Filomat 37:26 (2023), 8755–8763 https://doi.org/10.2298/FIL2326755J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Ψ**DOs with radial symbols and spaces of type** *G*

$\mathbf S$ miljana Jakšić^a, Stevan Pilipović^b

^aFaculty of Forestry, University of Belgrade, Kneza Viˇseslava 1, Belgrade, Serbia ^bDepartment of Mathematics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovi´ca 4, Novi Sad, Serbia

Abstract. We investigate various *G* type spaces on R*^d* ⁺ and their relations with the Gelfand-Shilov *S* type spaces on \mathbb{R}^{2d} through the mapping $w : \mathbb{R}^{2d} \to \mathbb{R}^d_+$, $w(x,\xi) = (2x_1^2 + 2\xi_1^2, \ldots, 2x_d^2 + 2\xi_d^2)$. Sufficient conditions for the hypoellipticity of symbols originating from the coordinante radial symbols in *G* type spaces are also given. Two open problems explained in the introduction are posed.

1. Introduction

When a solution of a certain partial differential equation of global type is smooth but not analytic, we look for a space where we can describe its decay for $|x| \to \infty$ and its regularity in \mathbb{R}^d . For these needs, Gelfand-Shilov type spaces [11] i.e. *S* type spaces are significantly useful. Moreover, they are used as a framework for the time frequency analysis of pseudo-differential operators with symbols being of global type. Recall that Gelfand and Shilov introduced such spaces in order to find solutions of certain parabolic initial-value problems. There is a vast literature dealing with pseudo-differential calculus in Gelfand-Shilov setting, see e.g. monographs [6, 19, 25] as well as articles [1, 2, 4, 22–24, 26] and references therein. However, there are only a few papers related to similar type of spaces defined over $\mathbb{R}^d_+ = (0, \infty)^d$. Here, we mention [8, 9], where Duran introduced *G* type spaces and papers [13–15]. In one dimensional case, the space of tempered distributions supported by $(0, \infty)$ is determined by the corresponding space of rapidly decreasing functions in $(0, \infty)$ (cf. [10, 29]). It should be underlined that the transfer of the space of tempered distributions over \mathbb{R}^d to the one with the domain \mathbb{R}^d_+ is not a trivial task, see [12].

In [16], we considered *G* type spaces $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ and their duals for $\alpha \geq 1$ and gave their full topological characterization. Furthermore, we analyzed the Weyl pseudo-differential operators on the Gelfand-Shilov spaces

$$
\widetilde{a}^{W}(x,D)f(x) = (2\pi)^{-d} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{i(x-y)\cdot\xi} \widetilde{a}\left(\frac{x+y}{2},\xi\right) f(y) \, dy \, d\xi, \qquad f \in \mathcal{S}(\mathbb{R}^{d}), \tag{1}
$$

with symbols $\tilde{a}(x, \xi)$ such that $\tilde{a}(x, \xi) = a(r_1, ..., r_d)$, $r_i = 2x_i^2 + 2\xi_i^2$, $i = 1, ..., d$, where $a(r)$ belongs to a dual space of a *G* type space. Symbol $\tilde{a}(x, \xi)$ is called a symbol with coordinate radial arguments. Essential

²⁰²⁰ *Mathematics Subject Classification*. 47G30, 46F12, 33C45, 44A15, 35S05

Keywords. Pseudo-differential operators with radial symbols, Gelfand-Shilov regularity, Hermite expansions, Laguerre expansions Received: 13 February 2023; Revised: 17 May 2023; Accepted: 05 June 2023

Communicated by Dragan S. Djordjevic´

Research was supported by the project 451-03-47/2023-01/200169 financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia and the project F10 financed by the Serbian Academy of Sciences and Arts.

Email addresses: smiljana.jaksic@sfb.bg.ac.rs (Smiljana Jakšić), stevan.pilipovic@dmi.uns.ac.rs (Stevan Pilipović)

relations between *G* type spaces and Gelfand-Shilov type spaces are determined through the mapping

$$
\mathbb{R}^{d} \ni (x_{1},...,x_{n}) \mapsto v(x) = r = (r_{1},...,r_{d}) = (x_{1}^{2},...,x_{n}^{2}) \in \mathbb{R}_{+}^{d}.
$$
\n(2)

and

$$
(x,\xi) = (x_1, \xi_1, \dots, x_d, \xi_d) \mapsto w(x,\xi) = (2x_1^2 + 2\xi_1^2, \dots, 2x_d^2 + 2\xi_d^2) = (r_1, \dots, r_d). \tag{3}
$$

Wong [28, Theorem 24.5] used the Laguerre expansions of symbols with coordinate radial arguments which are tempered functions on \mathbb{R}^2 in order to obtain a sufficient condition for the boundedness of the Weyl pseudo-differential operators in the L²(R) setting. Especially, this expansion is useful for the analysis of the global hypoellipticity. This was well analyzed in [16] through the Laguerre expansion of symbols with radial arguments belonging to the projective limit space

$$
\mathcal{R}^{\{s\};p}(\mathbb{R}_{+}) := \varprojlim_{h \to 0} L^{p}_{\exp(-h|\cdot|^{1/s})}(\mathbb{R}_{+}^{d}),
$$

and the Hermite expansions in $S^{\prime \alpha/2}_{\alpha/2}$ $C_{\alpha/2}^{(\alpha/2)}(\mathbb{R}^{2d})$, $\alpha \geq 1$. This space is a subspace of $G_{\alpha}^{\prime\alpha}(\mathbb{R}^{d}_{+})$. (In [16] we also considered the Beurling case.) In this paper we show by an example that we can still have symbols, with the Laguerre expansions as in [16] which are not elements of the spaces introduced there.

Except in the case explained above, we are not able to characterize pseudo differential operators which originate from symbols in $G_\alpha^{\prime\alpha}(\mathbb{R}^d_+)$ even in the case when such symbols are compactly supported in \mathbb{R}^d_+ . This is an open problem. More precisely, the characterization of $\int_{\mathbb{R}^d_+} e^{-ix^2\tau} \phi(x) dx$, $\phi \in G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ is not obtained.

Our results relates subspaces of $G_\alpha^\alpha(\mathbb{R}^d_+)$, the corresponding subspaces of $\mathcal{S}_{\alpha/2}^{\alpha/2}$ $\alpha^{(\alpha/2)}_{\alpha/2}(\mathbb{R}^{2d}), \alpha \ge 1$ and their duals. We introduce $G^a_{0,\alpha}(\mathbb{R}^d_+)$ which is a subspace of $G^a_\alpha(\mathbb{R}^d_+)$. From the point of view of microlocal analyses, it seems that $G_{0,\alpha}^{\alpha}(\mathbb{R}^d_+)$ offers a new field of investigations concerning the behaviour of functions at the corner point zero. For example, let $[0, \infty] \ni t \mapsto f(t) = \phi(t)e^{-1/t}(f(0) = 0)$, where $\phi \in G_5^5(\mathbb{R}_+)$. Then, $f \in G_{0,6}^6(\mathbb{R}_+) \subset G_6^6(\mathbb{R}_+)$ and $f \in G_5^5(\mathbb{R}_+)$. We know that $G_5^5(\mathbb{R}_+) \neq G_{0,6}^6(\mathbb{R}_+)$ but we do not know whether $f \in G_{0,5}^5(\mathbb{R}_+)$. This is also an open problem.

Assuming $\alpha > 2$, we introduce $G_{c,\alpha}^{\alpha}(\mathbb{R}^d_+)$ as a completion of $\mathcal{D}_{\alpha/2}^{\alpha/2}$ $\alpha^{ \alpha /2}_{\alpha /2}(\mathbb{R}^d_+)$ in the topology of $G^\alpha_\alpha(\mathbb{R}^d_+)$ and analyse the corresponding dual pairing; $G_{c,\alpha}^{\alpha}(\mathbb{R}^d_+)$ is a subspace of $G_{\alpha}^{\alpha}(\mathbb{R}^d_+)$, but it is not dense in $G_{0,\alpha}^{\alpha}(\mathbb{R}^d_+)$.

We finish the paper with a result on global hypoellipticity as a consequence of the fact that a symbol is a pull-back of an $a \in G_{0,\alpha}^{\prime\alpha}(\mathbb{R}^d_+)$ with additional assumptions on symbols.

2. Notations and preliminaries

Sets of positive integers, non-negative integers, integers, real and complex numbers are denoted by N, \mathbb{N}_0 , **Z**, **R** and **C**, respectively. Let $\bar{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$ and $n = (n_1, \ldots, n_d) \in \mathbb{N}_0^d$. We use the notation: $x^n := \prod_{j=1}^d x_j^{n_j}$ y_j ; $\langle x \rangle = (1+|x|^2)^{1/2}$, where $|x| := (x_1^2 + ... + x_d^2)^{1/2}$; $D^n := D_x^n := D_1^{n_1} \cdots D_d^{n_d}$ $\int_d^{n_d}$, where $D_j^{n_j}$ j ^{*n_j*} := $(-i\partial/\partial x_j)^{n_j}$ and $j=1,\ldots,d$. Given $p,q\in\mathbb{N}^d$, we set $p!:=p_1!\ldots p_d!$; $|p|:=p_1+\ldots+p_d$; $a^p=a^{|p|}, a>0, q\leq p$ means $q_i\leq p_i$ for *i* = 1, . . . *d*; *p* − *q* is the multi-index (*p*₁ − *q*₁, . . . *p*_{*d*} − *q*_{*d*}), whenever *q* ≤ *p*.

Let $\alpha \ge 1$ and $a > 1$. The sequence space $s^{\alpha,a}$ is defined as a space of all complex sequences $\{a_n\}_{n \in \mathbb{N}_0^d}$ for which $\|\{a_n\}_{n\in\mathbb{N}_0^d}\|_{s^{\alpha,a}} = \sup_{\mathbf{x} \in \mathbb{N}} |a_n|a^{|n|^{1/a}} < \infty$. We define $s^{\alpha} = \lim_{\mathbf{x} \to \infty} s^{\alpha,a}$. The strong dual $(s^{\alpha})'$ of s^{α} is the space $n ∈ ℕ_0^d$ $|a_n|a^{|n|^{1/\alpha}} < \infty$. We define $s^{\alpha} = \lim_{n \to \infty}$ $\lim_{a \to 1^+} s^{\alpha,a}$. The strong dual $(s^{\alpha})'$ of s^{α} is the space of

all complex valued sequences ${b_n}_{n \in \mathbb{N}_0^d}$ such that, for each $a > 1$, ${||{b_n}_{n \in \mathbb{N}_0^d}||_{(s^{\alpha})',a}} = \sum_{n \in \mathbb{N}_0^d} |{b_n}|a^{-|n|^{1/\alpha}} < \infty$. Its topology is generated by the system of seminorms $\|\cdot\|_{(s^{\alpha})',a}$. We also point out that s^{α} is a nuclear (DFS) space (therefore, (DFN) space) while (s^a)' is an (FN) space (see [27] for these notions and consequences).

Remark concerning the notation. Contrary to the usual notation, we use notation $S^{\alpha/2}_{\alpha/2}(\mathbb{R}^d)$, $\alpha \geq 1$, $\mathcal{E}^{\alpha/2}(\mathbb{R}^d)$, $\alpha \geq 0$, and for $\alpha > 2$, $\mathcal{D}^{\alpha/2}(\mathbb{R}^d)$, since we will compare these spaces with the G-type spaces given be*low which will have symbol* α *in the definition. Thus, all the spaces over* R*^d or* R2*^d will have super- (and sub-) exponent* α/2 *while those ones which are defined over* R*^d* ⁺ *will be signed with* α*.*

Let $\alpha > 0, h > 0$. Recall [17],

$$
\mathcal{E}^{\alpha/2}(\mathbb{R}^d_+) = \varprojlim_{K \subset \subset \mathbb{R}^d_+} \varinjlim_{h \to \infty} \mathcal{E}^{\alpha/2}_{K,h}, \text{ where } \phi \in \mathcal{E}^{\alpha/2}_{K,h} \text{ if } ||\phi||_{K,h} = \sup_{x \in K, q \in \mathbb{N}_0^d} \frac{|\phi^{(q)}(x)|}{h^q q!^{\alpha/2}} < \infty,
$$

while, for $\alpha > 2$, the Roumieu type space $\mathcal{D}^{\alpha/2}(\mathbb{R}^d_+)$ of smooth functions equals

$$
\mathcal{D}^{\alpha/2}(\mathbb{R}^d_+) = \lim_{\substack{\longrightarrow \\ K \subset \subset \mathbb{R}^d_+}} \lim_{h \to \infty} \mathcal{D}^{\alpha/2}_{K,h}.
$$

 $\mathcal{D}^{\alpha/2}$ $K_{K,h}^{\alpha/2}$ is defined by the seminorms $\|\phi\|_{K,h}$ given above, but ϕ is supported by *K* (supp ϕ ⊂⊂ *K*).

Let $\alpha \geq 1$. We recall the definition of Gelfand-Shilov type spaces [11] (see also [3, 5, 18, 21]). Let $A > 0$. Then $\mathcal{S}_{\alpha/2, A}^{\alpha/2, A}$ $α/2, A (ℝ^d)$ is the Banach space of all $φ ∈ C[∞](ℝ^d)$ with the norm

$$
\|\varphi\|_{\mathcal{S},A,\alpha/2}^{\alpha/2} = \sup_{p,q \in \mathbb{N}_0^d} \frac{\|x^p \partial^q \varphi(x)\|_{L^2(\mathbb{R}^d)}}{(A^{p+q} p!^{\alpha/2} q!^{\alpha/2})} < \infty. \tag{4}
$$

The Gelfand-Shilov space $S^{\alpha/2}_{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}(\mathbb{R}^d)$ is the inductive limit of $\mathcal{S}^{\alpha/2,A}_{\alpha/2,A}$ $\alpha^{(2,A)}_{\alpha/2,A}(\mathbb{R}^d)$ i.e. $\mathcal{S}^{\alpha/2}_{\alpha/2}$ $\lim_{\alpha/2}(\mathbb{R}^d) = \lim_{\alpha \to 0}$ *A*→∞ $\mathcal{S}^{\alpha/2,A}$ $_{\alpha/2,A}^{\alpha/2,A}(\mathbb{R}^d)$. The corresponding dual space of $S^{\alpha/2}_{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}(\mathbb{R}^d)$ is the space of ultradistributions of Roumieu type $\mathcal{S}'^{\alpha/2}_{\alpha/2}$ $C_{\alpha/2}^{\alpha/2}(\mathbb{R}^d)$ = $(\mathcal{S}_{\alpha/2}^{\alpha/2})$ $_{\alpha/2}^{\alpha/2}(\mathbb{R}^d))' = \lim_{\longleftarrow}$ $(\mathcal{S}_{\alpha/2}^{\alpha/2,A})$ $\frac{\alpha/2, A}{\alpha/2, A}$ (R^d))' (cf. [17]).

A→0 Denote by $h_n, n \in \mathbb{N}^d$ the Hermite functions which form an orthonormal basis of $L^2(\mathbb{R}^d)$. Then ι : $\mathcal{S}^{\alpha/2}$ $\alpha/2(\mathbb{R}^d) \to s^{\alpha}$, defined by $\iota(f) = {\langle f, h_n \rangle}_{n \in \mathbb{N}_0^d}$ is a continuous linear bijection between $\mathcal{S}_{\alpha/2}^{\alpha/2}$ [18], for example. Furthermore, for each $f \in S^{\alpha/2}_{\alpha/2}(\mathbb{R}^d)$, $\sum_{n \in \mathbb{N}_0^d} \langle f, h_n \rangle h_n$ converges absolutely to *f* in $S^{\alpha/2}_{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}(\mathbb{R}^d)$ and s^{α} , cf. $\frac{\alpha/2}{\alpha/2}(\mathbb{R}^d).$

Let $\alpha \geq 1$. We recall the definition of our basic space from [13]. For $A > 0$, we denote by $G_{\alpha}^{\alpha, A}$ $\int_{\alpha,A}^{\alpha,A}(\mathbb{R}^d_+)$ the space of all $\psi \in C^{\infty}(\mathbb{R}^d_+)$ for which the norms

$$
||\psi||_{G,A,j,\alpha}^{\alpha} = \sup_{p,q \in \mathbb{N}_0^d} \frac{||t^{(p+q)/2} \partial^q \psi(t)||_{L^2(\mathbb{R}^d_+)}}{A^{p+q} p!^{\alpha/2} q!^{\alpha/2}} + \sup_{\substack{|q| \le j \\ |p| \le j}} \sup_{t \in \mathbb{R}^d_+} |t^p \partial^q \psi(t)|, \ \ j \in \mathbb{N}_0. \tag{5}
$$

are finite. Then, the *G* type space $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ is the inductive limit of the Fréchet spaces $G^{\alpha,A}_{\alpha,A}$ $_{\alpha,A}^{\alpha,A}(\mathbb{R}^d)$ i.e. $G_{\alpha}^{\alpha}(\mathbb{R}^d_+)$ = lim *G*^{α,*A*}(\mathbb{R}^d). The corresponding dual space of *G*^α(\mathbb{R}^d) is the spaces of ultradistributions of Roumieu type $A\rightarrow ∞$ *α*,*A* $G^{\prime\alpha}_{\alpha}(\mathbb{R}^d_+) = (G^{\alpha}_{\alpha}(\mathbb{R}^d_+))' = \lim_{\longleftarrow}$ *A*→0 $(G^{\alpha,A}_{\alpha A})$ $_{\alpha,A}^{\alpha,A}(\mathbb{R}_{+}^{d}))^{\prime}.$

Using the Laguerre orthonormal basis of $L^2(\mathbb{R}^d_+)$, by ℓ_n , $n \in \mathbb{N}_0^d$ Laguerre functions are denoted, it is proved in [13, Theorem 6.1], that the mapping ι : $G^{\alpha}_{\alpha}(\mathbb{R}^d_+) \to s^{\alpha}$, $\iota(f) = {\langle f, \ell_n \rangle}_{n \in \mathbb{N}_0^d}$ is a topological isomorphism between $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ and s^{α} . Hence, the *G* type space inherits topological properties of the sequence space *s^a*. Furthermore, for each $f \in G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, $\sum_{n \in \mathbb{N}^d_0} \langle f, \ell_n \rangle \ell_n = f$ in $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, see [8, 13].

Let $\alpha > 2$. We recall the definitions from [24] (with $\rho = 1$, $\sigma = s$ in [24], and $s = \alpha/2$ here). In the Roumieu case, for any fixed $h > 0$, $m > 0$, by $\Gamma_{\alpha/2}^{\alpha/2, \infty}$ $\alpha/2, \infty$ (\mathbb{R}^{2d} ; *h*; *m*) is denoted the space of all functions $a(x, \xi) \in C^{\infty}(\mathbb{R}^{2d})$ such that

$$
\sup_{q,p\in\mathbb{N}_0^d} \sup_{(x,\xi)\in\mathbb{R}^{2d}} \frac{|D_\xi^qD_x^pa(x,\xi)|\langle (x,\xi)\rangle^{p+q}e^{-m(|x|^{2/\alpha}+|\xi|^{2/\alpha})}}{h^{p+q}p!^{\alpha/2}q!^{\alpha/2}}<\infty.
$$

Then

$$
\Gamma_{\alpha/2}^{\alpha/2, \infty}(\mathbb{R}^{2d}) = \lim_{\substack{\longrightarrow \\ h \rightarrow \infty}} \lim_{m \rightarrow 0} \Gamma_{\alpha/2}^{\alpha/2, \infty}(\mathbb{R}^{2d};h;m).
$$

Let $a \in \Gamma^{\alpha/2,\infty}_{\alpha/2}$ $\alpha^{(2,\infty)}_{\alpha/2}(\mathbb{R}^{2d})$. It is said that a symbol *a* is $\Gamma_{\alpha/2}^{\alpha/2,\infty}$ $\frac{\alpha}{2}$ ^{$\alpha/2$}-hypoelliptic if

 λ

(i) There exist $R > 0$ and $C, m > 0$ such that

$$
|a(x,\xi)| \ge Ce^{-m(|x|^{2/\alpha} + |\xi|^{2/\alpha})}, \qquad (x,\xi) \in Q_R^c = \{(x,\xi) : \langle x \rangle \ge R \text{ or } \langle \xi \rangle \ge R\}.
$$
 (6)

(ii) There exists $R > 0$ such that for every $h > 0$ there exists $C > 0$ such that

$$
|D_{\xi}^{q}D_{x}^{p}a(x,\xi)| \leq \frac{h^{p+q}|a(x,\xi)|p!^{\alpha/2}q!^{\alpha/2}}{\langle (x,\xi)\rangle^{p+q}}, \qquad p,q \in \mathbb{N}^{d}, \ (x,\xi) \in Q_{R}^{c}.
$$

3. Relations between *G***-type spaces**

Let $\alpha \geq 1$. The subspace $\mathcal{S}_{\alpha/2}^{\alpha/2}$ $^{\alpha/2}_{\alpha/2,even}(\mathbb{R}^d)$ of $\mathcal{S}^{\alpha/2}_{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}$ (\mathbb{R}^d) consists of all even functions in $\mathcal{S}_{\alpha/2}^{\alpha/2}$ $\frac{\alpha}{\alpha/2}(\mathbb{R}^d)$: $\psi(x_1,\ldots,x_{j-1},$ $-x_j, x_{j+1}, \ldots, x_d$) = $\psi(x), x \in \mathbb{R}^d$, $j = 1, \ldots, d$. A topological isomorphism between $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ and $S^{\alpha/2}_{\alpha/2}$ α/2,*even* (R*^d*),

$$
G_{\alpha}^{\alpha}(\mathbb{R}^d_+) = \mathcal{S}_{\alpha/2,even}^{\alpha/2}(\mathbb{R}^d),\tag{8}
$$

is established in [15] through the push forward $G^{\alpha}_{\alpha}(\mathbb{R}^d_+) \to S^{\alpha/2}_{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}$ (\mathbb{R}^d) by the mapping *v* given in (2). In relation to $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$, the elements of the next space have essentially different behaviour at zero.

Let $A > 0$ and $\alpha \geq 1$; $G_{0 \alpha}^{\alpha, A}$ α ,*A* is defined as an *F*- space of smooth functions φ on \mathbb{R}^d_+ such that

$$
\|\phi\|^{\alpha}_{G,0,A,j,\alpha}=\sup_{\substack{p,q\in\mathbb{N}_0^d\\ x\in\mathbb{R}_+^d}}\frac{\|\langle t\rangle^{(p+q)/2}\partial^q\phi(t)\|_{L^2(\mathbb{R}_+^d)}}{A^{p+q}p!^{\alpha/2}q!^{\alpha/2}}+\sup_{\substack{|q|\leq j\\ |p|\leq j}}\sup_{t\in\mathbb{R}_+^d}|t^p\partial^q\psi(t)|,\ \ j\in\mathbb{N}_0.
$$

 $G_{0,\alpha}^{\alpha}$ is the inductive limit of the spaces $G_{0,\alpha,A}^{\alpha,A}$ $_{0,\alpha,A}^{\alpha,A}$. It is a (DFN) space; $G_\alpha^\alpha(\mathbb{R}^d_+) \subset \mathcal{E}^{\alpha/2}(\mathbb{R}^d_+)$.

Furthermore, for $\alpha > 2$, we define $G_{c,\alpha}^{\alpha}(\mathbb{R}^d_+)$ as the closure of $\mathcal{D}^{\alpha/2}(\mathbb{R}^d_+)$ in $G_{\alpha}^{\alpha}(\mathbb{R}^d_+)$. Clearly, $\mathcal{D}^{\alpha/2}(\mathbb{R}^d_+)$ is a dense subspace of $G_{c,\alpha}^{\alpha}(\mathbb{R}^d_+)$. This gives embedding $G_{c,\alpha}^{\prime\alpha}(\mathbb{R}^d_+) \hookrightarrow \mathcal{D}^{\prime\alpha/2}(\mathbb{R}^d_+)$. Moreover, $G_{c,\alpha}^{\alpha}(\mathbb{R}^d_+)$ is continuously embedded in $G^{\alpha}_{\alpha}(\mathbb{R}^d_+)$ but not densely embedded. See Example 3.3 below and the comment therein.

If $F \in G_\alpha^{\prime\alpha}(\mathbb{R}^d_+)$, then its restriction on $G_{c,\alpha}^\alpha(\mathbb{R}^d_+)$ belongs to $G_{c,\alpha}^{\prime\alpha}(\mathbb{R}^d_+)$. Space $G_{c,\alpha}^{\prime\alpha}(\mathbb{R}^d_+)$ has a good approximation property:

Proposition 3.1. Let $\alpha > 2$ and $u \in G_{c,\alpha}^{\alpha}(\mathbb{R}^d_+)$. Then there is a sequence $(u_j)_j$ in $G_{c,\alpha}^{\alpha}(\mathbb{R}^d)$, such that $u_j \to u$ in $G^{\prime\alpha}_{c,\alpha}(\mathbb{R}^d_+).$

In particular, if u is compactly supported, then $(u_j)_j$ is a sequence in $\mathcal{D}^{\alpha/2}(\mathbb{R}^d_+)$ which converges to u in $\mathcal{D}'^{\alpha/2}(\mathbb{R}^d_+)$.

Proof. By (8), the properties of $S^{\alpha/2}_{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}(\mathbb{R}^d)$ are transferred to $G_\alpha^\alpha(\mathbb{R}^d_+)$ through the mapping v . If $u \in L^1(\mathbb{R}^d_+)$ and $\theta \in G_{c,\alpha}^{\alpha}(\mathbb{R}_{+}^{d})$, then their dual pairing is given by $\langle u, \theta \rangle_{\mathbb{R}_{+}^{d}} = \int_{\mathbb{R}_{+}^{d}} u(\rho) \theta(\rho) d\rho_{1} ... d\rho_{d}$. Let $\kappa \in G_{\alpha}^{\alpha}(\mathbb{R}_{+}^{d})$ have the properties:

$$
\kappa(r) = 1, r \in B(0,1) \cap \mathbb{R}^d_+, \kappa(r) = 0, r \in CB(0,2),
$$

where *CB*(**0**, 2) is a complement of the ball *B*(**0**, 2) with center at zero and radius equals 2. Put $\kappa_i(r)$ = $\kappa(r)/j$, $r \in \mathbb{R}^d_+$, $j \in \mathbb{N}$, (cut-off function). Further on, let $\phi(r) \in G_\alpha^{\alpha}(\mathbb{R}^d_+)$ so that it is supported by the ball *B*(**1**, 1) so that its integral over \mathbb{R}^d_+ equals one (**1** = (1, ..., 1)). Put $\phi_j = j^d \phi(jr)$, $r \in \mathbb{R}^d_+$, $j \in \mathbb{N}$ (this is a delta sequence). Let $u \in G_\alpha^{\alpha}(\mathbb{R}^d_+)$. Define $u_j(r) = \kappa_j(u * \phi_j(r))$, $r \in \mathbb{R}^d_+$, $j \in \mathbb{N}$. This is a sequence in $G_{c,\alpha}^{\alpha}(\mathbb{R}^d_+)$ which converges to *u* in $G_{c,\alpha}^{\prime\alpha}(\mathbb{R}^d_+)$ since $\langle u_j(r), \theta(r) \rangle_{\mathbb{R}^d_+} = \langle u(r), \Phi_j(r) \rangle_{\mathbb{R}^d_+}, j \in \mathbb{N}$, where

$$
\Phi_j(r) = \int_{\mathbb{R}_+^d} j^d \phi(j(r-\rho)) (\kappa(\rho/j)\theta(\rho)) d\rho_1... d\rho_d \text{ converges to } \theta(r) \text{ in } G_{c,\alpha}^{\alpha}(\mathbb{R}_+^d), j \to \infty.
$$

The particular part of lemma is clear. □

We recall the Faà di Bruno formula for the partial derivatives of the composition of functions [7, Corollary 2.10]:

$$
\frac{\partial^q}{\partial x^q} \sigma(g(x)) = \sum_{r=0}^q \frac{q!}{k_1! \dots k_q!} \sigma^{(r)}(g(x)) \prod_{i=1}^q \left(\frac{g^{(i)}(x)}{i!}\right)^{k_i}, \ q \in \mathbb{N}_0
$$
\n
$$
(9)
$$

where $r = k_1 + ... + k_q$ and the sum is over all nonnegative integers $k_1, ..., k_q$ for which $k_1 + 2k_2 + ... + qk_q = q$. **Example 3.2.** *Let* $\phi \in G_{0,5}^5(\mathbb{R}_+)$ *so that* $\phi(t) = 1$, $t \in [0, 1]$ *. Our aim in this example is to show that*

$$
f(t) = e^{-1/t} \phi(t) \in G_{0,6}^{6}(\mathbb{R}_{+}) \cap G_{5}^{5}(\mathbb{R}_{+}).
$$
\n(10)

We use Faá di Bruno formula (9), in the one dimensional case. Since $(\frac{(t^{-1})^{(i)}}{i!})$ $\int_{t_1}^{(1)} f^{(i)}(t) dt = (-1)^{ik_i} t^{-(i+1)k_i}$, *it follows that*

$$
\prod_{i=1}^q \left(\frac{(t^{-1})^{(i)}}{i!}\right)^{k_i} = (-1)^q t^{-q-r}.
$$

With this, we have

$$
(e^{-1/t})^{(q)} = q! \sum_{r=0}^{q} \frac{e^{-1/t}}{k_1! \dots k_q!} (-1)^q t^{-q-r}.
$$

By Stirling's formula, and the fact that $e^{-1/t}t^{-q-r}$ *takes its maximum at* $t = 1/(q+r)$ *, we have*

$$
\max_{t\in[0,1]}\frac{e^{-1/t}}{t^{q+r}}=e^{-q-r}(q+r)^{q+r}\sim \frac{e^{-q-r}(q+r)!e^{q+r}}{\sqrt{2\pi(q+r)}}\leq \frac{2^{q+r}q!r!}{\sqrt{2\pi(q+r)}}.
$$

we have,

$$
(e^{-1/t})^{(q)} \le q!^3 \sum_{r=0}^q \frac{2^{q+r}}{k_1! \dots k_q! \sqrt{2\pi (q+r)}} \le c^q q!^3, t \in [0,1].
$$

By the similar calculation

$$
|t^{q/2}(e^{-1/t})^{(q)}| \le q! \sum_{r=0}^q \frac{(q/2+r)^{q/2+r}e^{-q/2-r}}{k_1!...k_q! \sqrt{2\pi(q/2+r)}} \le q! \sum_{r=1}^q \frac{(q/2+2q/2)! 2^{q/2+r}}{k_1!...k_q! \sqrt{2\pi(q/2+r)}} \le c_2^q q!^{5/2},
$$

where we have used that $q! \leq 2^q (q/2)!^2 \leq 2^q q!$ *. Now, one can find that for* $\alpha = 6$ *there exists h* > 0 *such that*

$$
\sup_{t\in[0,1]} \frac{|\langle t\rangle^{(p+q)/2} (e^{-1/t})^{(q)}|}{h^{p+q} p!^3 q!^3} < \infty. \tag{11}
$$

and that for $\alpha = 5$ *, there exists h* > 0 *such that*

$$
\sup_{t\in[0,1]} \frac{|t^{(p+q)/2}(e^{-1/t})^{(q)}|}{h^{p+q}p!^{5/2}q!^{5/2}} < \infty. \tag{12}
$$

Thus, by (11), $e^{-1/t}φ(t) ∈ G_{0,6}^6(\mathbb{R}_+)$. On the other hand, by (12), we have $e^{-1/t}φ(t) ∈ G_5^5(\mathbb{R}_+)$. As we noted, we are not *able to prove that* $f \in G_{0,5}^5(\mathbb{R}_+).$

Example 3.3. *The space* $G_{c,\alpha}^{\alpha}$, $\alpha > 2$, *is not dense in* $G_{0,\alpha}^{\alpha}$, $\alpha > 2$. Let $\phi \in G_{0,\alpha}^{\alpha}(\mathbb{R}_+)$ so that $\phi(t) = 1$, $t \in [0,1]$. *There does not exist a sequence* $(\psi_n)_n$ *in* $\mathcal{D}^{\alpha/2}(\mathbb{R})$ *such that* $\psi_n \to \phi$, $n \to \infty$, *in* $G_{0,\alpha}^{\alpha}$ *because* $\sup_{t \in [0,1]} |\phi(t) - \psi_n(t)| =$ $1, n \in \mathbb{N}$.

The proof of the next proposition is based on the multivariate Faa di Bruno formula (9). First, we formulate ` the one -dimensional case with $g(x) = 2x^2$. Note that *i* in (9) can take only values 1 and 2. This further, implies $k_1 + k_2 = k$ and $k_1 + 2k_2 = p$, that is, $k_1 = 2k - p$, $k_2 = p - k$ and $k \ge [p/2]$. This, with $j = p - k$, gives

$$
\frac{\partial^p}{\partial x^p} \sigma(2x^2) = \sum_{j=0}^{\lfloor \frac{p}{2} \rfloor} \frac{p!}{j!(p-2j)!} \sigma^{(p-j)}(2x^2) (4x)^{p-2j} 2^j,
$$
\n(13)

where $[x]$ is the largest integer $\leq x$. With the help of multi-indices, the identity (13) in the 2*d*-dimensional case becomes

$$
\frac{\partial_{x,\xi}^{p,q}}{\partial x^p \partial \xi^q} \sigma(2x^2 + 2\xi^2) = \frac{\partial_{x,\xi}^{p,q}}{\partial x^p \partial \xi^q} \sigma(2x_1^2 + 2\xi_1^2, \dots, 2x_d^2 + 2\xi_d^2)
$$
\n
$$
= p!q! \sum_{j=0}^{\lfloor \frac{p}{2} \rfloor} \sum_{i=0}^{\lfloor \frac{q}{2} \rfloor} \frac{\sigma^{(p+q-j-i)}(2x^2 + 2\xi^2)}{j!i!(p-2j)!(q-2i)!} (4x)^{p-2j} 2^j (4\xi)^{q-2i} 2^i, \quad x, \xi \in \mathbb{R}^d,
$$
\n(14)

where we use notation

$$
\sum_{j=0}^{\lfloor \frac{p}{2} \rfloor} \sum_{i=0}^{\lfloor \frac{q}{2} \rfloor} = \sum_{j_1=0}^{\lfloor \frac{p_1}{2} \rfloor} \sum_{i_1=0}^{\lfloor \frac{q_1}{2} \rfloor} ... \sum_{j_d=0}^{\lfloor \frac{p_d}{2} \rfloor} \sum_{i_d=0}^{\lfloor \frac{q_d}{2} \rfloor}.
$$

Proposition 3.4. *Let* $\alpha \ge 2$ *and* $\psi \in G_{0,\alpha}^{\alpha}(\mathbb{R}^d_+)$ *and let* $\varphi(x,\xi) = w^* \psi(x,\xi) = \psi(2x^2 + 2\xi^2) = \psi(2x_1^2 + 2\xi_1^2, ..., 2x_d^2 + 2\xi_d^2)$ 2ξ²_{*d}*), (*cf.* (3)). Then φ ∈ $S^{\alpha/2}_{\alpha/2}$ </sub> α/2 (R2*^d*) *and the mapping*

$$
w^*: G_\alpha^\alpha(\mathbb{R}^d_+) \to S_{\alpha/2}^{\alpha/2}(\mathbb{R}^{2d}), \ \psi \mapsto w^*\psi = \psi \circ w = \varphi.
$$

is continuous.

Proof. We use the change of variables $t_i = 2x_i^2 + 2\xi_i^2$, $i = 1, ..., d$ and the inequalities $p!q! \leq (p+q)! \leq$ $2^{p+q} p! q!$, $p, q \in \mathbb{N}_0^d$ $(0! = 1)$,

$$
|\langle x_1 \rangle^{p_1} \langle \xi_1 \rangle^{q_1} \cdots \langle x_d \rangle^{p_d} \langle \xi_d \rangle^{q_d}| \le (1 + 2x_1^2 + 2\xi_1^2)^{p_1/2 + q_1/2} \cdots (1 + 2x_d^2 + 2\xi_d^2)^{p_d/2 + q_d/2},
$$

$$
|x^{q_1 - 2j}\xi^{q_2 - 2i}| \le \langle x \rangle^{q_1 - 2j} \langle \xi \rangle^{q_2 - 2i} \le 2^{q_1 + q_2 - 2j - 2i} \langle t \rangle^{\frac{q_1 + q_2 - 2j - 2i}{2}}, \quad \langle x \rangle^{m_1} \langle \xi \rangle^{m_2} \le 2^{m_1 + m_2} \langle t \rangle^{(m_1 + m_2)/2}.
$$

It is enough to show that there exist $A > 0$ and $C > 0$ such that for given $h > 0$ (which depends on ψ),

$$
\sup_{\mu,q\in\mathbb{N}_0^d\atop x,\xi\in\mathbb{R}^d}\frac{|\partial_x^{q_1}\partial_\xi^{q_2}\varphi(x,\xi)|(1+|x|^2)^{m_1/2}(1+|\xi|^2)^{m_2/2}}{A^{q_1+q_2+m_1+m_2}(q_1+q_2)!^{\alpha/2}(m_1)!^{\alpha/2}(m_2)!^{\alpha/2}}\leq C\sup_{\mu,q\in\mathbb{N}_0^d\atop t\in\mathbb{R}_+^d}\frac{|\langle t\rangle^{(p+q)/2}\partial^q\psi(t)|}{h^{p+q}p!^{\alpha/2}q!^{\alpha/2}}.
$$

It should be noticed that in the successive calculation we obtain the expression (|*x*| ² + |ξ| 2) [−]*j*−*ⁱ* which can not be controlled by other factors. Therefore, the assumption that $\psi \in G^{\alpha}_{0,\alpha}(\mathbb{R}_+)$ is needed.

Let $c_{A,m}^{q_1,q_2}$ $A_{A,m_1,m_2}^{q_1,q_2} = A^{q_1+q_2+m_1+m_2}(q_1+q_2)!^{\alpha/2}(m_1)!^{\alpha/2}(m_2)!^{\alpha/2}$. Using (14) and the change of variable $t = 2|x|^2 + 2|\xi|^2$ (also written as $t = 2x^2 + 2\xi^2$), we conclude, with the use of suitable constants

$$
\|\varphi\|_{S,A,\alpha/2}^{\alpha/2}=\sup_{{q_1,q_2,m_1,m_2\in\mathbb{N}_0^d}\atop{x,\xi\in\mathbb{R}^d}}\frac{|\partial_{x}^{q_1}\partial_{\xi}^{q_2}\varphi(x,\xi)|\langle x\rangle^{m_1}\langle \xi\rangle^{m_2}}{c_{A,m_1,m_2}^{q_1,q_2}}
$$

$$
\leq \sup_{q_{1}, q_{2}, m_{1}, m_{2} \in \mathbb{N}_{0}^{d} \atop t \in \mathbb{R}_{+}^{d}} \sum_{j=0}^{\left[\frac{q_{1}}{2}\right]} \sum_{i=0}^{\left[\frac{q_{1}}{2}\right]} \frac{q_{1}!q_{2}!|\psi^{(q_{1}+q_{2}-i-j)}(t)|}{c_{A, m_{1}, m_{2}}^{q_{1}!q_{2}!}j!i!(q_{1}-2j)!(q_{2}-2i)!} (t)^{\frac{q_{1}+q_{2}-2i-2j+m_{1}+m_{2}}{2}} 2^{2(q_{1}+q_{2})-3(i+j)+m_{1}+m_{2}}
$$
\n
$$
\leq (\frac{C_{1}}{A})^{q_{1}+q_{2}+m_{1}+m_{2}} \sup_{q_{1}, q_{2}, m_{1}, m_{2} \in \mathbb{N}_{0}^{d}} \sum_{j=0}^{\left[\frac{q_{1}}{2}\right]} \sum_{i=0}^{\left[\frac{q_{2}}{2}\right]} \frac{|\psi^{(q_{1}+q_{2}-j-i)}(t)| \langle t \rangle^{\frac{q_{1}+q_{2}-j-i}{2}} \langle t \rangle^{\frac{m_{1}+m_{2}}{2}} \langle t \rangle^{-\frac{j+i}{2}}
$$
\n
$$
\frac{(q_{1}+q_{2}-j-i)!(i+j)!}{(i+j)!^{(\alpha/2}(q_{1}+q_{2}-j-i)!} \leq (\frac{C_{2}(h)}{A})^{q_{1}+q_{2}+m_{1}+m_{2}} \sup_{q_{1}, q_{2}, m_{1}, m_{2} \in \mathbb{N}_{0}^{d}} \sum_{j=0}^{\left[\frac{q_{1}}{2}\right]} \sum_{i=0}^{\left[\frac{q_{2}}{2}\right]} \sum_{i=0}^{c_{1}+j} \frac{c_{2}^{i+j}}{(i+j)^{(\alpha/2-1)}}
$$

This implies that for given *h* > 0 there exist *A*, *C* > 0 such that fpr every *j* \in N₀,

$$
\|\varphi\|_{\mathcal{S},A,\alpha/2}^{\alpha/2} \le C \|\psi\|_{G,0,h,j,\alpha}^{\alpha} \text{ (see Section 2).}
$$

This completes the proof of the proposition. \Box

We note that this proposition also follows from our result related to (8). Here we obtain this result by quite different methods.

4. Weyl pseudo-diff**erential operators with radial symbols and hypoellipticity**

Let $\alpha \ge 1$ and $f, g \in S^{\alpha/2}_{\alpha/2}(\mathbb{R}^d)$. We refer to [6] for the Wigner transform of $f, g \in S^{\alpha/2}_{\alpha/2}(\mathbb{R}^d)$. It is well known that the bilinear mapping $(f, g) \mapsto W(f, g)$, $S^{\alpha/2}_{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}(\mathbb{R}^d)\times\mathcal{S}_{\alpha/2}^{\alpha/2}(\mathbb{R}^d)\to\mathcal{S}_{\alpha/2}^{\alpha/2}(\mathbb{R}^{2d})$ is continuous.

The Weyl pseudo-differential operator with a symbol $\tilde{a} \in S^{\prime \alpha/2}_{\alpha/2}(\mathbb{R}^{2d})$ defined by (1) is a continuous and linear mapping from $\mathcal{S}_{\alpha/2}^{\alpha/2}$ $\frac{\alpha/2}{\alpha/2}(\mathbb{R}^d)$ into $\mathcal{S}'^{\alpha/2}_{\alpha/2}$ $C_{\alpha/2}^{\alpha/2}(\mathbb{R}^d)$ (see [20, Theorem 2]). Using the Hermite expansions of elements from $\mathcal{S}_{\alpha/2}^{\alpha/2}$ $_{\alpha/2}^{\alpha/2}(\mathbb{R}^d)$, we obtain

$$
W(f,g)=\sum_{(m,k)\in\mathbb{N}_0^{2d}}\langle f,h_m\rangle\langle\overline{g},h_k\rangle W(h_m,h_k),
$$

where the sum converges absolutely in $\mathcal{S}_{\alpha/2}^{\alpha/2}$ $_{\alpha/2}^{\alpha/2}$ (\mathbb{R}^{2d}).

We introduce $\mathcal{A}_{\alpha}^{\alpha}(\mathbb{R}^d_+)$ as the space of all locally integrable functions $a(r)$, $r \in \mathbb{R}^d_+$, with the properties

$$
a(r) \in G_{\alpha}^{\prime\alpha}(\mathbb{R}^d_+)
$$
 and $\widetilde{a}(x,\xi) = a(2x_1^2 + 2\xi_1^2, ..., 2x_d^2 + 2\xi_d^2) \in S_{\alpha/2}^{\prime\alpha/2}(\mathbb{R}^{2d}).$

(Here we use the fact that the composition of a locally integrable function and a smooth function is locally integrable.)

We considered in [16] the symbols $a_w(x,\xi) := a(2x_1^2 + 2\xi_1^2, \ldots, 2x_d^2 + 2\xi_d^2), a \in \mathcal{R}^{\{\alpha\}; \mathcal{P}}(\mathbb{R}^d_+)$ (see introduction). We obtained the characterisation of *a* in terms of the growths of their Laguerre coefficients for which the Weyl quantisation of a_w extends to a well-defined and continuous operator a_w^W : $S_{\alpha/2}^{\prime\alpha/2}$ $S^{\prime\alpha/2}_{\alpha/2}(\mathbb{R}^d) \rightarrow S^{\prime\alpha/2}_{\alpha/2}$ $\frac{\pi a/2}{\alpha/2}(\mathbb{R}^d).$

Example 4.1. Let $\alpha \ge 2$ and $s = \alpha/2$. With the following example, in the case when $d = 1$, we show that $\mathcal{R}^{\{s\};p}(\mathbb{R}_+)$ is a proper subset of $\mathcal{A}_{\alpha}^{\alpha}(\mathbb{R}_{+})$. Let $f(x) = e^{x}$, $x \in [n, n + e^{-n})$, $n \in \mathbb{N}$, $n > N_0$ and $f(x) = 0$ in the rest of \mathbb{R} . Let $\varphi \in G_\alpha^{\alpha}(\mathbb{R}^d_+)$. We use the fact that $\varphi(x) \leq Ce^{h|x|^{2/\alpha}}, x > N_0$, for suitable C, h, $N_0 > 0$. With this, we have

$$
\Big|\int_{\mathbb{R}_+} f(x)\varphi(x)dx\Big|\leq C\sum_{n>N_0}^{\infty}\frac{1}{e^{hn^{2/\alpha}}}<\infty,
$$

so that f < R {α/2};*p* (R*^d* +) *since* R R*d e px*2/α−*hpx*2/α *dx* = ∞ *for h* = 1. *Thus, f* ∈ A^α α (R*^d* +) \ R{α/2};*^p* (R*^d* +).+

Because of that, the next proposition has a sense although its proof is the same as in [16]; so, the proof is skipped.

Proposition 4.2. *Let* $a(r) \in \mathcal{A}_{\alpha}^{\alpha}(\mathbb{R}^{d}_{+})$ *.*

*(i) The Weyl pseudo-di*ff*erential operator defined as*

$$
(\overline{a}^W(x, D)\varphi)(\psi) = \langle \overline{a}^W(x, D)\varphi, \psi \rangle = \langle a(2x^2 + 2\xi^2), W(\varphi, \psi)(x, \xi) \rangle, \qquad \varphi, \psi \in \mathcal{S}_{\alpha/2}^{\alpha/2}(\mathbb{R}^d)
$$

is a continuous bilinear mapping S α/2 $\alpha/2(\mathbb{R}^d) \times S^{\alpha/2}_{\alpha/2}(\mathbb{R}^d) \to \mathbb{C}$. It is given by $(\varphi, \psi) \mapsto \sum_{k \in \mathbb{N}_0^d} \varphi_k \psi_k a_k$, where $\varphi(x) = \sum_{k \in \mathbb{N}_0^d} \langle \varphi, h_k \rangle h_k(x), \psi(x) = \sum_{k \in \mathbb{N}_0^d} \langle \psi, h_k \rangle h_k(x)$ and $a(\rho) = \sum_{k \in \mathbb{N}_0^d} a_k \ell_k(\rho), a_k = (2\pi)^{d/2} (-1)^{|k|} 2^{-d} \langle a, \ell_k \rangle$.

(*ii*) It can be continuously extended as a bilinear mapping over $\mathcal{S}_{\alpha/2}^{\alpha/2}$ $C^{(\alpha/2)}_{\alpha/2}(\mathbb{R}^d)\times \mathcal{S}'^{\alpha/2}_{\alpha/2}(\mathbb{R}^d)$, with values in $\mathbb{C}.$

4.1. Hypoellipticity

We continue to assume $\alpha > 2$. We employ the notation $\mathcal{H}^\alpha(\mathbb{R}^d_+)$ for a subspace of $G^\alpha_{0,\alpha}(\mathbb{R}^d_+)$ consisting of smooth functions $a(r)$, $r \in \mathbb{R}^d_+$, which satisfy the next conditions: There exists $R > 0$, $h > 0$, $C > 0$, $m > 0$ such that

$$
|a(r)| \ge Ce^{-m|r|^{1/\alpha}}, \quad |r^{p/2}\partial_r^p a(r)| \le h^{|p|}|a(r)|p!^{\alpha/2}, \ p \in \mathbb{N}_0^d \quad r \in Q_R^c. \tag{15}
$$

Proposition 4.3. Let $\overline{a}(x,\xi) = a(2x^2 + 2\xi^2)$, $x,\xi \in \mathbb{R}^d$, where a function a belongs to $\mathcal{H}^{\alpha}(\mathbb{R}^d_+)$. Then the Weyl *pseudo-differential operator* $\tilde{a}^{W}(x, D)$ *is* $\Gamma_{\alpha/2}^{\alpha/2, \infty}$ $\frac{\alpha}{2}$ ^{$\alpha/2$}-hypoelliptic.

Proof. We skip the part in which we prove that $\tilde{a}(x, \xi) \in \Gamma_{\alpha/2}^{\alpha/2, \infty}$ $_{\alpha/2}^{\alpha/2,\infty}(\mathbb{R}^{2d}).$

Condition (6) is clear. We will prove (7). Let $(x, \xi) \in B_K^c$. To prove (7), we use our calculation in Proposition 3.4 (without the multiplication with powers of *x* and *ξ*). Let $c_A^{q_1,q_2}$ $A^{q_1,q_2} = A^{q_1+q_2}(q_1+q_2)!^{\alpha/2}.$

$$
\sup_{q_1, q_2 \in \mathbb{N}_0^d} \frac{|\partial_x^{q_1} \partial_\xi^{q_2} \tilde{a}(x, \xi)|}{c_{A}^{q_1, q_2}} \leq
$$
\n
$$
\sup_{x, \xi \in \mathbb{R}^d} \frac{\left|\frac{\partial_y^{q_1} \partial_\xi^{q_2} \tilde{a}(x, \xi)|}{c_{A}^{q_1, q_2}}\right|}{\frac{q_1! q_2! |a^{(q_1 + q_2 - i - j)}(t)|}{c_{A}^{q_1, q_2}} \cdot \frac{q_1! q_2! |a^{(q_1 + q_2 - i - j)}(t)|}{c_{A}^{q_1, q_2}} \cdot 2^{2(q_1 + q_2) - 3(i + j)} \leq
$$
\n
$$
\left(\frac{C_1}{A}\right)^{q_1 + q_2} \sup_{q_1, q_2 \in \mathbb{N}_0^d} \sum_{j=0}^{\left[\frac{q_1}{2}\right]} \sum_{i=0}^{\left[\frac{q_2}{2}\right]} \frac{(q_1 + q_2 - j - i)!(i + j)! |a^{(q_1 + q_2 - j - i)}(t)| \langle t \rangle^{\frac{q_1 + q_2 - j - i}{2}}}{(q_1 + q_2 - j - i)! (i + j)! |a^{(q_1 + q_2 - j - i)}(t)| \langle t \rangle^{\frac{q_1 + q_2 - j - i}{2}}(t)^{-\frac{j + i}{2}}}{\left(\frac{C_2(h)}{A}\right)^{q_1 + q_2}} \leq \left(\frac{C_2(h)}{A}\right)^{q_1 + q_2} a(r) \sup_{q_1, q_2, m_1, m_2 \in \mathbb{N}_0^d} \sum_{j=0}^{\left[\frac{q_1}{2}\right]} \sum_{i=0}^{\left[\frac{q_2}{2}\right]} \frac{c_i^{i + j}}{(i + j)^{(\alpha/2 - 1)}}
$$

Now assumption (15) and the choice of $A > 0$ imply the assertion. \Box

References

- [1] A. Abdeljawad, M. Cappiello, J Toft, *Pseudo-di*ff*erential calculus in anisotropic Gelfand-Shilov setting*, Integral Equations Operator Theory 91 (2019) No. 3, 33 pp.
- [2] A. Abdeljawad, S. Coriasco, J. Toft, Joachim *Liftings for ultra-modulation spaces, and one-parameter groups of Gevrey-type pseudodi*ff*erential operators*, Anal. Appl. (Singap.) 18 (2020), No. 4, 523-583.
- [3] A. Abdeljawad, C. Fernández, A. Galbis, J. Toft, R. Üster, Characterizations of a class of Pilipovic spaces by powers of harmonic oscillator, Rev. R. Acad. Cienc. Exactas Fis. Nat. Sci. Ser. A Mat. RACSAM 114 (2020), 114-131.
- [4] M. Cappiello, S. Pilipović, B. Prangoski, Parametrices and hypoellipticity for pseudodifferential operators on spaces of tempered ultradis*tributions*, J. Pseudo-Differ. Oper. Appl. 5 (2014), 491-506.
- [5] M. Cappiello, T. Gramchev, S. Pilipovic, L. Rodino, *Anisotropic Shubin operators and eigenfunction expansions in Gelfand-Shilov spaces*, J. Anal. Math. 138 (2019), 857-870.
- [6] E. Cordero, L. Rodino, *Time-Frequency Analysis of Operators*, De Gruyter, 2020.
- [7] G. M. Constante, T. H. Savits, *A multivariate Fa´a di Bruno formula with applications*, Trans. Amer. Math. Soc. 348 (1996), 503-520.
- [8] A. J. Duran, *The anlytic functionals in the lower half plane as a Gel'fand-Shilov space*, Math. Nachr. 153 (1991), 145-167.
- [9] A. J. Duran, *Laguerre expansions of Gel'fand-Shilov spaces*, J. Approx. Theory 74 (1993), 280-300.
- [10] S. J. L. Eijndhoven and J. de Graaf, *Analytic spaces of self-adjoint operators subjected to perturbations with applications to Hankel invariant distribution spaces*, SIAM J. Math. Anal. 17 (1986), 485-494.
- [11] I. M. Gel'fand, G. E. Shilov, *Les Distributions*, Vol. 2,3,4, Dunod, Paris, 1965.
- [12] S. Jakšić, B. Prangoski, Extension theorem of Whitney type for $S(\mathbb{R}^d_+)$ by the use of the Kernel Theorem, Publ. Inst. Math. Beograd, 99 (113) (2016), 59-65.
- [13] S. Jakšić, S. Pilipović, B. Prangoski, G-type spaces of ultradistributions over \mathbb{R}^d_+ and the Weyl pseudo-differential operators with radial *symbols*, Rev. R. Acad. Cienc. Exactas Fis. Nat. Sci. Ser. A Mat. RACSAM 111 (2017), 613-640.
- [14] S. Jakšić, S. Pilipović, B. Prangoski, Spaces of ultradistributions of Beurling type over \mathbb{R}^d_+ through Laguerre expansions, Sarajevo J. Math, 12 (25) (2016), no. 2, suppl., 385-399.
- [15] S. Jakšić, S. Maksimović, S. Pilipović, B. Prangoski, Relations between Hermite and Laguerre expansions of ultradistributions over \mathbb{R}^d *and* R*^d* + , J. Pseudo-Differ. Oper. Appl. 8 (2017), 275-296.
- [16] S. Jakšić, S. Pilipović, B. Prangoski, Global regularity of the Weyl operator with radial symbol, J. Pseudo-Differ. Oper. Appl. 14(1):10 DOI: 10.1007/s11868-023-00505-x.
- [17] H. Komatsu, *Ultradistributions, I: Structure theorems and a characterization*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1) (1973), 25-105.
- [18] M. Langenbruch, *Hermite functions and weighted spaces of generalized functions*, Manuscripta Mathematica 119 (2006), 269-285.
- [19] F. Nicola, L. Rodino, *Global Pseudo-Di*ff*erential Calculus on Euclidean Spaces*, Pseudo-Differential Operators, 4, Birkhauser, Basel, ¨ 2010.
- [20] Y. Oka, *On the Weyl Transform with Symbol in the Gelfand-Shilov Space and its Dual Space*, CUBO 12 (2010) No. 3, 241-253.
- [21] , S. Pilipovic,´ *Tempered Ultradistributions*, Bollettino della Unione Mat. Ital. 2 (2), (1988), 235-251. [22] S. Pilipović, B. Prangoski, J. Vindas, On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution, J. Math. Pures Appl. (9) 116 (2018), 174-210.
- [23] S. Pilipovic, B. Prangoski, J. Vindas, *Infinite order* Ψ*DOs: composition with entire functions, new Shubin-Sobolev spaces and index theorem*, Anal. Math. Phys. 11 (2021).
- [24] B. Prangoski, *Pseudodi*ff*erential operators of infinity order in the space of tempered ultradistributions*, J. Pseudo-Differ. Opper. Appl. 4 (2013), 495-549.
- [25] L. Rodino, *Linear partial di*ff*erential operators in Gevrey spaces*, World Scientific Publishing Co., Inc., River Edge, NJ, 1993.
- [26] N.Teofanov, J. Toft, *Pseudo-di*ff*erential calculus in a Bargmann setting*, Ann. Acad. Sci. Fenn. Math. 45 (2020), No. 1, 227-257.
- [27] F. Tréves, *Topological Vector Spaces, Distributions and Kernels*, Dover Publications, New York, 1995.
- [28] M. W. Wong, *Weyl Transform*, Springer-Verlag, New York, 1998.
- [29] A. I. Zayed, *Laguerre series as boundary values*, SIAM J. Math. Anal. 13 (2) (1982), 263-279.