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Abstract. We investigate various G type spaces on Rd
+ and their relations with the Gelfand-Shilov S type

spaces on R2d through the mapping w : R2d
→ Rd

+, w(x, ξ) = (2x2
1 + 2ξ2

1, . . . , 2x2
d + 2ξ2

d). Sufficient conditions
for the hypoellipticity of symbols originating from the coordinante radial symbols in G type spaces are also
given. Two open problems explained in the introduction are posed.

1. Introduction

When a solution of a certain partial differential equation of global type is smooth but not analytic, we
look for a space where we can describe its decay for |x| → ∞ and its regularity in Rd. For these needs,
Gelfand-Shilov type spaces [11] i.e. S type spaces are significantly useful. Moreover, they are used as a
framework for the time frequency analysis of pseudo-differential operators with symbols being of global
type. Recall that Gelfand and Shilov introduced such spaces in order to find solutions of certain parabolic
initial-value problems. There is a vast literature dealing with pseudo-differential calculus in Gelfand-
Shilov setting, see e.g. monographs [6, 19, 25] as well as articles [1, 2, 4, 22–24, 26] and references therein.
However, there are only a few papers related to similar type of spaces defined over Rd

+ = (0,∞)d. Here, we
mention [8, 9], where Duran introduced G type spaces and papers [13–15]. In one dimensional case, the
space of tempered distributions supported by (0,∞) is determined by the corresponding space of rapidly
decreasing functions in (0,∞) (cf. [10, 29]). It should be underlined that the transfer of the space of tempered
distributions over Rd to the one with the domain Rd

+ is not a trivial task, see [12].
In [16], we considered G type spaces Gα

α(Rd
+) and their duals for α ≥ 1 and gave their full topological

characterization. Furthermore, we analyzed the Weyl pseudo-differential operators on the Gelfand-Shilov
spaces

ãW(x,D) f (x) = (2π)−d
∫
Rd

∫
Rd

ei(x−y)·ξã
(x + y

2
, ξ
)

f (y) dy dξ, f ∈ S(Rd), (1)

with symbols ã(x, ξ) such that ã(x, ξ) = a(r1, ..., rd), ri = 2x2
i + 2ξ2

i , i = 1, . . . , d, where a(r) belongs to a dual
space of a G type space. Symbol ã(x, ξ) is called a symbol with coordinate radial arguments. Essential
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relations between G type spaces and Gelfand-Shilov type spaces are determined through the mapping

Rd
∋ (x1, ..., xn) 7→ v(x) = r = (r1, ..., rd) = (x2

1, ..., x
2
n) ∈ Rd

+. (2)

and

(x, ξ) = (x1, ξ1, . . . , xd, ξd) 7→ w(x, ξ) = (2x2
1 + 2ξ2

1, . . . , 2x2
d + 2ξ2

d) = (r1, . . . , rd). (3)

Wong [28, Theorem 24.5] used the Laguerre expansions of symbols with coordinate radial arguments
which are tempered functions on R2 in order to obtain a sufficient condition for the boundedness of the
Weyl pseudo-differential operators in the L2(R) setting. Especially, this expansion is useful for the analysis
of the global hypoellipticity. This was well analyzed in [16] through the Laguerre expansion of symbols
with radial arguments belonging to the projective limit space

R
{s};p(R+) := lim

←−

h→0

Lp
exp(−h|·|1/s)

(Rd
+),

and the Hermite expansions in S′α/2α/2 (R2d), α ≥ 1. This space is a subspace of G′αα (Rd
+). (In [16] we also

considered the Beurling case.) In this paper we show by an example that we can still have symbols, with
the Laguerre expansions as in [16] which are not elements of the spaces introduced there.

Except in the case explained above, we are not able to characterize pseudo differential operators which
originate from symbols in G′αα (Rd

+) even in the case when such symbols are compactly supported inRd
+. This

is an open problem. More precisely, the characterization of
∫
Rd
+

e−ix2τϕ(x)dx, ϕ ∈ Gα
α(Rd

+) is not obtained.

Our results relates subspaces of Gα
α(Rd

+), the corresponding subspaces ofSα/2α/2(R2d), α ≥ 1 and their duals.
We introduce Gα

0,α(Rd
+) which is a subspace of Gα

α(Rd
+). From the point of view of microlocal analyses, it seems

that Gα
0,α(Rd

+) offers a new field of investigations concerning the behaviour of functions at the corner point
zero. For example, let [0,∞] ∋ t 7→ f (t) = ϕ(t)e−1/t( f (0) = 0),where ϕ ∈ G5

5(R+). Then, f ∈ G6
0,6(R+) ⊂ G6

6(R+)
and f ∈ G5

5(R+). We know that G5
5(R+) , G6

0,6(R+) but we do not know whether f ∈ G5
0,5(R+). This is also an

open problem.
Assuming α > 2, we introduce Gα

c,α(Rd
+) as a completion of Dα/2

α/2(Rd
+) in the topology of Gα

α(Rd
+) and

analyse the corresponding dual pairing; Gα
c,α(Rd

+) is a subspace of Gα
α(Rd

+), but it is not dense in Gα
0,α(Rd

+).
We finish the paper with a result on global hypoellipticity as a consequence of the fact that a symbol is

a pull-back of an a ∈ G′α0,α(Rd
+) with additional assumptions on symbols.

2. Notations and preliminaries

Sets of positive integers, non-negative integers, integers, real and complex numbers are denoted byN,
N0, Z, R and C, respectively. Let x = (x1, . . . , xd) ∈ Rd and n = (n1, . . . ,nd) ∈ Nd

0. We use the notation:
xn :=

∏d
j=1 xn j

j ; ⟨x⟩ = (1+ |x|2)1/2,where |x| := (x2
1+ . . .+x2

d)1/2; Dn := Dn
x := Dn1

1 · · ·D
nd
d ,where Dn j

j := (−i∂/∂x j)n j

and j = 1, . . . , d. Given p, q ∈Nd, we set p! := p1! . . . pd!; |p| := p1 + . . . + pd; ap = a|p|, a > 0, q ≤ p means qi ≤ pi
for i = 1, . . . d; p − q is the multi-index (p1 − q1, . . . pd − qd), whenever q ≤ p.

Let α ≥ 1 and a > 1. The sequence space sα,a is defined as a space of all complex sequences {an}n∈Nd
0

for

which ∥{an}n∈Nd
0
∥sα,a = sup

n∈Nd
0

|an|a|n|
1/α
< ∞. We define sα = lim

−→

a→1+
sα,a. The strong dual (sα)′ of sα is the space of

all complex valued sequences {bn}n∈Nd
0

such that, for each a > 1, ∥{bn}n∈Nd
0
∥(sα)′,a =

∑
n∈Nd

0
|bn|a−|n|

1/α
< ∞. Its

topology is generated by the system of seminorms ∥ · ∥(sα)′,a. We also point out that sα is a nuclear (DFS)
space (therefore, (DFN) space) while (sα)′ is an (FN) space (see [27] for these notions and consequences).

Remark concerning the notation. Contrary to the usual notation, we use notation Sα/2α/2(Rd), α ≥ 1,
E
α/2(Rd), α ≥ 0, and for α > 2,Dα/2(Rd), since we will compare these spaces with the G-type spaces given be-

low which will have symbol α in the definition. Thus, all the spaces over Rd or R2d will have super- (and sub-)
exponent α/2 while those ones which are defined over Rd

+ will be signed with α.
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Let α ≥ 0, h > 0. Recall [17],

E
α/2(Rd

+) = lim
←−

K⊂⊂Rd
+

lim
−→

h→∞

E
α/2
K,h , where ϕ ∈ Eα/2K,h if ||ϕ||K,h = sup

x∈K,q∈Nd
0

|ϕ(q)(x)|
hqq!α/2

< ∞,

while, for α > 2, the Roumieu type spaceDα/2(Rd
+) of smooth functions equals

D
α/2(Rd

+) = lim
−→

K⊂⊂Rd
+

lim
−→

h→∞

D
α/2
K,h .

D
α/2
K,h is defined by the seminorms ||ϕ||K,h given above, but ϕ is supported by K (supp ϕ ⊂⊂ K).

Let α ≥ 1. We recall the definition of Gelfand-Shilov type spaces [11] (see also [3, 5, 18, 21]). Let A > 0.
Then Sα/2,Aα/2,A(Rd) is the Banach space of all φ ∈ C∞(Rd) with the norm

∥φ∥α/2
S,A,α/2 = sup

p,q∈Nd
0

∥∥∥xp∂qφ(x)
∥∥∥

L2(Rd)

(Ap+qp!α/2q!α/2)
< ∞. (4)

The Gelfand-Shilov space Sα/2α/2(Rd) is the inductive limit of Sα/2,Aα/2,A(Rd) i.e. Sα/2α/2(Rd) = lim
−→

A→∞
S
α/2,A
α/2,A(Rd).

The corresponding dual space of Sα/2α/2(Rd) is the space of ultradistributions of Roumieu type S′α/2α/2 (Rd) =

(Sα/2α/2(Rd))′ = lim
←−

A→0

(Sα/2,Aα/2,A(Rd))′ (cf. [17]).

Denote by hn,n ∈ Nd the Hermite functions which form an orthonormal basis of L2(Rd). Then ι :
S
α/2
α/2(Rd) → sα, defined by ι( f ) = {⟨ f , hn⟩}n∈Nd

0
is a continuous linear bijection between Sα/2α/2(Rd) and sα, cf.

[18], for example. Furthermore, for each f ∈ Sα/2α/2(Rd),
∑

n∈Nd
0
⟨ f , hn⟩hn converges absolutely to f in Sα/2α/2(Rd).

Let α ≥ 1. We recall the definition of our basic space from [13]. For A > 0, we denote by Gα,A
α,A(Rd

+) the
space of all ψ ∈ C∞(Rd

+) for which the norms

∥ψ∥αG,A, j,α = sup
p,q∈Nd

0

∥t(p+q)/2∂qψ(t)∥L2(Rd
+)

Ap+qp!α/2q!α/2
+ sup
|q|≤ j
|p|≤ j

sup
t∈Rd

+

|tp∂qψ(t)|, j ∈N0. (5)

are finite. Then, the G type space Gα
α(Rd

+) is the inductive limit of the Fréchet spaces Gα,A
α,A(Rd) i.e. Gα

α(Rd
+) =

lim
−→

A→∞
Gα,A
α,A(Rd). The corresponding dual space of Gα

α(Rd
+) is the spaces of ultradistributions of Roumieu type

G′αα (Rd
+) = (Gα

α(Rd
+))′ = lim

←−
A→0

(Gα,A
α,A(Rd

+))′.

Using the Laguerre orthonormal basis of L2(Rd
+), by ℓn,n ∈ Nd

0 Laguerre functions are denoted, it
is proved in [13, Theorem 6.1], that the mapping ι : Gα

α(Rd
+) → sα, ι( f ) = {⟨ f , ℓn⟩}n∈Nd

0
is a topological

isomorphism between Gα
α(Rd

+) and sα. Hence, the G type space inherits topological properties of the
sequence space sα. Furthermore, for each f ∈ Gα

α(Rd
+),
∑

n∈Nd
0
⟨ f , ℓn⟩ℓn = f in Gα

α(Rd
+), see [8, 13].

Let α > 2.We recall the definitions from [24] (with ρ = 1, σ = s in [24], and s = α/2 here). In the Roumieu
case, for any fixed h > 0, m > 0, by Γα/2,∞α/2 (R2d; h; m) is denoted the space of all functions a(x, ξ) ∈ C∞(R2d)
such that

sup
q,p∈Nd

0

sup
(x,ξ)∈R2d

|Dq
ξD

p
xa(x, ξ)|⟨(x, ξ)⟩p+qe−m(|x|2/α+|ξ|2/α)

hp+qp!α/2q!α/2
< ∞.

Then
Γα/2,∞α/2 (R2d) = lim

−→

h→∞

lim
←−

m→0
Γα/2,∞α/2 (R2d; h; m).

Let a ∈ Γα/2,∞α/2 (R2d). It is said that a symbol a is Γα/2,∞α/2 -hypoelliptic if
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(i) There exist R > 0 and C,m > 0 such that

|a(x, ξ)| ≥ Ce−m(|x|2/α+|ξ|2/α), (x, ξ) ∈ Qc
R = {(x, ξ) : ⟨x⟩ ≥ R or ⟨ξ⟩ ≥ R}. (6)

(ii) There exists R > 0 such that for every h > 0 there exists C > 0 such that

|Dq
ξD

p
xa(x, ξ)| ≤

hp+q
|a(x, ξ)|p!α/2q!α/2

⟨(x, ξ)⟩p+q , p, q ∈Nd, (x, ξ) ∈ Qc
R. (7)

3. Relations between G-type spaces

Let α ≥ 1. The subspace Sα/2α/2,even(Rd) of Sα/2α/2(Rd) consists of all even functions in Sα/2α/2(Rd): ψ(x1, . . . , x j−1,

−x j, x j+1, . . . , xd) = ψ(x), x ∈ Rd, j = 1, . . . , d. A topological isomorphism between Gα
α(Rd

+) and Sα/2α/2,even(Rd),

Gα
α(Rd

+) = Sα/2α/2,even(Rd), (8)

is established in [15] through the push forward Gα
α(Rd

+)→ Sα/2α/2(Rd) by the mapping v given in (2). In relation
to Gα

α(Rd
+), the elements of the next space have essentially different behaviour at zero.

Let A > 0 and α ≥ 1; Gα,A
0,α,A is defined as an F- space of smooth functions ϕ on Rd

+ such that

∥ϕ∥αG,0,A, j,α = sup
p,q∈Nd

0
x∈Rd

+

∥⟨t⟩(p+q)/2∂qϕ(t)∥L2(Rd
+)

Ap+qp!α/2q!α/2
+ sup
|q|≤ j
|p|≤ j

sup
t∈Rd

+

|tp∂qψ(t)|, j ∈N0.

Gα
0,α is the inductive limit of the spaces Gα,A

0,α,A. It is a (DFN) space; Gα
α(Rd

+) ⊂ Eα/2(Rd
+).

Furthermore, for α > 2, we define Gα
c,α(Rd

+) as the closure of Dα/2(Rd
+) in Gα

α(Rd
+). Clearly, Dα/2(Rd

+)
is a dense subspace of Gα

c,α(Rd
+). This gives embedding G′αc,α(Rd

+) ↪→ D′α/2(Rd
+). Moreover, Gα

c,α(Rd
+) is con-

tinuously embedded in Gα
α(Rd

+) but not densely embedded. See Example 3.3 below and the comment
therein.

If F ∈ G′αα (Rd
+), then its restriction on Gα

c,α(Rd
+) belongs to G′αc,α(Rd

+). Space G′αc,α(Rd
+) has a good approxi-

mation property:

Proposition 3.1. Let α > 2 and u ∈ G′αc,α(Rd
+). Then there is a sequence (u j) j in Gα

c,α(Rd), such that u j → u in
G′αc,α(Rd

+).
In particular, if u is compactly supported, then (u j) j is a sequence inDα/2(Rd

+) which converges to u inD′α/2(Rd
+).

Proof. By (8), the properties of Sα/2α/2(Rd) are transferred to Gα
α(Rd

+) through the mapping v. If u ∈ L1(Rd
+) and

θ ∈ Gα
c,α(Rd

+), then their dual pairing is given by ⟨u, θ⟩Rd
+
=
∫
Rd
+

u(ρ)θ(ρ)dρ1...dρd. Let κ ∈ Gα
α(Rd

+) have the
properties:

κ(r) = 1, r ∈ B(0, 1) ∩Rd
+, κ(r) = 0, r ∈ CB(0, 2),

where CB(0, 2) is a complement of the ball B(0, 2) with center at zero and radius equals 2. Put κ j(r) =
κ(r/ j), r ∈ Rd

+, j ∈ N, (cut-off function) . Further on, let ϕ(r) ∈ Gα
α(Rd

+) so that it is supported by the ball
B(1, 1) so that its integral over Rd

+ equals one (1 = (1, ..., 1)). Put ϕ j = jdϕ( jr), r ∈ Rd
+, j ∈ N (this is a delta

sequence). Let u ∈ G′αα (Rd
+). Define u j(r) = κ j(u ∗ ϕ j(r)), r ∈ Rd

+, j ∈ N. This is a sequence in Gα
c,α(Rd

+) which
converges to u in G′αc,α(Rd

+) since ⟨u j(r), θ(r)⟩Rd
+
= ⟨u(r),Φ j(r)⟩Rd

+
, j ∈N, where

Φ j(r) =
∫
Rd
+

jdϕ( j(r − ρ))(κ(ρ/ j)θ(ρ))dρ1...dρd converges to θ(r) in Gα
c,α(Rd

+), j→∞.
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The particular part of lemma is clear. □

We recall the Faà di Bruno formula for the partial derivatives of the composition of functions [7, Corollary
2.10]:

∂q

∂xq σ(1(x)) =
q∑

r=0

q!
k1!...kq!

σ(r)(1(x))
q∏

i=1

(1(i)(x)
i!

)ki
, q ∈N0 (9)

where r = k1 + ... + kq and the sum is over all nonnegative integers k1, ..., kq for which k1 + 2k2 + ... + qkq = q.

Example 3.2. Let ϕ ∈ G5
0,5(R+) so that ϕ(t) = 1, t ∈ [0, 1]. Our aim in this example is to show that

f (t) = e−1/tϕ(t) ∈ G6
0,6(R+) ∩ G5

5(R+). (10)

We use Faá di Bruno formula (9), in the one dimensional case. Since ( (t−1)(i)

i! )ki = (−1)iki t−(i+1)ki , it follows that

q∏
i=1

(
(t−1)(i)

i!
)ki = (−1)qt−q−r.

With this, we have

(e−1/t)(q) = q!
q∑

r=0

e−1/t

k1!...kq!
(−1)qt−q−r.

By Stirling’s formula, and the fact that e−1/tt−q−r takes its maximum at t = 1/(q + r), we have

max
t∈[0,1]

e−1/t

tq+r = e−q−r(q + r)q+r
∼

e−q−r(q + r)!eq+r√
2π(q + r)

≤
2q+rq!r!√
2π(q + r)

,

we have,

(e−1/t)(q)
≤ q!3

q∑
r=0

2q+r

k1!...kq!
√

2π(q + r)
≤ cqq!3, t ∈ [0, 1].

By the similar calculation

|tq/2(e−1/t)(q)
| ≤ q!

q∑
r=0

(q/2 + r)q/2+re−q/2−r

k1!...kq!
√

2π(q/2 + r)
≤ q!

q∑
r=1

(q/2 + 2q/2)!2q/2+r

k1!...kq!
√

2π(q/2 + r)
≤ cq

2q!5/2,

where we have used that q! ≤ 2q(q/2)!2 ≤ 2qq!. Now, one can find that for α = 6 there exists h > 0 such that

sup
t∈[0,1]

|⟨t⟩(p+q)/2(e−1/t)(q)
|

hp+qp!3q!3
< ∞. (11)

and that for α = 5, there exists h > 0 such that

sup
t∈[0,1]

|t(p+q)/2(e−1/t)(q)
|

hp+qp!5/2q!5/2
< ∞. (12)

Thus, by (11), e−1/tϕ(t) ∈ G6
0,6(R+).On the other hand, by (12), we have e−1/tϕ(t) ∈ G5

5(R+). As we noted, we are not
able to prove that f ∈ G5

0,5(R+).

Example 3.3. The space Gα
c,α, α > 2, is not dense in Gα

0,α, α > 2. Let ϕ ∈ Gα
0,α(R+) so that ϕ(t) = 1, t ∈ [0, 1]. There

does not exist a sequence (ψn)n in Dα/2(R) such that ψn → ϕ, n → ∞, in Gα
0,α because supt∈[0,1] |ϕ(t) − ψn(t)| =

1,n ∈N.
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The proof of the next proposition is based on the multivariate Faà di Bruno formula (9). First, we formulate
the one -dimensional case with 1(x) = 2x2. Note that i in (9) can take only values 1 and 2. This further,
implies k1 + k2 = k and k1 + 2k2 = p, that is, k1 = 2k − p, k2 = p − k and k ≥ [p/2]. This, with j = p − k, gives

∂p

∂xp σ(2x2) =
[ p

2 ]∑
j=0

p!
j!(p − 2 j)!

σ(p− j)(2x2)(4x)p−2 j2 j, (13)

where [x] is the largest integer ≤ x. With the help of multi-indices, the identity (13) in the 2d-dimensional
case becomes

∂p,q
x,ξ

∂xp∂ξq σ(2x2 + 2ξ2) =
∂p,q

x,ξ

∂xp∂ξq σ(2x2
1 + 2ξ2

1, . . . , 2x2
d + 2ξ2

d)

= p!q!
[ p

2 ]∑
j=0

[ q
2 ]∑

i=0

σ(p+q− j−i)(2x2 + 2ξ2)
j!i!(p − 2 j)!(q − 2i)!

(4x)p−2 j2 j(4ξ)q−2i2i, x, ξ ∈ Rd, (14)

where we use notation
[ p

2 ]∑
j=0

[ q
2 ]∑

i=0

=

[
p1
2 ]∑

j1=0

[
q1
2 ]∑

i1=0

...

[
pd
2 ]∑

jd=0

[
qd
2 ]∑

id=0

.

Proposition 3.4. Let α ≥ 2 and ψ ∈ Gα
0,α(Rd

+) and let φ(x, ξ) = w∗ψ(x, ξ) = ψ(2x2 + 2ξ2) = ψ(2x2
1 + 2ξ2

1, ..., 2x2
d +

2ξ2
d), (cf. (3)). Then φ ∈ Sα/2α/2(R2d) and the mapping

w∗ : Gα
α(Rd

+)→ Sα/2α/2(R2d), ψ 7→ w∗ψ = ψ ◦ w = φ.

is continuous.

Proof. We use the change of variables ti = 2x2
i + 2ξ2

i , i = 1, ..., d and the inequalities p!q! ≤ (p + q)! ≤
2p+q p! q!, p, q ∈Nd

0 (0! = 1),

|⟨x1⟩
p1⟨ξ1⟩

q1 · · · ⟨xd⟩
pd⟨ξd⟩

qd | ≤ (1 + 2x2
1 + 2ξ2

1)p1/2+q1/2 · · · (1 + 2x2
d + 2ξ2

d)pd/2+qd/2,

|xq1−2 jξq2−2i
| ≤ ⟨x⟩q1−2 j

⟨ξ⟩q2−2i
≤ 2q1+q2−2 j−2i

⟨t⟩
q1+q2−2 j−2i

2 , ⟨x⟩m1⟨ξ⟩m2 ≤ 2m1+m2⟨t⟩(m1+m2)/2.

It is enough to show that there exist A > 0 and C > 0 such that for given h > 0 (which depends on ψ),

sup
p,q∈Nd

0
x,ξ∈Rd

|∂q1
x ∂

q2

ξ φ(x, ξ)|(1 + |x|2)m1/2(1 + |ξ|2)m2/2

Aq1+q2+m1+m2 (q1 + q2)!α/2(m1)!α/2(m2)!α/2
≤ C sup

p,q∈Nd
0

t∈Rd
+

|⟨t⟩(p+q)/2∂qψ(t)|
hp+qp!α/2q!α/2

.

It should be noticed that in the successive calculation we obtain the expression (|x|2 + |ξ|2)− j−i which can not
be controlled by other factors. Therefore, the assumption that ψ ∈ Gα

0,α(R+) is needed.
Let cq1,q2

A,m1,m2
= Aq1+q2+m1+m2 (q1 + q2)!α/2(m1)!α/2(m2)!α/2. Using (14) and the change of variable t = 2|x|2 + 2|ξ|2

(also written as t = 2x2 + 2ξ2), we conclude, with the use of suitable constants

∥φ∥α/2
S,A,α/2 = sup

q1 ,q2 ,m1 ,m2∈N
d
0

x,ξ∈Rd

|∂q1
x ∂

q2

ξ φ(x, ξ)|⟨x⟩m1⟨ξ⟩m2

cq1,q2

A,m1,m2
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≤ sup
q1 ,q2 ,m1 ,m2∈N

d
0

t∈Rd
+

[
q1
2 ]∑

j=0

[ q2
2 ]∑

i=0

q1!q2!|ψ(q1+q2−i− j)(t)|

cq1,q2

A,m1,m2
j!i!(q1 − 2 j)!(q2 − 2i)!

⟨t⟩
q1+q2−2i−2 j+m1+m2

2 22(q1+q2)−3(i+ j)+m1+m2

≤ (
C1

A
)q1+q2+m1+m2 sup

q1 ,q2 ,m1 ,m2∈N
d
0

t∈Rd
+

[
q1
2 ]∑

j=0

[ q2
2 ]∑

i=0

|ψ(q1+q2− j−i)(t)|⟨t⟩
q1+q2− j−i

2 ⟨t⟩
m1+m2

2 ⟨t⟩−
j+i
2

(q1 + q2 − j − i)!α/2(m1 +m2)!α/2

(q1 + q2 − j − i)!(i + j)!
(i + j)!α/2(q1 + q2 − j − i)!

≤ (
C2(h)

A
)q1+q2+m1+m2 sup

q1 ,q2 ,m1 ,m2∈N
d
0

t∈Rd
+

[
q1
2 ]∑

j=0

[ q2
2 ]∑

i=0

ci+ j
2

(i + j)(α/2−1)

This implies that for given h > 0 there exist A,C > 0 such that fpr every j ∈N0,

||φ||α/2
S,A,α/2 ≤ C||ψ||αG,0,h, j,α (see Section 2).

This completes the proof of the proposition.

We note that this proposition also follows from our result related to (8). Here we obtain this result by
quite different methods.

4. Weyl pseudo-differential operators with radial symbols and hypoellipticity

Let α ≥ 1 and f , 1 ∈ Sα/2α/2(Rd). We refer to [6] for the Wigner transform of f , 1 ∈ Sα/2α/2(Rd). It is well known

that the bilinear mapping ( f , 1) 7→W( f , 1), Sα/2α/2(Rd) × Sα/2α/2(Rd)→ Sα/2α/2(R2d) is continuous.

The Weyl pseudo-differential operator with a symbol ã ∈ S′α/2α/2 (R2d) defined by (1) is a continuous

and linear mapping from Sα/2α/2(Rd) into S′α/2α/2 (Rd) (see [20, Theorem 2]). Using the Hermite expansions of

elements from Sα/2α/2(Rd), we obtain

W( f , 1) =
∑

(m,k)∈N2d
0

⟨ f , hm⟩⟨1, hk⟩W(hm, hk),

where the sum converges absolutely in Sα/2α/2(R2d).
We introduceAα

α(Rd
+) as the space of all locally integrable functions a(r), r ∈ Rd

+, with the properties

a(r) ∈ G′αα (Rd
+) and ã(x, ξ) = a(2x2

1 + 2ξ2
1, ..., 2x2

d + 2ξ2
d) ∈ S′α/2α/2 (R2d).

(Here we use the fact that the composition of a locally integrable function and a smooth function is locally
integrable.)

We considered in [16] the symbols aw(x, ξ) := a(2x2
1 + 2ξ2

1, . . . , 2x2
d + 2ξ2

d), a ∈ R{α};p(Rd
+) (see introduction).

We obtained the characterisation of a in terms of the growths of their Laguerre coefficients for which the
Weyl quantisation of aw extends to a well-defined and continuous operator aW

w : S′α/2α/2 (Rd)→ S′α/2α/2 (Rd).

Example 4.1. Let α ≥ 2 and s = α/2. With the following example, in the case when d = 1, we show that R{s};p(R+)
is a proper subset of Aα

α(R+). Let f (x) = ex, x ∈ [n,n + e−n),n ∈ N,n > N0 and f (x) = 0 in the rest of R. Let
φ ∈ Gα

α(Rd
+). We use the fact that φ(x) ≤ Ceh|x|2/α , x > N0, for suitable C, h,N0 > 0. With this, we have∣∣∣∣ ∫

R+

f (x)φ(x)dx
∣∣∣∣ ≤ C

∞∑
n>N0

1
ehn2/α < ∞,

so that f < R{α/2};p(Rd
+) since

∫
Rd
+

epx2/α
−hpx2/αdx = ∞ for h = 1. Thus, f ∈ Aα

α(Rd
+) \ R{α/2};p(Rd

+).
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Because of that, the next proposition has a sense although its proof is the same as in [16]; so, the proof is
skipped.

Proposition 4.2. Let a(r) ∈ Aα
α(Rd

+).

(i) The Weyl pseudo-differential operator defined as

(̃aW(x,D)φ)(ψ) = ⟨̃aW(x,D)φ,ψ⟩ = ⟨a(2x2 + 2ξ2),W(φ,ψ)(x, ξ)⟩, φ, ψ ∈ Sα/2α/2(Rd)

is a continuous bilinear mapping Sα/2α/2(Rd) × Sα/2α/2(Rd) → C. It is given by (φ,ψ) 7→
∑

k∈Nd
0
φkψkak, where

φ(x) =
∑

k∈Nd
0
⟨φ, hk⟩hk(x), ψ(x) =

∑
k∈Nd

0
⟨ψ, hk⟩hk(x) and a(ρ) =

∑
k∈Nd

0
akℓk(ρ), ak = (2π)d/2(−1)|k|2−d

⟨a, ℓk⟩.

(ii) It can be continuously extended as a bilinear mapping over Sα/2α/2(Rd) × S′α/2α/2 (Rd), with values in C.

4.1. Hypoellipticity

We continue to assume α > 2. We employ the notationHα(Rd
+) for a subspace of Gα

0,α(Rd
+) consisting of

smooth functions a(r), r ∈ Rd
+, which satisfy the next conditions: There exists R > 0, h > 0, C > 0,m > 0 such

that

|a(r)| ≥ Ce−m|r|1/α , |rp/2∂p
r a(r)| ≤ h|p||a(r)|p!α/2, p ∈Nd

0 r ∈ Qc
R. (15)

Proposition 4.3. Let ã(x, ξ) = a(2x2 + 2ξ2), x, ξ ∈ Rd, where a function a belongs to Hα(Rd
+). Then the Weyl

pseudo-differential operator ãW(x,D) is Γα/2,∞α/2 -hypoelliptic.

Proof. We skip the part in which we prove that ã(x, ξ) ∈ Γα/2,∞α/2 (R2d).
Condition (6) is clear. We will prove (7). Let (x, ξ) ∈ Bc

R. To prove (7), we use our calculation in
Proposition 3.4 (without the multiplication with powers of x and ξ). Let cq1,q2

A = Aq1+q2 (q1 + q2)!α/2.

sup
q1 ,q2∈N

d
0

x,ξ∈Rd

|∂q1
x ∂

q2

ξ ã(x, ξ)|

cq1,q2

A

≤

sup
q1 ,q2∈N

d
0

t∈Rd
+

[
q1
2 ]∑

j=0

[ q2
2 ]∑

i=0

q1!q2!|a(q1+q2−i− j)(t)|

cq1,q2

A j!i!(q1 − 2 j)!(q2 − 2i)!
⟨t⟩

q1+q2−2i−2 j
2 22(q1+q2)−3(i+ j)

≤

(C1

A

)q1+q2
sup

q1 ,q2∈N
d
0

t∈Rd
+

[ q1
2 ]∑

j=0

[ q2
2 ]∑

i=0

(q1 + q2 − j − i)!(i + j)!|a(q1+q2− j−i)(t)|⟨t⟩
q1+q2− j−i

2 ⟨t⟩−
j+i
2

(q1 + q2 − j − i)!α/2(i + j)!α/2(q1 + q2 − j − i)!

≤

(C2(h)
A

)q1+q2
a(r) sup

q1 ,q2 ,m1 ,m2∈N
d
0

t∈Rd
+

[ q1
2 ]∑

j=0

[ q2
2 ]∑

i=0

ci+ j
2

(i + j)(α/2−1)

Now assumption (15) and the choice of A > 0 imply the assertion.
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2010.
[20] Y. Oka, On the Weyl Transform with Symbol in the Gelfand-Shilov Space and its Dual Space, CUBO 12 (2010) No. 3, 241-253.
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