H_{2}}\left(V\left(H^{\prime}\right)\right)\right|=$ $\left|V\left(H^{\prime}\right)\right|$. Since $\left(\frac{1}{2}+\varepsilon\right)\binom{n}{2} p>1$, following the result of (i), we have

$$
\left|V\left(H^{\prime}\right)\right| \geq\left(\frac{1}{2}+\varepsilon\right)(\log n)^{-1 / 4}(n p)^{-1}\binom{n}{2} p>n(\log n)^{-1 / 2}
$$

By (ii), we can get $\left|V\left(H^{\prime}\right)\right| \geq\left(\frac{1}{2}+\frac{\varepsilon}{6}\right) n$ that contradicts the facts.

2.2. Proof of Theorem 2.2.

Before proving Theorem 2.2, we prove the following Lemma 2.10.
Lemma 2.10. For every real $0<\varepsilon<1$, there exists a constant $c>0$ such that if $p \geq \frac{c \log n}{n^{2}}$, then the random 3-uniform hypergraph $H=H^{3}(n, p)$ asympotically almost surely has the following properties: for each $H_{1} \subset H$ with $\Delta\left(H_{1}\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p$, the 3-uniform hypergraph $H_{2}:=H-H_{1}$ has $R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$.
Proof. Let $P:=a_{0} e_{1} a_{1} \cdots a_{l}$ be a Berge path on $V\left(H_{2}\right)$. If there is a Berge path longer than P in $H_{2} \cup P$, then we are done.

So we suppose that P is the longest Berge path in $H_{2} \cup P$. In the following, we will consider an endpoint set obtained by taking some rotations of P with fixed endpoint a_{l} in H_{2}, and give a lower bound $\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) n$ on the number of those endpoints. The endpoint set will be constructed by iterative method. We use Y_{t} to denote the endpoint set obtained by the t th rotation of P with fixed enpoint v_{l} in H_{2}, especially, $Y_{0}=\left\{a_{0}\right\}$. Since P is the longest Berge path in $H_{2} \cup P$, note that for every $t \in[n]$ we must have $N_{H_{2}}\left(Y_{t} \mid P\right) \subseteq V(P)$.

Claim 1. $\left|Y_{t+1}\right| \geq \frac{1}{2}\left(\left|N_{H_{2}}\left(Y_{t} \mid P\right)\right|-3\left|Y_{t}\right|\right)$.
Proof. For any $a \in Y_{t}$, if $w \in N_{H_{2}}(a \mid P)$, then there exists an endpoint by a rotation of P_{a} using v as pivot point. Let $Y_{t}^{+}=\left\{a_{i+1} \mid a_{i} \in Y_{t}\right\}, Y_{t}^{-}=\left\{a_{i-1} \mid a_{i} \in Y_{t}\right\}$. Hence, if a vertex $v \in N_{H_{2}}\left(Y_{t} \mid P\right)$ does not belong to $Y_{t} \cup Y_{t}^{-} \cup Y_{t}^{+}$, then the edges in P incident with v were not broken in the previous rotations. We can get a new endpoint v^{-}or v^{+}(see Figure 2 and Figure 3), and at most two such pivot points can obtain the same endpoint since the order for unbroken interval either the same as or reverse to P. Therefore, $\left|Y_{t+1}\right| \geq \frac{1}{2}\left(\left|N_{H_{2}}\left(Y_{t} \mid P\right)-3\right| Y_{t} \mid\right)$. This completes the proof of Claim 1.

Figure 2: same order

Figure 3: reverse order
Suppose that $\left|Y_{t}\right|=\left(\frac{n^{2} p}{2^{5}}\right)^{t} \geq 1$ for some integer $t \geq 0$. Since

$$
\delta\left(H_{2}\right) \geq(1-\varepsilon)\binom{n}{2} p-\Delta\left(H_{1}\right) \geq\left(\frac{1}{4}+\varepsilon\right)\binom{n}{2} p
$$

by Claim 2 together with Proposition 2.9 (i), we have

$$
\begin{aligned}
\left|Y_{t+1}\right| & \geq \frac{1}{2}\left(\left|N_{H_{2}}\left(Y_{t} \mid P\right)\right|-3\left|Y_{t}\right|\right) \geq \frac{1}{2}\left(\left(\frac{1}{4}+\varepsilon\right)\left|Y_{t}\right|\binom{n}{2} p-3\left|Y_{t}\right|\right) \\
& \geq \frac{1}{2}\left(\left(\frac{1}{4}+\varepsilon\right)\left(\frac{n^{2} p}{2^{5}}\right)^{t}\binom{n}{2} p-3\left|Y_{t}\right|\right) \geq\left(\frac{n^{2} p}{2^{5}}\right)^{t+1}
\end{aligned}
$$

Let $\left(\frac{n^{2} p}{2^{5}}\right)^{s}=(\log n)^{-1 / 4}(n p)^{-1}$, it follows that there is an integer $s \leq \frac{\log n}{\log \log n}$ such that $\left|Y_{s}\right|=$ $(\log n)^{-1 / 4}(n p)^{-1}$ if $c \geq 2^{5}$. Repeat the same argument as above to $\left|Y_{s}\right|$, there is

$$
\left|Y_{s+1}\right| \geq\left(\frac{n^{2} p}{2^{5}}\right)(\log n)^{-1 / 4}(n p)^{-1} \geq \frac{n}{2^{5}(\log n)^{1 / 4}}>\frac{n}{(\log n)^{1 / 2}}
$$

Agian, repeat the same argument as above to subset with size $\frac{n}{(\log n)^{1 / 2}}$ of Y_{s+1}, and combine with Proposition 2.9 , there is

$$
\left|Y_{s+2}\right| \geq \frac{1}{2}\left(\left|N_{H}\left(Y_{s+1} \mid P\right)\right|-3\left|Y_{s+1}\right|\right) \geq \frac{1}{2}\left(\left(\frac{1}{2}+\frac{1}{6} \varepsilon\right) n-3 \frac{n}{(\log n)^{1 / 2}}\right) \geq \frac{n}{4} .
$$

Finally, we give a proof of $\left|Y_{S+3}\right| \geq\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) n$. Let $S:=Y_{s+3}$ and $Y \subseteq Y_{s+2}$ be any subset with size $\frac{n}{4}$. We partition P into $r:=\frac{\log n}{(\log \log n)^{1 / 2}}$ vertex disjoint intervals, such that the length of each interval are either $\left\lfloor\frac{|P|}{r}\right\rfloor$ or $\left\lceil\frac{|P|}{r}\right\rceil$. For each $i \in[r]$, let $\tilde{Y}_{i} \subseteq Y$ be a vertex subset, in which all those vertices are obtained by some rotations with some broken edges of P_{i} in the previous rotations. Let $Y_{i,+}$ and $Y_{i,-}$ be the collections of all those vertices of Y obtained by some rotations such that P_{i} is unbroken in the previous rotations, and the path from every vertex of $Y_{i,+}$ and $Y_{i,-}$ to v_{l} traverses P_{i} in the same and reverse order as P, expectively. Thus $Y=\tilde{Y}_{i} \cup Y_{i,+} \cup Y_{i,-}$ for all $i \in[r]$.

Let $J=\left\{i \in[r]:\left|\tilde{Y}_{i}\right| \geq(\log \log n)^{-1 / 4}|Y|\right\}$. We claim the first fact that $|J|=o(r)$. Indeed, since every vertex in Y is obtained by at most $\frac{2 \log n}{\log \log n}$ rotations of P. Let \tilde{E} denote the number of edges that broken in the previous rotations for obtain Y. There is

$$
|Y| \frac{2 \log n}{(\log \log n)} \geq \tilde{E} \geq(\log \log n)^{-1 / 4}|Y||J|
$$

which implies $|J|=o(r)$.
Next, we define $V:=V(H), P:=V^{\prime}(P), P_{i}:=V^{\prime}\left(P_{i}\right)$ for any $i \in[r]$, and show the second fact that

$$
\begin{align*}
e_{H}(Y, V \backslash P \mid P)+\sum_{i \in[r]} \sum_{ \pm \in\{+,-\}}\{ & \left.e_{H}\left(Y_{i, \pm},\left(P_{i} \cap P_{i}^{ \pm}\right) \backslash S^{ \pm} \mid P\right)-e_{H}\left(Y_{i, \pm},\left(P_{i} \cap P_{i}^{ \pm}\right) \backslash S^{ \pm}, V \backslash P \mid P\right)\right\} \\
\leq & e_{H_{1}}(Y, V) \tag{1}
\end{align*}
$$

For P is the longest Berge path and by applying Proposition 2.9 to Y, we can get $e_{H_{2}}(Y, V \backslash P \mid P)=0$ and $|V \backslash P| \leq \frac{n}{4}$. For each $i \in[r]$, if there exists vertices $x \in Y_{i,+}, a_{j} \in P_{i}$ and an edge $e \notin E\left(P_{y}\right)$ contains $\left\{a_{j}, x\right\}$ in H_{2}, then $a_{j-1} \in S$ and $a_{j} \in S^{+}$, therefore $e_{H_{2}}\left(Y_{i,+},\left(P_{i} \cap P_{i}^{+}\right) \backslash S^{+} \mid P\right)=0\left(\right.$ similarly, $e_{H_{2}}\left(Y_{i,-},\left(P_{i} \cap P_{i}^{-}\right) \backslash\right.$ $\left.\left.S^{-} \mid P\right)=0\right)$. On the other hand, for every edge $e \in E_{H}\left(Y_{i,+},\left(P_{i} \cap P_{i}^{+}\right) \backslash S^{+} \mid P\right) \cup E_{H}\left(Y_{i,-},\left(P_{i} \cap P_{i}^{-}\right) \backslash S^{-} \mid P\right)$, if $e \cap(V \backslash P) \neq \phi$, then e will be counted repeatedly. This completes the proof of (1), Now we estimate the left inequality of (1).

By definition, we know $\left|P_{i}\right| \leq\left\lceil\frac{|P|}{r}\right\rceil \leq \frac{n}{\log n}(\log \log n)^{1 / 2}+1$. Thus by Proposition 2.7 and Proposition 2.8, we can get the lower bound of the left inequality of (1) is as follows

$$
\begin{align*}
& |Y||V \backslash P|\left[n-\frac{|Y|}{2}-\frac{|V \backslash P|}{2}\right] p+o(w(n) n) \\
+ & \sum_{i \in[r]} \sum_{ \pm \in\{+,-\}}\left(\left|Y_{i, \pm}\right|\left|\left(P_{i} \cap P_{i}^{ \pm}\right) \backslash S^{ \pm}\right|\left[n-\frac{\left|Y_{i, \pm}\right|}{2}-\frac{\left|\left(P_{i} \cap P_{i}^{ \pm}\right) \backslash S^{ \pm}\right|}{2}\right] p+o\left(n^{2} \frac{|P|}{r} p\right)\right) \\
- & \sum_{i \in[r]} \sum_{ \pm \in\{+,-\}}\left[(1+o(1))\left|Y_{i, \pm}\right||V \backslash P|\left|\left(P_{i} \cap P_{i}^{ \pm}\right) \backslash S^{ \pm}\right| p+o(w(n) n)\right] . \tag{2}
\end{align*}
$$

Due to $\left\|\left(P_{i} \cap P_{i}^{+}\right) \backslash S^{+}|-| P_{i} \backslash S\right\| \leq 2$ (similar for $\left.\left(P_{i} \cap P_{i}^{-}\right) \backslash S^{-}\right)$, the second line in the inequality (2) is at least

$$
\begin{aligned}
& \sum_{i \in[r]} \sum_{ \pm \in\{+,-\}}\left(\left|Y_{i, \pm}\right|\left|P_{i} \backslash S\right|\left[n-\frac{\left|Y_{i, \pm}\right|}{2}-\frac{\left|\left(P_{i} \cap P_{i}^{ \pm}\right) \backslash S^{ \pm}\right|}{2}\right] p+o\left(\frac{n^{3}}{r} p\right)-o\left(2 \frac{n^{2}}{r} p\right)\right) \\
\geq & \sum_{i \in[r]} \sum_{ \pm \in\{+,-\}}\left|Y_{i, \pm}\right|\left|P_{i} \backslash S\right|\left[n-\frac{\left|Y_{i, \pm}\right|}{2}-\frac{\left|P_{i} \backslash S\right|}{2}\right] p-o\left(n^{3} p\right) \\
\geq & \sum_{i \in[r]}\left(\sum_{ \pm \in\{+,-\}}\left|Y_{i, \pm}\right|\left|P_{i} \backslash S\right|\left(n-\frac{\left|P_{i} \backslash S\right|}{2}\right)-\frac{\left|Y_{i,+}\right|^{2}+\left|Y_{i,-}\right|^{2}}{2}\left|P_{i} \backslash S\right|\right) p-o\left(n^{3} p\right) \\
\geq & \sum_{i \in[r]}\left(\left|Y \backslash \tilde{Y}_{i}\right|\left|P_{i} \backslash S\right|\left(n-\frac{\left|P_{i} \backslash S\right|}{2}\right)-\frac{\left(\left|Y_{i,+}\right|+\left|Y_{i,-}\right|\right)^{2}}{2}\left|P_{i} \backslash S\right|\right) p-o\left(n^{3} p\right) \\
\geq & \sum_{i \in[r]}\left|Y \backslash \tilde{Y}_{i}\right|\left|P_{i} \backslash S\right|\left(n-\frac{\left|P_{i} \backslash S\right|}{2}\right) p-\frac{|Y|^{2}}{2}|P \backslash S| p-o\left(n^{3} p\right) .
\end{aligned}
$$

Since $J=o(r)$, there is $\left|Y \backslash \tilde{Y}_{i}\right|=(1-o(1))|Y|$ for $i \in[r] \backslash J$. The inequality above is

$$
\begin{aligned}
& \geq \sum_{i \in[r] \backslash J}(1-o(1))|Y|\left|P_{i} \backslash S\right|\left(n-\frac{\left|P_{i} \backslash S\right|}{2}\right) p-\frac{|Y|^{2}}{2}|P \backslash S| p-o\left(n^{3} p\right) \\
& \geq \sum_{i \in[r]}(1-o(1))|Y|\left|P_{i} \backslash S\right|\left(n-\frac{\left|P_{i} \backslash S\right|}{2}\right) p-o(r)(1-o(1))|Y| \frac{|P|}{r} n p-\frac{|Y|^{2}}{2}|P \backslash S| p-o\left(n^{3} p\right) \\
& \geq \sum_{i \in[r]}|Y|\left|P_{i} \backslash S\right|\left(n-\frac{\left|P_{i} \backslash S\right|}{2}\right) p-\frac{|Y|^{2}}{2}|P \backslash S| p-o\left(n^{3} p\right) \\
& \geq|Y||P \backslash S| n-\frac{|Y|^{2}}{2}|P \backslash S| p-o\left(n^{3} p\right)
\end{aligned}
$$

The inequality (2) can be expressed as

$$
\begin{aligned}
& \geq|Y||V \backslash P|\left[n-\frac{|Y|}{2}-\frac{|V \backslash P|}{2}\right] p+o(w(n) n)+|Y||P \backslash S| n p-\frac{|Y|^{2}}{2}|P \backslash S| p-o\left(n^{3} p\right) \\
& \quad-\sum_{i \in[r]}\left|Y \backslash \tilde{Y}_{i}\right||V \backslash P|\left|P_{i} \backslash S\right| p-o(w(n) n) \\
& \geq|Y||V \backslash P|\left[n-\frac{|Y|}{2}-\frac{|V \backslash P|}{2}\right] p+|Y||P \backslash S| n p-\frac{|Y|^{2}}{2}|P \backslash S| p-|Y||V \backslash P||P \backslash S| p-o\left(n^{3} p\right) \\
& \geq|Y|(|V \backslash P|+|P \backslash S|) n p-\frac{|Y|^{2}}{2}(|V \backslash P|+|P \backslash S|) p-|Y||V \backslash P|\left(\frac{|V \backslash P|}{2}+|P \backslash S|\right) p-o\left(n^{3} p\right) \\
& \geq|Y||V \backslash S| n p-\frac{|Y|^{2}}{2}|V \backslash S| p-|Y||V \backslash P||V \backslash S| p-o\left(n^{3} p\right) \\
& \geq \frac{3}{4} n|Y||V \backslash S| p-\frac{|Y|^{2}}{2}|V \backslash S| p-o\left(n^{3} p\right) .
\end{aligned}
$$

Therefore inequality (1) implies $\frac{3}{4} n|Y||V \backslash S| p-\frac{|Y|^{2}}{2}|V \backslash S| p-o\left(n^{3} p\right) \leq e_{H_{1}}(Y, V)$.
On the other hand, $e_{H_{1}}(Y, V)+e_{H_{1}}\left(\binom{Y}{2}, V\right) \leq|Y| \Delta_{H_{1}}(Y)$, thus following Proposition 2.7 we can get

$$
\frac{3}{4} n|Y||V \backslash S| p-o\left(n^{3} p\right) \leq|Y|\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p \leq|Y|\left(\frac{3}{8}-\frac{\varepsilon}{2}\right) n^{2} p
$$

It's easy to check $|S| \geq\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) n$ by $|V \backslash S| \leq\left(\left(\frac{3}{8}-\frac{\varepsilon}{2}\right) n+o\left(n^{2}\right)\right) \frac{4}{3} \leq\left(\frac{1}{2}-\frac{2}{3} \varepsilon\right) n$.
Hence, we can get an endpoint set S of size at least $\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) n$, in which for every $y \in S$, there is a Berge path of length $|P|$ in $H_{2} \cup P$ with endpoints a_{l} and y. Similarly, for such Berge path we can fixed y to obtain an endpoint set $S_{y} \subseteq V(H)$ of size at least $\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) n$ such that, for every $s \in S_{y}$, there is a Berge path of length $|P|$ in $H_{2} \cup P$ from s to y.
Proof of Theorem 2.2. Let $p^{\prime}=\lambda p$ and let H^{\prime} be the 3-uniform hypergraph obtained by taking each edge of $H^{3}(n, p)$ independently with probability λ. Thus H^{\prime} has the same distribution with $H^{3}\left(n, p^{\prime}\right)$. By Lemma 2.10 and Proposition 2.7, we can get

$$
\begin{equation*}
\operatorname{Pr}\left[H^{\prime} \in R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) \text { with at most } \lambda n^{3} p \text { edges }\right]=1-o(1) . \tag{3}
\end{equation*}
$$

Now, we define that a 3-uniform hypergraph H is good: if for each $H_{1} \subseteq H$ with $\Delta\left(H_{1}\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p^{\prime}$, the 3-uniform hypergraph $H-H_{1}$ has at most $n^{3} p^{\prime}=\lambda n^{3} p$ edges and is $R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$. Otherwise call H is bad. Under this definition, (3) means $\operatorname{Pr}\left[H^{\prime}\right.$ is good $]=1-o(1)$.

Let \mathcal{H} be the collection of all 3-uniform hypergraphs H satifies $\operatorname{Pr}\left(H^{\prime}\right.$ is good $\left.\mid H=H^{3}(n, p)\right) \geq \frac{5}{6}$, in other words, $\operatorname{Pr}\left(H^{\prime}\right.$ is good $\left.\mid H \notin \mathcal{H}\right)<\frac{5}{6}$, following this, there is

$$
o(1)=\operatorname{Pr}\left(H^{\prime} \text { is bad }\right) \geq \operatorname{Pr}\left(H^{\prime} \text { is bad } \mid H^{3}(n, p) \notin \mathcal{H}\right) \cdot \operatorname{Pr}\left(H^{3}(n, p) \notin \mathcal{H}\right) \geq \frac{1}{6} \operatorname{Pr}\left(H^{3}(n, p) \notin \mathcal{H}\right)
$$

Hence $\operatorname{Pr}\left(H^{3}(n, p) \notin \mathcal{H}\right)=o(1)$, that means $\operatorname{Pr}\left(H^{3}(n, p) \in \mathcal{H}\right)=1-o(1)$.
Next, let $H_{1} \subseteq H$ be any subgraph with $\Delta\left(H_{1}\right) \leq\left(\frac{3}{4}-3 \varepsilon\right)\binom{n}{2} p$. By Theorem 2.6, there is

$$
\sum_{v \in V\left(H^{\prime}\right)} \operatorname{Pr}\left(d_{H^{\prime} \cap H_{1}}(v) \geq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p^{\prime}\right) \leq \sum_{v \in V\left(H^{\prime}\right)} \operatorname{Pr}\left(d_{H^{\prime} \cap H_{1}}(v) \geq(1+\varepsilon)\left(\frac{3}{4}-3 \varepsilon\right)\binom{n}{2} p^{\prime}\right)=o(1)
$$

Hence, there exists a subgraph $H^{\prime} \subset H$ that is good and the maximum degree of $H^{\prime} \cap H_{1}$ at most $\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p^{\prime}$. For such H^{\prime}, by the definition of good, the hypergraph $H^{\prime}-\left(H^{\prime} \cap H_{1}\right) \subseteq H-H_{1}$ which has $R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$ and $\left|E\left(H^{\prime}-\left(H^{\prime} \cap H_{1}\right)\right)\right| \leq \lambda n^{3} p$.

2.3. Proof of Theorem 2.4.

Proof of Theorem 2.4. Let \mathcal{H}_{2} be the collection of all subgraphs $H-H_{1}$, which satisfy $\Delta\left(H_{1}\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p$.

$$
\begin{align*}
& \operatorname{Pr}\left[\bigcup_{H^{\prime} \in R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right),\left|E\left(H^{\prime}\right)\right| \leq \lambda n^{3} p}\left(\left\{H^{\prime} \subseteq H\right\} \cap\left\{\text { exists } H_{2} \in \mathcal{H}_{2} \text { does not complement } H^{\prime}\right\}\right)\right] \\
& \leq \sum_{H^{\prime} \in R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right),\left|E\left(H^{\prime}\right)\right| \leq \lambda n^{3} p} \operatorname{Pr}\left(H^{\prime} \subseteq H\right) \cdot \operatorname{Pr}\left(\text { exists } H_{2} \in \mathcal{H}_{2} \text { does not complement } H^{\prime} \mid H^{\prime} \subseteq H\right) \\
& \leq \sum_{m=1}^{\lambda n^{3} p}\left(\begin{array}{c}
n \\
3 \\
m
\end{array}\right) p^{m} \cdot \operatorname{Pr}\left(\text { exists } H_{2} \in \mathcal{H}_{2} \text { does not complement } H^{\prime} \mid H^{\prime} \subseteq H\right), \tag{4}
\end{align*}
$$

where the $H^{\prime} \subseteq H$ of last line of inequality (4) are taken over all labeled 3-uniform hypergraphs with $R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$ and m edges.

Next we consider $\operatorname{Pr}\left(\right.$ exists $H_{2} \in \mathcal{H}_{2}$ does not complement $\left.H^{\prime} \mid H^{\prime} \subseteq H\right)$. Let P be a fixed Berge path on $V\left(H^{\prime}\right)$. Recall the definition of complement. If H_{2} does not complement H^{\prime}, then there is not Berge path longer than P in $H^{\prime} \cup P$. On the one hand, since $H^{\prime} \in R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$, we can find an endpoint set $A \subseteq V(H)$ which $|A| \geq\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) n$ and for every $a \in A$, there is an endpoint set B_{a} of $V\left(H^{\prime}\right)$ with $\left|B_{a}\right| \geq\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right) n$ satisfies for all $b \in B_{a}$, the 3-uniform hypergraph $H^{\prime} \cup P$ contains a Berge path $T_{a b}$ between a and b with
$\left|T_{a b}\right|=|P|$. On the other hand, since H_{2} does not complement H^{\prime}, for every such $T_{a b}$, there is not edge $e \notin T_{a b}$ contains $\{a, b\}$ in H_{2}. By the maximum degree of H_{1} at most $\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p$, there is

$$
e_{H}\left(a, B_{a} \mid P\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p
$$

Since

$$
\begin{aligned}
\mathrm{E}\left[e_{H}\left(a, B_{a} \mid P\right)\right] & \geq\left[\binom{n-1}{2}-\binom{n-1-\left|B_{a}\right|}{2}-3\right] p \\
& \geq\left(\binom{n-1}{2}-\binom{n-1-\left(\frac{1}{2}-\frac{\varepsilon}{3}\right) n}{2}-3\right) p \\
& =(1-o(1))\left(1-\left(\frac{1}{2}+\frac{\varepsilon}{3}\right)^{2}\right)\binom{n}{2} p \\
& \geq\left(\frac{3}{4}-\frac{\varepsilon}{2}\right)\binom{n}{2} p
\end{aligned}
$$

Theorem 2.6 implies that the probability of $e_{H}\left(a, B_{a} \mid P\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p$ is at most $e^{-\frac{\varepsilon^{2}}{3}\left(n^{2} p\right)}$. Therefore,

$$
\operatorname{Pr}\left[\bigcap_{a \in A}\left(e_{H}\left(a, B_{a} \mid P\right) \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p\right)\right] \leq e^{-\frac{\varepsilon^{2}}{3}\left(n^{3} p\right)}
$$

Note that there are at most n choices for the length of Berge path P. For each $j \in[n]$, there are at most $n-2$ choices for the edges of any two vertices of $V^{\prime}(P)$ in H, thus there are at most $\frac{n}{(j-1)!}(n-2)^{j}$ Berge path of length j. Based on this, the third line of inequality (4)

$$
\begin{aligned}
& \sum_{m=1}^{\lambda n^{3} p}\binom{\binom{n}{3}}{m} p^{m} \cdot \operatorname{Pr}\left(\text { exists } H_{2} \in \mathcal{H}_{2} \text { does not complement } H^{\prime} \mid H^{\prime} \subseteq H\right) \\
& \leq \sum_{m=1}^{\lambda n^{3} p}\binom{\binom{n}{3}}{m} p^{m} \cdot n \cdot \frac{n!}{(j-1)!}(n-2)^{j} \cdot e^{-\frac{e^{2}}{3}\left(n^{3} p\right)} \\
& \leq e^{-\frac{\varepsilon^{2}}{3}\left(n^{3} p\right)} \sum_{m=1}^{\lambda n^{3} p}\binom{\left(\begin{array}{c}
n \\
3
\end{array}\right.}{m} p^{m} \\
& \leq e^{-\frac{\varepsilon^{2}}{3}\left(n^{3} p\right)} \sum_{m=1}^{\lambda n^{3} p}\left(\frac{e n^{3} p}{m}\right)^{m} \\
& \leq e^{-\frac{\varepsilon^{2}}{3}\left(n^{3} p\right)}\left(\lambda n^{3} p\right)\left(\frac{e}{\lambda}\right)^{\lambda n^{3} p} \\
& =e^{-\frac{e^{2}}{3}\left(n^{3} p\right)} e^{O\left(\lambda \log \left(\frac{1}{\lambda}\right) n^{3} p\right)}=o(1),
\end{aligned}
$$

which the inequality holds for $\left(\frac{e n^{3} p}{m}\right)^{m}$ is monotone increasing in the range $1 \leq m \leq \lambda n^{3} p$ and $\lambda=\lambda(\varepsilon)$ is sufficiently small.

3. Proof of Theorem 1.1.

Proof of Theorem 1.1. Let $0<\varepsilon<1$. Let $c=c(\varepsilon)>0$ and $\lambda=\lambda(\varepsilon)>0$ be constants such that for $p \geq \frac{c \log n}{n^{2}}$, the 3-uniform hypergraph $H=H^{3}(n, p)$ asympotically almost surely holds for Proposition 2.7, Theorem
2.2 and Theorem 2.4, especially, Proposition 2.7 hold with 2ε instead of ε. That means, $d_{H}(v) \geq(1-2 \varepsilon)\binom{n}{2} p$ for every vertex $v \in V(H)$. Therefore, for any 3-uniform hypergraph H_{2} with minimum degree at least $\left(\frac{1}{4}+\varepsilon\right)\binom{n}{2} p$ can be obtained by the following way: exists a subgraph $H_{1} \subseteq H$ with maximum degree at most $\left(\frac{3}{4}-3 \varepsilon\right)\binom{n}{2} p$ such that $H_{2}=H-H_{1}$. Next we will show that $H-H_{1}$ is Berge Hamiltonian.

On the one hand, by Theorem 2.2, there exists a subgraph $H^{*} \subseteq H-H_{1}$ which has property $R E\left(\frac{1}{2}+\frac{2}{3} \varepsilon\right)$ and $\left|E\left(H^{*}\right)\right| \leq \lambda n^{3} p$. On the other hand, by Theorem 2.4 and the fact that $\left(\frac{3}{4}-3 \varepsilon\right)\binom{n}{2} p \leq\left(\frac{3}{4}-2 \varepsilon\right)\binom{n}{2} p$, there is $H-H_{1}$ complement H^{*}. Therefore, Proposition 2.5 implies that $H-H_{1}$ is Berge Hamiltonian.

References

[1] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, New York: Plenum. (1972) 85-103.
[2] G. A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society. 3 (1952) 69-81.
[3] C. Lee, B. Sudakov, Dirac's theorem for random graphs, Random Structures Algorithms. 41 (2012) 293-305.
[4] C. Berge, Graphs and Hypergraph, (2rd edition), North-Holland, Amsterdam, 1976.
[5] J. C. Bermond, A. Germa, M. C. Heydemann, D. Sotteau, Hypergraphes Hamiltoniens, problèmes combinatoires et thèorie des graphes, Colloque International CNRS. 260 (1978) 39-43.
[6] D. Clemens, J. Ehrenmüller, Y. Person, A Dirac-type theorem for Berge cycles in random hypergraphs, The Electronic Journal of Combinatorics. 27 (2020) 3-39.
[7] D. Bal, P. Devlin, et al, Hamiltonian Berge cycles in random hypergraphs, Probability and Computing. 30 (2021) 228-238.
[8] Q. Zhou, L. Wang, Y. Lu, Wiener-type invariants and Hamiltonian properties of graphs, Filomat. 33 (2019) 4045-4058.
[9] D. Kühn, D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, Journal of Combinatorial Theory. 126 (2014) 128-135.
[10] A. Dudek, A. Frieze, A. Ruciński, Rainbow Hamilton cycles in uniform hypergraphs, The Electronic Journal of Combinatorics. 19 (2012) 118-125.
[11] A. Dudek, M. Ferrara, Extensions of results on rainbow Hamilton cycles in uniform hypergraphs, Graphs and Combinatorics. 31 (2015) 577-583.
[12] A. Ferber, M. Krivelevich. Rainbow Hamilton cycles in random graphs and hypergraphs, Recent trends in combinatorics. 159 (2016) 167-189.
[13] B. Deepak, F. Alan, Rainbow matchings and Hamilton cycles in random graphs, Random structures and Algorithms. 48 (2016) $503-523$.
[14] M. Z. Chen, X. D. Zhang, Some new sufficient conditions for $2 p$-Hamilton-biconnectedness of graphs, Filomat. 33 (2019) 993-1011
[15] L. Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics. 14 (1976) 359-364.
[16] N. Alon, J. Spencer, The probabilistic method, (2rd edition), Wiley, New York, 2000.
[17] M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, Probabilistic methods for algorithmic discrete mathematics, SpringerVerlag, Berlin, 1998.

[^0]: 2020 Mathematics Subject Classification. Primary 05C65,05C80; Secondary 05C45, $05 C 07$.
 Keywords. Dirac's theorem; Random hypergraph; Berge cycle; Hamilton cycle
 Received: 13 December 2022; Accepted: 10 April 2023
 Communicated by Paola Bonacini
 Research supported by the National Natural Science Foundation of China(No.11401102, No.12171088).

 * Corresponding author: Liping Zhang

 Email addresses: elian1425@fzu.edu.cn (Ailian Chen), 1519036064@qq.com (Liping Zhang)

