
Filomat 37:26 (2023), 8845–8865
https://doi.org/10.2298/FIL2326845S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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The relaxed MGHSS-like method for absolute value equations
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Abstract. Based on the matrix splitting techniques and the ideas of the GPHSS-like method, we proposed
the relaxed modified generalized HSS-like method (RMGHSS-like), which is more efficient and more robust
than the RPHSS-like, the MBAS, the NI and the NHSS-like methods for the absolute value equation. Fur-
thermore, the RMGHSS-like method is the general form of the relaxed PHSS-like method. The convergence
of the RMGHSS-like iterative method is proved by theoretical analysis, and the relationships between the
parameters are rigorously discussed when the coefficient matrix E is a Hermitian positive definite matrix
under the minimum spectral radius. Numerical experiments had been given to recognize the effectiveness
of the RMGHSS-like method.

1. Introduction

Consider the absolute equations(AVE)

Eu − |u| = f , (1)

where E ∈ Rn×n, u, f ∈ Rn and |u| = (|u1| , |u2|, · · · , |un|)
T. The generalized scheme of AVE below

Eu + F|u| = f , (2)

where E,F ∈ Rn×n, f ∈ Rn , Rohn introduced (2) for the first time [1], see for further studied [1–7]. In fact, (1)
is a different shape of the weakly nonlinear equations (WNE) Eu+ Fψ (u) = f and (2) is a different structure
of Eϕ (u) + Fψ (u) = f , respectively [8–10]

The AVE originates from many filed of scientific computing and engineering applications, such as the
linear and quadratic programming, the bimatrix games, and the contact problems. The AVE can also be
simplified to a linear complementarity problem (LCP) [11, 12]. Besides, the AVE has broader purposes in
applied science and technological know-how such as financial equilibrium problems[13, 14]. Therefore,
building efficient algorithms and related theories for AVE has high economic value and good application
prospects. For the theoretical study of AVE, there are numerous research results; see [1–3, 15–21] and the
references therein.

Recently, the problem of discovering effective numerical solution algorithm of AVE has attracted plenty
of interest and has been discovered in the article see[22–25]. These numerical methods for AVE can be
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considered from different perspectives. Since the correlation of the LCP and AVE [4, 7, 12], the modulus
coefficient method for solving LCP [26–30] is also suitable for solving AVE. The AVE can be seen as a non-
smooth equation, so that we can use non-smooth theory to solve it, such as smooth Newton’s method[31],
non-smooth Newton’s method[32]. Based on the AVE is a WNE, Bai and Yang [33] first proposed the
Picard-HSS iterative method for solving the WNE. Further, Salkuyeh [34] utilized the Picard-HSS method
(Picard-HSS) to deal with the AVE, but the number of internal iteration steps are frequently independent of
the problem and hard to be determined in real calculation in this method. To solve the above shortcomings,
Zhu et al. [35] presented HSS-like method (HSS-like). In order to solve problems more efficiently, Jian-Jun
zhang presented the relaxed nonlinear preconditioned HSS-like (RPHSS-like) method [36], which is more
promising than the HSS-like, Picard-HSS method and is the general form of the HSS-like method [37].
Similarly, Zhu and Pu presented the nonlinear GPHSS-like iteration method [37] (NGPHSS-like) for solving
the WNE, which is more effective and more attractive than HSS-like method through choosing appropriate
iteration parameters.

In this paper, using the means of the MGHSS method [38] and the ideas of the GPHSS-like method [37],
we will first split the coefficient matrix E into different parts. Then we proposed an relaxed modified GHSS-
like method (RMGHSS-like) for sloving AVE by utilizing the ideas of the NGPHSS-like method. In addition,
the relaxed RMGHSS-like method is the universal scheme of the PHSS-like method where the Hermitian
positive definite matrix P = I with three parameters that can accelerate the convergence. Furthermore, we
analysis the convergence of the RMGHSS-like method and discuss the relationship between parameters in
detail when E is a Hermitian positive definite matrix.

The organization of the paper is illustrated in the following. In Section 2, we give plenty of lemmas and
corresponding symbols that needed to be used in the paper. In section 3, we review the modified generalized
HSS method (MGHSS), the nonlinear GPHSS-like method (NGPHSS-like) and the relaxed nonlinear PHSS-
like method (RPHSS-like). In section 4, we proposed the relaxed modified generalized HSS-like method
(RMGHSS-like) for solving the AVE (1). At the same time, we analysis the convergence of the RMGHSS-like
method. In sections 5, under the minimum spectral radius, the relationships between parameters and the
convergence properties are analyzed when coefficient matrix E is a Hermitian positive definite matrix. The
results and conclusions of numerical experiments are given in sections 6 and 7, respectively.

2. Preliminaries

In this section, we give a few lemmas and corresponding symbols, which can be used in this essay.
Let the symbol I denotes the identity matrix. The spectral radius of the matrix is represented by ρ (.).

Lemma 2.1. [39]. For any vectors s ∈ Rn and t ∈ Rn, the following results hold:

(1) ∥|s| − |t|∥ ≤ ∥s − t∥;

(2) if 0 ≤ s ≤ t, then ∥s∥ ≤ ∥t∥.

Lemma 2.2. [39]. For any matrices E ∈ Rn×n and F ∈ Rn×n, if 0 ≤ E ≤ F, then ∥E∥ ≤ ∥F∥ .

Lemma 2.3. For any number s ∈ Rn and t ∈ Rn, it must be true that st ≤
(

s+t
2

)2
.

Lemma 2.4. [38]. Assume that E,F ∈ Rn×n, E is positive definite and F is skew-Hermitian, then

yT ( E + F ) y > 0, any y , 0 ∈ Rn. (3)
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Lemma 2.5. [40]. (Courant-Fischer Minimax Theorem). If E ∈ Rn×n is symmetric, then

λk (E) = max
dim(S)=k

min
0,yϵS

yTEy
yT y

, f or k = 1 : n. (4)

Lemma 2.6. [40]. (Theorem). If E and E + F are n-by-n symmetric matrices, then

λk (E) + λn (F) ≤ λk (E + F) ≤ λk (E) + λk (F) , k = 1 : n. (5)

For a symmetric matrix E we shall use the notation λk (E) to designate the kth largest eigenvalue, i.e, λn (E) ≤ · · · ≤
λ2 (E) ≤ λ1 (E).

3. The MGHSS, GPHSS, RPHSS-like iteration methods

In this section, we will shortly introduce the MGHSS, GPHSS, RPHSS-like methods, see [36–38]. Using
the matrix segmentation techniques, the coefficient matrix E will be divided into two parts[41]:

E =H +S , H =
1
2

( E + E∗ ) and S =
1
2

( E − E∗ ) .

Further, the resulting matrix can also be quadratic:

S = S1 +S2 and H =H1 +H2,

where H , H1, H2 are Hermitian matrix and S , S1, S2 are skew-Hermitian matrices [38].

The MGHSS iteration method. ([38]) Supposed u( 0 ) is an initial vector. For k = 0, 1, 2, . until
{
u(k)

}∞
k

converges, computing u( k+1 ) by{
( αI + H1 + S1 ) u(k+ 1

2 ) = (αI − S2 − H2) u(k) + f ,
( αI + S2 + H2 ) u(k+1) = ( αI − H1 − S1 ) u(k+ 1

2 ) + f ,
(6)

where α is a given non-zero positive constant.
Yang, et al. [42] proposed the more efficient GPHSS method that can improve the convergence rate by

choosing the appropriate iteration parameters. The GPHSS iteration method as follows.

The GPHSS iteration method. ([42]) Supposed u( 0 ) is an initial vector. For k = 0, 1, 2, . until
{
u(k)

}∞
k

converges, computing u( k+1 ) by{
( αP + H ) u(k+ 1

2 ) = (αP − S ) u(k) + f ,(
βP + S

)
u(k) =

(
βP − H

)
u(k+ 1

2 ) + f ,
(7)

where α , β , and P are the Non-negative constant, positive constant and Hermitian positive definite matrix,
respectively.

By introducing a relaxation parameter and using nonlinear analysis methods, J.-J Zhang proposed the
RPHSS-like method [36], which solved a common problem between the Picard-GPHSS and the Picard-HSS
iteration methods. The common problem is that the number of iterative steps in their inner loop is fre-
quently problem-independent and difficult to decided in the actual calculation process [41]. The RPHSS-like
iteration method as follows.
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The RPHSS-like iteration method. ([36]) Supposed u( 0 ) is an initial vector. For k = 0, 1, 2, . until
{
u(k)

}∞
k

converges, computing u( k+1 ) by{
u(k+ 1

2 ) = u(k) + ϖ (αP +H )−1 [−Eu(k) + |u(k)
| + f ],

u(k+1) = u(k+ 1
2 ) + ϖ (αP +S )−1 [−Eu(k+ 1

2 ) + |u(k+ 1
2 )| + f ],

(8)

where α is a given positive constant.
In order to further speed up the rate of the convergence and improve the convergence properties of the

RPHSS-lie iteration method, we can obtain the Nonlinear modified GHSS-like iterative methods for AVE
according to the matrix splitting techniques and the idea of GPHSS-like iteration method [37].

4. The Relaxed MGHSS-like iteration iteration methods

In this section, we proposed a relaxed MGHSS-like method (RMGHSS-like) and rewrote the HSS-like
method. Meanwhile, the convergence of the relaxed MGHSS-like method is proven.

4.1. The Relaxed MGHSS-like iteration method
At first, we can obtain the nonlinear GHSS-like methods for AVE according to the GPHSS-like iteration

method [37]. The GHSS-like method as follows.

Algorithm 4.1. The GHSS-like iteration method. Supposed u( 0 ) is an initial vector. For k = 0, 1, 2, . until{
u(k)

}∞
k

converges, computing u( k+1 ) by{
( αI + H ) u(k+ 1

2 ) = (αI − S ) u(k) + |u(k)
| + f ,(

βI + S
)

u(k) =
(
βI − H

)
u(k+ 1

2 ) + |u(k+ 1
2 )| + f ,

(9)

where α , β , and P are the Non-negative constant, positive constant and Hermitian positive definite matrix,
respectively. If α = β, the GHSS-like method can be simplified to the PHSS-like method. If α = β, the
GHSS-like method can be simplified to the HSS-like method [36].

Then, we split coefficient matrix E of the AVE into Hermitian and skew-Hermitian matrices: E = H + S ,
then continue to split H and S into two parts : H =H1 +H2 , S = S1 + S2. Therefore, we can obtain
the split form of matrix E as follows.

E = ( H1 +S1 + αI ) − (αI −S2 −H2 ) =
(
βI +S2 +H2

)
−

(
βI −H1 −S1

)
. (10)

Further, we can get{
(αI +H1 +S1 ) u(k+ 1

2 ) = (αI −S2 −H2 ) u(k) + |u(k)
| + f ,(

βI +S2 +H2
)

u(k) =
(
βI −H1 −S1

)
u(k+ 1

2 ) + |u(k+ 1
2 )| + f ,

(11)

where α is a Non-negative constant, β is a positive constant. H1 and H2 are Hermitian positive definite.
S1 and S2 are skew-Hermitian positive definite. Besides, H =H1 +H2 and S =S1 +S2.

Notice that, we rewrite (11) as follows:{
u(k+ 1

2 ) = (αI +H1 +S1)−1 [(αI −S2 −H2) u(k) + |u(H1)
| + f ],

u(k+1) =
(
βI +S2 +H2

)−1 [
(
βI −H1 −S1

)
u(k+ 1

2 ) + |u(H1+
1
2 )| + f ].

(12)

If we add a relaxed parameter ϖ in (12), we can obtain a new iteration scheme as follows:{
u(k+ 1

2 ) = (1 − ϖ) u(k) + ϖ (αI +H1 +S1)−1 [(αI −S2 −H2) u(k) + |u(k)
| + f ],

u(k+1) = (1 − ϖ) u(k+ 1
2 ) + ϖ

(
βP +S2 +H2

)−1 [
(
βI −H1 −S1

)
u(k+ 1

2 ) + |u(k+ 1
2 )| + f ],

(13)
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By further simplifying the calculations, we can get the iteration (13) as follows:{
u(k+ 1

2 ) = u(k) + ϖ (αI +H1 +S1)−1 [−Eu(k) + |u(k)
| + f ],

u(k+1) = u(k+ 1
2 ) + ϖ

(
βI +S2 +H2

)−1 [−Eu(k+ 1
2 ) + |u(k+ 1

2 )| + f ],
(14)

The method (14) was named the relaxed modified GHSS-like method (RGHSS-like) by us. we now
present the iteration method.

Algorithm 4.2. The Relaxed MGHSS-like iteration method. Supposed u( 0 ) is an initial vector. For k = 0,
1, 2, . until

{
u(k)

}∞
k

converges, computing u( k+1 ) by{
u(k+ 1

2 ) = u(k) + ϖ (αI +H1 +S1)−1 [−Eu(k) + |u(k)
| + f ],

u(k+1) = u(k+ 1
2 ) + ϖ

(
βI +S2 +H2

)−1 [−Eu(k+ 1
2 ) + |u(k+ 1

2 )| + f ],
(15)

where α is a Non-negative constant, β and ϖ are positive constants. H1 , H2 and S1, S2 are Hermitian and
skew-Hermitian positive definite, respectively. Besides, H =H1 +H2 and S =S1 +S2.

In addition, we can rewrite the HSS-like method [35] as the new HSS-like method. The scheme of the
new HSS-like method (NHSS-like) is (16).{

(αI +H ) u(k+ 1
2 ) = (αI −S ) u(k) + |u(k)

| + f ,
(αI +S ) u(k+1) = (αI −H ) u(k+ 1

2 ) + |u(k+ 1
2 )| + f ,

=⇒

{
u(k+ 1

2 ) = (1 − ϖ) u(k) + ϖ (αI +H )−1 [(αI −S ) u(k) + |u(k)
| + f ],

u(k+1) = (1 − ϖ) u(k+ 1
2 ) + ϖ (αI +S )−1 [(αI −H ) u(k+ 1

2 ) + |u(k+ 1
2 )| + f ],

=⇒

{
u(k+ 1

2 ) = u(k) + ϖ (αI +H )−1 [−Eu(k) + |u(k)
| + f ],

u(k+1) = u(k+ 1
2 ) + ϖ (αI +S )−1 [−Eu(k+ 1

2 ) + |u(k+ 1
2 )| + f ],

ϖ=1
=⇒

{
u(k+ 1

2 ) = u(k) + (αI +H )−1 [−Eu(k) + ∥u(k)
| + f ],

u(k+1) = u(k+ 1
2 ) + (αI +S )−1 [−Eu(k+ 1

2 ) + |u(k+ 1
2 )| + f ].

(16)

Therefore, we can obtain the new HSS-like iterative method as follows.

Algorithm 4.3. The New HSS-like iteration method. Supposed u( 0 ) is an initial vector. For k = 0, 1, 2, .
until

{
u(k)

}∞
k

converges, computing u( k+1 ) by{
u(k+ 1

2 ) = u(k) + (αI +H )−1 [−Eu(k) + |u(k)
| + f ],

u(k+1) = u(k+ 1
2 ) + (αI +S )−1 [−Eu(k+ 1

2 ) + |u(k+ 1
2 )| + f ],

(17)

where α is a positive constant, H is Hermitian positive definite and S is skew-Herimitian positive definite.

In order to show that the RMGHSS-like method (15) is more general and applicable, we will make the
following variations as follows.

Corollary 4.1. if α = β, S1 = 0 and H2 = 0, then the RMGHSS-like method can be simplified to the PHSS-like
method [36] where the Hermitian matrix P = I.

Corollary 4.2. if α = β, ϖ = 1, S1 = 0 and H2 = 0, then the RMGHSS-like method can be simplified to the
NHSS-like method (17).

Since the NHSS-like method is the special form of the RMGHSS-like method, the convergence of the
NHSS-like is same to the RMGHSS-like method. Therefore, we only need to discuss the convergence of the
RMGHSS-like method. Now, the convergence of the RMGHSS-like method is proven as follows.
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4.2. The convergence of the Relaxed MGHSS-like iterative methods

Theorem 4.1. Let the matrix E ∈ Rn×n be positive definite. H and S are its Hermitian and skew-Hermitian parts,
respectively. H1 and H2 are Hermitian positive definite. S1 and S2 are skew-Hermitian positive definite. Suppose
the matrix I is identity matrix and both of ϖ and β are positive constants. Besides, α is a Non-negative constant,
H = 1

2 (E + E∗), S = 1
2 (E − E∗), H =H1 +H2 and S =S1 +S2.

Define

η1 (α, ϖ) = 1 + ∥ϖ (αI +H1 +S1)−1
∥ − ∥ϖ (αI +H1 +S1)−1 E∥,

η2
(
β, ϖ

)
= 1 + ∥ϖ

(
βI +S2 +H2

)−1
∥ − ∥ϖ

(
βI +S2 +H2

)−1 E∥,
c1 (α, ϖ) = ∥ϖ (αI +H1 +S1)−1 E∥ − ∥ϖ (αI +H1 +S1)−1

∥,
c2

(
β, ϖ

)
= ∥ϖ

(
βI +S2 +H2

)−1 E∥ − ∥ϖ
(
βI +S2 +H2

)−1
∥,

θ
(
α, β, ϖ

)
= ∥ ϖ (αI +H1 +S1)−1

∥ + ∥ ϖ
(
βI +S2 +H2

)
∥,

η1 (α, ϖ) = 1 − c1 (α, ϖ) , η2
(
β, ϖ

)
= 1 − c2

(
β, ϖ

)
,

δ = η1 (α, ϖ) η2
(
β, ϖ

)
, ν = ∥E∥ − 1.

with ∥.∥ being an arbitrary matrix norm .

If the parameter ϖ, α, β, satisfy 0 < c1 (α,ϖ) + c2
(
β, ϖ

)
≤ θ

(
α, β, ϖ

)
ν < 4, then the iterative sequence{

u(k)
}+∞

k=0
⊂ Rn resulted from the RMGHSS-like iterative method for AVE converges to the unique solution u† ∈ Rn

of the absolute value equation (1).

Proof. Suppose that the vector u† is the exact solution of the AVE, we can know u† satisfying fixed-point
equation:{

u† = u† + ϖ (αI +H1 +S1)−1 [−Eu† + |u†| + f ],
u† = u† + ϖ

(
βI +S2 +H2

)−1 [−Eu† + |u†| + f ],
(18)

It is easy to obtain via subtracting (15) from (18),{
u(k+ 1

2 ) − u† = [u(k)
− u† ] + ϖ (αI +H1 +S1)−1 [[|u(k)

| − |u†|] − E[u(k)
− u† ]],

u(k+1)
− u† = [u(k+ 1

2 ) − u†] + ϖ
(
βI +S2 +H2

)−1 [[|u(k+ 1
2 )| − |u†|] − E[u(k+ 1

2 ) − u† ]],

Taking advantage of the properties of the norm, we can get the following inequality:

∥u(k+ 1
2 ) − u†∥ = ∥[u(k)

− u†] + ϖ (αI +H1 +S1)−1 [[|u(k)
| − |u†|] − E[u(k)

− u†]]∥

≤ [∥u(k)
− u†∥] + ∥ϖ (αI +H1 +S1)−1

∥∥|u(k)
| − |u†|∥ − ∥ϖ (αI +H1 +S1)−1 E∥∥u(k)

− u†∥

≤ 1 + ∥ϖ (αI +H1 +S1)−1
∥ − ∥ϖ (αI +H1 +S1)−1 E∥ = η1 (α, ϖ) ∥u(k)

− u†∥

∥u(k+1)
− u†∥ = ∥[u(k+ 1

2 ) − u†] + ϖ
(
βI +S2 +H2

)−1 [[|u(k+ 1
2 )| − |u†|] − E[u(k+ 1

2 ) − u†]]∥

≤ [∥u(k)
− u†∥] + ∥ϖ

(
βI +S2 +H2

)−1
∥∥|u(k+ 1

2 )| − |u†|∥ − ∥ϖ
(
βI +S2 +H2

)−1 E∥∥u(k+ 1
2 ) − u†∥

≤ 1 + ∥ϖ
(
βI +S2 +H2

)−1
∥ − ∥ϖ

(
βI +S2 +H2

)−1 E∥ = η2
(
β, ϖ

)
∥u(k+ 1

2 ) − u†∥

According to the above inequality, it is evident that

∥u(k+1)
− u†∥ ≤ η2

(
β, ϖ

)
∥u(k+ 1

2 ) − u†∥ ≤ η2
(
β, ϖ

)
η1 (α, ϖ) ∥u(k)

− u†∥ = δ∥u(k)
− u†∥

Therefore, when δ < 1 , lim
k→+∞

u(k) = u†, and the RMGHSS-like iterative method for AVE is convergent.
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In order to simplify the conditions for convergence, we have further simplified the conditions to make
the requirements easier to satisfy. Then, the spectral radius ρ(Mα, β, ϖ) of the iteration matrix ρ(Mα, β, ϖ) of
the RMGHSS-like iterative method for AVE (15) satisfies the following relational formula:

ρ(Mα, β, ϖ) ≤ η2
(
β, ϖ

)
η1 (α, ϖ) = δ =

(
1 − c2

(
β, ϖ

))
(1 − c1 (α, ϖ)) . (19)

According to Lemma 2.3, we have

ρ(Mα, β, ϖ) ≤ η2
(
β, ϖ

)
η1 (α, ϖ) = δ =

(
1 − c2

(
β, ϖ

))
(1 − c1 (α, ϖ))

≤

(
1 − c2

(
β, ϖ

)
+ 1 − c1 (α, ϖ)
2

)2

=

(
1 −

c1 (α, ϖ) + c2
(
β, ϖ

)
2

)2

.

Thus, only condition
(
1 −

c1(α, ϖ)+c2(β, ϖ)
2

)2
< 1 is required to meet, and the conclusion

ρ(Mα, β, ϖ) ≤ η2
(
β, ϖ

)
η1 (α, ϖ) = δ =

(
1 − c2

(
β, ϖ

))
(1 − c1 (α, ϖ)) < 1

is established.

From
(
1 −

c1(α, ϖ)+c2(β, ϖ)
2

)2
< 1, we can obtain−1 <

(
1 −

c1(α, ϖ)+c2(β, ϖ)
2

)
< 1. So, the RMGHSS-like iterative

method for AVE is convergent where 0 <
(
1 − c1 (α, ϖ) + c2

(
β, ϖ

))
< 4.

Further, simplify the conditions for convergence, it is not difficult to obtain

c1 (α, ϖ) = ∥ϖ (αI +H1 +S1)−1 E∥ − ∥ϖ (αI +H1 +S1)−1
∥

≤ ∥ϖ (αI +H1 +S1)−1
∥∥E∥ − ∥ϖ (αI +H1 +S1)−1

∥

≤ ∥ϖ (αI +H1 +S1)−1
∥ (∥E∥ − 1) ,

c2
(
β, ϖ

)
= ∥ϖ

(
βI +S2 +H2

)−1 E∥ − ∥ϖ
(
βI +S2 +H2

)−1
∥

≤ ∥ϖ
(
βI +S2 +H2

)−1
∥∥E∥ − ∥ϖ

(
βI +S2 +H2

)−1
∥

≤ ∥ϖ
(
βI +S2 +H2

)−1
∥ (∥E∥ − 1) .

Hence,
c1 (α, ϖ) + c2

(
β, ϖ

)
≤ ϖ

(
α, β, ϖ

)
ν.

Now, under the condition 0 < c1 (α, ϖ) + c2
(
β, ϖ

)
≤ θ

(
α, β, ϖ

)
ν < 4, we have

ρ(Mα, β, ϖ) ≤ η2
(
β, ϖ

)
η1 (α, ϖ) = δ =

(
1 − c2

(
β, ϖ

))
(1 − c1 (α, ϖ)) < 1

.
The above process is the process of complete proof of Theorem 3.1.

5. The relationships between parameters and the conditions of the convergence under the minimum
spectral radius

In order for this part of the theorems to prove more convenient, now I will repeat some of the previous
conditions below:

H = 1
2 (E + E∗) and S = 1

2 (E − E∗) are the Hermitian and skew-Hermitian parts of the matrix E,
respectively. H1 , H2 and S1, S2 are Hermitian and skew-Hermitian positive definite, respectively.
Suppose both of ϖ and β are positive constants. Besides,α is a Non-negative constant, H =H1 +H2 and
S =S1 +S2, E1 =H1 +S1 and E2 =H2 +S2.
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Theorem 5.1. Let the matrix E ∈ Rn×n be Hermitian positive definite and E1 =H1+S1, E2 =H2+S2, E = E1+E2.
Let λmin and λmax be the smallest and largest eigenvalue of matrix E, respectively. Let µmin and µmax be the smallest
and largest eigenvalue of matrix E1 , respectively. Let σmin and σmax be the smallest and largest eigenvalue of matrix
E2 , respectively. Under the minimum spectral radius, the equation relationship between parameters α and β , the
parameters ϖ value range, and the conditions of the RMGHSS-like iterative method as follows:
with ∥.∥ being a matrix 2-norm at the section 5.

The equation relationship between parameters α, β is

β − α = µmin − σmin

The parameters ϖ value range is

where λmin > 1, 0 < ϖ <
2
(
β + σmin

)
λmax − 1

or 0 < ϖ <
2
(
α + µmin

)
λmax − 1

The convergence conditions of the RMGHSS-like iterative method are

0 <
ϖ (λmax − 1)
α + µmin

< 2 or 0 <
ϖ (λmax − 1)
β + σmin

< 2

Proof. Since the matrix H1, H2 are Hermitian positive definite matrix and the matrix S1, S2 are
skew-Hermitian positive definite matrix, we can obtain the matrix E1 =H1 +S1 and E2 =H2 +S2 are
positive definite matrix according to the Lemma 2.4 .

From the process of the sections 4, we can obtain

ρ(Mα, β, ϖ) ≤ η2
(
β, ϖ

)
η1 (α, ϖ) = δ =

(
1 − c2

(
β, ϖ

))
(1 − c1 (α, ϖ)) . (20)

Thus, we only need to find the minimum upper bound of η2
(
β, ϖ

)
η1 (α, ϖ), at this time the RMGHSS-

like iteration method has the smallest spectral radius ρ
(
Mα, β, ϖ

)
, and the parameters have the following

relationship as follows.(
1 − c2

(
β, ϖ

)
+ 1 − c1 (α, ϖ)
2

)2

=

(
1 −

c1 (α, ϖ) + c2
(
β, ϖ

)
2

)2

. (21)

If and only when 1 − c1 (α, ϖ) = 1 − c2
(
β, ϖ

)
, η2

(
β, ϖ

)
η1 (α, ϖ) takes the smallest upper bound, we get

c1 (α, ϖ) = c2
(
β, ϖ

)
. c1 (α, ϖ) = c2

(
β, ϖ

)
is equal to

∥ϖ (αI +H1 +S1)−1 E∥ − ∥ϖ (αI +H1 +S1)−1
∥

= ∥ϖ
(
βI +S2 +H2

)−1 E∥ − ∥ϖ
(
βI +S2 +H2

)−1
∥

Hence, where (αI +H1 +S1) =
(
βI +S2 +H2

)
, we can obtain c1 (α, ϖ) = c2

(
β, ϖ

)
. The proof is as

follows. By (αI +H1 +S1) =
(
βI +S2 +H2

)
, we have

(αI +H1 +S1)−1 =
(
βI +S2 +H2

)−1

(αI +H1 +S1)−1 E =
(
βI +S2 +H2

)−1 E

∥(αI +H1 +S1)−1
∥ = ∥

(
βI +S2 +H2

)−1
∥

∥(αI +H1 +S1)−1 E∥ = ∥
(
βI +S2 +H2

)−1 E∥

Therefore, c1 (α, ϖ) = c2
(
β, ϖ

)
is proven.
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From the Sufficient conditions (αI +H1 +S1) =
(
βI +S2 +H2

)
for the establishment of c1 (α, ϖ) =

c2
(
β, ϖ

)
, we can obtain

(αI +H1 +S1) =
(
βI +S2 +H2

)
⇔ (H1 +S1) − (S2 +H2) =

(
β − α

)
I

⇔ E − 2 (S2 +H2) =
(
β − α

)
I

Then, we have{
E1 − E2 =

(
β − α

)
I

E1 + E2 = E ⇒

{
E1 =

1
2
(
E +

(
β − α

)
I
)

E2 =
1
2
(
E −

(
β − α

)
I
) (22)

According to the initial assumption: E is a Hermitian positive definite matrix, and the above (22), so
that E1 and E2 are known to be Hermitian positive definite matrices.

So, by (αI +H1 +S1) =
(
βI +S2 +H2

)
, then it is equal to (αI + E1) =

(
βI + E2

)
, we have

∥E1 + αI∥2 = ∥E2 + βI∥2

⇔ max
µiϵsp(E1)

|
1

µi + α
| = max

σiϵsp(E2)
|

1
σi + β

|

⇔
1

µi + α
=

1
σi + β

⇔ β − α = µmin − σmin

sp (E) is the spectral set of the matrix E.
This completes the proof of the equation relationship between parameters α, β.

From Theorem 4.1, there are some relationships between parameter and some conclusion as follows.

ϖ
(
α, β, ϖ

)
= ∥ ϖ (αI +H1 +S1)−1

∥ + ∥ ϖ
(
βI +S2 +H2

)
∥, ν = ∥E∥ − 1..

If the parameter ϖ, α, β, satisfy

0 < c1(α, ϖ) + c2(β, ϖ) ≤ θ(α, β, ϖ)ν < 4,

then the RMGHSS-like iterative method for AVE is convergent.
Now, we define the norm ∥.∥ as two norms ∥.∥2. we have

θ
(
α, β, ϖ

)
= ∥ ϖ (αI +H1 +S1)−1

∥2 + ∥ ϖ
(
βI +S2 +H2

)
∥2

= 2ϖ∥(E1 + αI)−1
∥2 = 2ϖ∥

(
E2 + βI

)−1
∥2

= 2ϖ max
µiϵsp(E1)

|
1

µi + α
| =

2ϖ
α + µmin

= 2ϖ max
σiϵsp(E2)

|
1

σi + α
| =

2ϖ
α + σmin

ν = ∥E∥2 − 1 = λmax − 1.

By 0 < c1 (α, ϖ) + c2
(
β, ϖ

)
≤ θ

(
α, β, ϖ

)
ν < 4, We can get the simplified convergence condition of the

RMGHSS-like iterative method as follows.

0 <
ϖ (λmax − 1)
α + µmin

< 2 or 0 <
ϖ (λmax − 1)
β + σmin

< 2 (23)

This completes the proof of the convergence conditions of the RMGHSS-like iterative method.
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β − α = µmin − σmin is the relationship between the parameters α, β that meet the minimum spectral
radius, and the corresponding parameters ϖ also have a relation:

(1) if λmax > 1, then λmax − 1 > 0, Thus according to (23), we have

0 < ϖ <
2
(
β + σmin

)
λmax − 1

or 0 < ϖ <
2
(
α + µmin

)
λmax − 1

(24)

(2) if λmax ≤ 1, from ϖ > 0, it can be seen that ϖ(λmax−1)
β+σmin

≤ 0 and ϖ(λmax−1)
β+σmin

> 0 contradict each other.

Therefore, we can obtain that

where λmax > 1, 0 < ϖ <
2
(
β + σmin

)
λmax − 1

or 0 < ϖ <
2
(
α + µmin

)
λmax − 1

(25)

This completes the proof of the parameter ϖ value range.

The above processes are the proof of the Theorem 5.1.

Theorem 5.2. Let the matrix E ∈ Rn×n be Hermitian positive definite and E1 =H1+R, E2 = S1+S2, E = E1+E2.
Let λmin and λmax be the smallest and largest eigenvalue of matrix E, respectively. Let µmin and µmax be the smallest
and largest eigenvalue of matrix E1 , respectively. Let σmin and σmax be the smallest and largest eigenvalue of matrix
E2 , respectively. Under the minimum spectral radius, inequality relationships between parameters α and β , the
parameters ϖ value range, and the conditions of the RMGHSS-like iterative method as follows:
with ∥.∥ being a matrix 2-norm at the section 5.

The inequality equation relationship between parameters α, β and the parameters ϖ value range are

(1) where µmax − µmin < σmax − σmin, we have µmin + σmin − 2µmax ≤ α − β ≤ µmax + σmax − 2µmin

0 < ϖ < 4

(µmin+σmax−1)
(

1
α+µmin

+ 1
β+σmin

)

(2) where µmax − µmin ≥ σmax − σmin, we have 2σmin − µmax − σmax ≤ α − β ≤ 2σmax − σmin − µmin

0 < ϖ < 4

(µmax+σmin−1)
(

1
α+µmin

+ 1
β+σmin

)

The condition of the RMGHSS-like iterative method is

0 < ϖ
(
µmax + σmax − 1

) ( 1
α + µmin

+
1

β + σmin

)
< 4

Proof. Since the matrix H1, H2 are Hermitian positive definite matrix and the matrix S1, S2 are
skew-Hermitian positive definite matrix,we can obtain the matrix E1 =H1 +S1 and E2 =H2 +S2 are
positive definite matrix according to the Lemma 2.4. Further, Since E is a Hermitian positive definite
matrix, we can know thatE1 and E2 are Hermitian positive definite matrices according to the above (22).

Combing the equality in (22), we get
E = 2E1 +

(
α − β

)
I

E = 2E2 +
(
β − α

)
I

E = E1 + E2

(26)
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According to Lemma 2.6, we have{
λk (2E1) + λ1

((
α − β

)
I
)
≤ λk

(
2E1 +

(
α − β

)
I
)
≤ λk (2E1) + λn

((
α − β

)
I
)

λk
((
α − β

)
I
)
+ λ1 (2E1) ≤ λk

((
α − β

)
I + 2E1

)
≤ λk

((
α − β

)
I
)
+ λn (2E1) (27)

{
λk (2E2) + λ1

((
β − α

)
I
)
≤ λk

(
2E2 +

(
β − α

)
I
)
≤ λk (2E2) + λn

((
β − α

)
I
)

λk
((
β − α

)
I
)
+ λ1 (2E2) ≤ λk

((
β − α

)
I + 2E2

)
≤ λk

((
β − α

)
I
)
+ λn (2E2) (28)

{
λk (E1) + λ1 (E2) ≤ λk (E1 + E2) ≤ λk (E1) + λn (E2)
λk (E2) + λ1 (E1) ≤ λk (E2 + E1) ≤ λk (E2) + λn (E1) (29)

For a Hermitian matrix E, we shall use the notation λk (E) to designate the kth largest eigenvalue, i.e,
λn (E) ≤ · · · ≤ λ2 (E) ≤ λ1 (E).

From the the inequality in (27), we get
λmax ≤ 2µmax + λmax

((
α − β

)
I
)

; λmin ≤ 2µmin + λmax
((
α − β

)
I
)
.

λmax ≤ 2µmax + λmax
((
α − β

)
I
)

; λmin ≤ 2µmax + λmin
((
α − β

)
I
)
.

λmax ≥ 2µmax + λmin
((
α − β

)
I
)

; λmin ≥ 2µmin + λmin
((
α − β

)
I
)
.

λmax ≥ 2µmin + λmax
((
α − β

)
I
)

; λmin ≥ 2µmin + λmin
((
α − β

)
I
)
.

(30)

From the the inequality in (28) , we get
λmax ≤ 2σmax + λmax

((
β − α

)
I
)

; λmin ≤ 2σmin + λmax
((
β − α

)
I
)
.

λmax ≤ 2σmax + λmax
((
β − α

)
I
)

; λmin ≤ 2σmax + λmin
((
β − α

)
I
)
.

λmax ≥ 2σmax + λmin
((
β − α

)
I
)

; λmin ≥ 2σmin + λmin
((
β − α

)
I
)
.

λmax ≥ 2σmin + λmax
((
β − α

)
I
)

; λmin ≥ 2σmin + λmin
((
β − α

)
I
)
.

(31)

From the the inequality in (29) , we get
λmax ≤ µmax + σmax; λmin ≤ µmin + σmax.
λmax ≤ σmax + µmax; λmin ≤ σmin + µmax.
λmax ≥ µmax + σmin; λmin ≥ µmin + σmin.
λmax ≥ σmax + µmin; λmin ≥ σmin + µmin.

(32)

By (30), we have

λmin − 2µmax ≤ λmin
((
α − β

)
I
)
≤ λmax

((
α − β

)
I
)
≤ λmax − 2µmin (33)

Combining (32) and λmin
((
α − β

)
I
)
= λmax

((
α − β

)
I
)

further, we can get

µmin + σmin − 2µmax ≤ α − β ≤ µmax + σmax − 2µmin (34)

By (30), we have

λmin − 2σmax ≤ λmin
((
β − α

)
I
)
≤ λmax

((
β − α

)
I
)
≤ λmax − 2σmin (35)

Combining (32) and λmin
((
β − α

)
I
)
= λmax

((
β − α

)
I
)

further, we can get

2σmin − σmax − µmax ≤ α − β ≤ 2σmax − σmin − µmin (36)

Hence, we can know the inequality equation relationship between parameters α, β are as follows.
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(1) where µmax − µmin < σmax − σmin, we have

∵

{
µmax + σmax − 2µmin < 2σmax − σmin − µmin
2σmin − µmax − σmax < σmin + µmin − 2µmax

∴ µmin + σmin − 2µmax ≤ α − β ≤ µmax + σmax − 2µmin

(2) where µmax − µmin ≥ σmax − σmin, we have

∵

{
µmax + σmax − 2µmin ≥ 2σmax − σmin − µmin
2σmin − µmax − σmax ≥ σmin + µmin − 2µmax

∴ 2σmin − µmax − σmax ≤ α − β ≤ 2σmax − σmin − µmin

Therefore, the parameters ϖ value range are as follows.

(1) where µmax − µmin < σmax − σmin, we have

∵

{
µmax + σmin < σmax + µmin

0 < w (λmax − 1)
(

1
α+µmin

+ 1
β+σmin

)
< 4

∵

{
λmax ≥ µmax + σmin
λmax ≥ σmax + µmin

∴
1

λmax − 1
≤

1
µmin + σmax − 1

Hence, we can obtain

0 < ϖ <
4(

µmin + σmax − 1
) ( 1

α+µmin
+ 1

β+σmin

) , where λmax > 1.

(2) where µmax − µmin ≥ σmax − σmin, we have

0 < ϖ <
4(

µmax + σmin − 1
) ( 1

α+µmin
+ 1

β+σmin

) , where λmax > 1.

From the above analysis process, we can also get the convergence condition of the RMGHSS-like iterative
method is

0 < ϖ
(
µmax + σmax − 1

) ( 1
α + µmin

+
1

β + σmin

)
< 4

This completes the proof of the Theorem 5.2 .
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6. Numerical Examples

In this section, various numerical examples are given to show the efficiency of the RMGHSS-like method
(15) and the NHSS-like method (17) from perspectives of the iteration steps (denoted by IT), elapsed CPU
time in seconds (denoted by CPU), and ERR. We also present the following formula about ERR and RES

ERR : = ∥u∧ − u(k)
∥, RES := ∥Eu(k)

− f − |u(k)
| ∥,

here, u∧ and u(k) represent the exact solution and the kth approximate solution to AVE (1).
Besides, we did all the experiments using a personal computer with 2.80 GHZ CPU( Inter(R) Core(TM)

i7-7700HQ) and 8GB of memory using Matlab R2018b and chose the zero vector as the initial vector. For
Example 6.1 and Example 6.2, if the current iterations satisfy RES(uk) ≤ 10−7 or the maximum iteration
number exceed 2000, the test problems are terminated. For Example 6.3 and Example 6.4, if the current
iterations satisfy RES ≤ 10−5

∥b∥ or the maximum iteration number exceed 2000, the test problems are
terminated.

Then, we label the RMGHSS-like method, the new method [43], the modified block-diagonal and anti-
block-diagonal splitting method [44], the relaxed nonlinear PHSS-Like method [37], the new HSS-like
method as MGHSS-like, NI, MBAS, PHSS-like and NHSS-like, respectively. The parameters of these NI,
MBAS, RPHSS-Like, NHSS-Like and RMGHSS-like methods asαopt, βopt,ϖopt, γ, which obtained by reducing
the IT as much as possible in all experiments.

Example 6.1. ([45]). We consider the AVE in (1) with

E = tridia1 (−1, 8,−1) ∈ Rn×n and f = Eu∧ − |u∧| ∈ Rn×n

here u∧ = (−1, 1,−1, 1, · · · ,−1, 1)T
∈ Rn.

Through using the Example 6.1, we can obtain the computational results in Table 1. Most importantly, the
IT of the RMGHSS-like method is greatly reduced compared to other four methods. Secondly, the ERR of
the RMGHSS-like method is better than the NI method by four orders of magnitude, and is better than the
MBAS method by one order of magnitude. The RES of the RMGHSS-like method is better than the NI and
MBAS methods. The elapsed CPU time is less than PHSS−like, NHSS−like methods.

Example 6.2. ([45]). Let m = n2 where n is a positive integer. We consider(1) with

E = tridia1 (−In, Zn, −In) ∈ Rn×n with Zn = tridia1 (−1, 8, −1)

here f = Eu∧ − |u∧| ∈ Rn×n and u∧ = (−1, 1,−1, 1, · · · ,−1, 1)T
∈ Rn.

Through using the Example 6.2, we can obtain the experimental results in Table 2. Although the elapsed
CPU times of the NI, MBAS methods is less than RMGHSS-like method, the RES of RMGHSS-like method
is better than the NI method by two order of magnitude and is better than than MBAS method by one
order of magnitude. Further, the ERR of RMGHSS-like method is better than the NI method by five order
of magnitude and is better than the MBAS, RPHSS-like, NHSS-like methods by one order of magnitude.
Mostly important, the IT is less than four other methods.

Consider the two-dimensional convection-diffusion equation [34, 35, 37]{
−

(
φuu + φtt

)
+ τ

(
φu + φt

)
+ κφ = f (u, t) , (u, t) ∈ D

φ (u, t) = 0, (u, t) ∈ ∂D

whereD = (0, 1)×(0, 1) , ∂D is the boundary ofD, the symbol τ and the symbolκ represent a constant greater
than zero and a real number, respectively. The diffusion terms are discretized using the five-point finite
difference method, and the convection terms are also discretized using the central difference method. The
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Table 1: Numerical results for Example 6.1.

n 1000 2000 3000 4000 5000 6000

NI αopt 0.980 0.980 0.980 0.980 0.980 0.980
IT 7 7 7 7 7 7
CPU 0.0135 0.0358 0.0786 0.1468 0.2491 0.3126
RES 6.7892e – 07 6.7897e – 07 6.7898e – 07 6.7899e – 07 6.7900e – 07 6.7900e – 07
ERR 3.4503e – 05 4.8805e – 05 5.9779e – 05 6.9028e – 05 7.7178e – 05 8.4545e – 05

MBAS αopt 0.006 0.006 0.006 0.006 0.006 0.006
IT 11 11 11 11 11 12
CPU 0.0206 0.0588 0.1264 0.2223 0.3429 0.5292
RES 4.4693e – 08 6.3219e – 08 7.7433e – 08 8.9416e – 08 9.9972e – 08 1.7456e – 08
ERR 7.6177e – 09 1.0776e – 08 1.3200e – 08 1.5243e – 08 1.7042e – 08 2.1522e – 08

RPHSS−like αopt 9.180 9.180 9.180 9.180 9.180 9.180
ϖopt 1.10 1.10 1.10 1.10 1.10 1.10
IT 12 12 12 12 12 12
CPU 0.0915 0.3047 0.6476 1.2304 1.8564 3.1814
RES 1.9816e – 08 2.8060e – 08 3.4381e – 08 3.9708e – 08 4.4401e – 08 4.8643e – 08
ERR 1.9696e – 09 2.7890e – 09 3.4172e – 09 3.9467e – 09 4.4132e – 09 4.8348e – 09

NHSS−like αopt 7.800 7.800 7.800 7.800 7.800 7.800
ϖopt 1.00 1.00 1.00 1.00 1.00 1.00
IT 11 12 12 12 12 12
CPU 0.0797 0.3230 0.7243 1.2910 2.0626 2.9731
RES 7.8135e – 08 1.4699e – 08 1.8012e – 08 2.0803e – 08 2.3262e – 08 2.5485e – 08
ERR 1.0753e – 09 2.1353e – 09 2.6166e – 09 3.0222e – 09 3.3795e – 09 3.7025e – 09

RMGHSS−like αopt 0.100 0.100 0.100 0.100 0.100 0.100
βopt 12.190 12.190 12.190 12.190 12.190 12.190
ϖopt 1.10 1.10 1.10 1.10 1.10 1.10
γ 0.65 0.65 0.65 0.65 0.65 0.65
IT 5 5 5 5 5 5
CPU 0.0379 0.1246 0.2878 0.4910 0.8162 1.2532
RES 3.6989e – 08 4.2395e – 08 4.7713e – 08 5.2617e – 08 5.7146e – 08 6.1362e – 08
ERR 4.4942e – 09 5.1325e – 09 5.8072e – 09 6.4361e – 09 7.0179e – 09 7.5593e – 09

use of symbol ϱ for equidistant steps and symbol Re for the grid Reynolds number, and has a relationship:
ϱ = 1/(m+1) and Re = (τϱ)/2. Then a system of linear equations with coefficients of nth-order matrices is
obtained Fu = d where n = m2.

F = Tu ⊗ Im + Im ⊗ Tt + κIn, (37)

where Im and In are the identity matrices of order m and n, respectively. ⊗ present the Kronecker product,
and Tu and Tt present the tridiagonal matrices

Tu = tridiag
(
t2, t1, t3

)
m×m and Tt = tridiag (t2, 0, t3)m×m

with
t1 = 4, t2 = −1 − Re, t3 = −1 + Re.

For convenience, we set H2 =H −H1 = ϱ/2, S1 = (1 − γ)S and S2 = γS according to [38].
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Table 2: Numerical results for Example 6.2.

n 1600 2500 3600 4900

NI αopt 0.940 0.940 0.940 0.940
IT 9 9 9 9
CPU 0.0337 0.0692 0.1455 0.2799
RES 5.7693e – 07 5.8249e – 07 5.8620e – 07 5.8885e – 07
ERR 3.9803e – 05 5.0294e – 05 6.0784e – 05 7.1275e – 05

MBAS αopt 0.006 0.006 0.006 0.006
IT 13 14 14 14
CPU 0.0490 0.1554 0.2276 0.3925
RES 8.3264e – 08 2.1207e – 08 2.5706e – 08 3.0205e – 08
ERR 1.8331e – 08 4.4462e – 09 5.3928e – 09 6.3393e – 09

RPHSS−like αopt 6.120 6.120 6.120 6.120
ϖopt 1.00 1.00 1.00 1.00
IT 16 16 16 16
CPU 0.2850 0.6565 1.4041 2.4823
RES 1.9816e – 08 2.8060e – 08 3.4381e – 08 3.9708e – 08
ERR 1.9696e – 09 2.7890e – 09 3.4172e – 09 3.9467e – 09

NHSS−like αopt 6.142 6.142 6.142 6.142
ϖopt 1.00 1.00 1.00 1.00
IT 16 16 16 16
CPU 0.2638 0.6548 1.3437 2.5905
RES 4.8647e – 08 5.5069e – 08 6.0869e – 08 6.6212e – 08
ERR 4.3679e – 09 5.0371e – 09 5.6681e – 09 6.2723e – 09

RMGHSS−like αopt 0.633 0.633 0.633 0.633
βopt 12.210 12.210 12.210 12.210
ϖopt 1.20 1.20 1.20 1.20
γ 0.65 0.65 0.65 0.65
IT 7 8 8 8
CPU 0.1289 0.3238 0.6721 2.2753
RES 8.9156e – 08 7.0492e – 09 7.7679e – 09 8.4351e – 09
ERR 9.9991e – 09 6.6449e – 10 7.4922e – 10 8.3128e – 10

Example 6.3. In this example, we first set the matrix E = F where F is defined by (37) and let τ = 0, κ = 0.
Computational results with different values of m (m = 10, 20, 40, 80) are given in Table 3.

It is handy to discover the matrix E in AVE (1) is symmetric positive definite.The experimental results
for Examples 6.3 are presented in Table 3. In Table 3, we can obtain that the NI method does no longer
resolve the problem. The RES of the RMGHSS-like is comparable to the RES of the MBAS, RPHSS−like and
NHSS-like. In addition, we can find the number of iteration steps of the proposed MGHSS-like is greatly
reduced compared to other three methods. The elapsed CPU time is less than PHSS−like, NHSS−like
methods. we remark here that the RMGHSS-like iteration method is more efficient than the RPHSS−like
iteration method by choosing suitable choices of ϖ, γ, α, β.

Example 6.4. In this example, we set the matrix E = F + 0.5(L-LT) where F is defined by (37). Computational results
with different values of n (n = 100, 400, 9000, 1600, 2500), different values of τ (τ = 1, 10, 100) and κ = -1 are given
in Table 4, Table 5 and Table 6, respectively.

From Tables 4, 5 and 6, we get that the ERR of the RMGHSS-like method is smaller than that of the
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Table 3: Numerical results for Example 6.3.

m 10 20 40 80

NI αopt − − − −

IT − − − −

CPU − − − −

RES − − − −

MBAS αopt 0.400 0.400 0.400 0.400
IT 29 27 25 23
CPU 0.0020 0.0017 0.0835 1.1302
RES 8.5303e – 06 8.3904e – 06 8.0517e – 06 8.6230e – 06

RPHSS−like αopt 1.800 1.800 1.800 1.800
ϖopt 1.20 1.20 1.20 1.20
IT 18 16 15 13
CPU 0.0010 0.0188 0.2278 3.7599
RES 8.4831e – 06 8.4027e – 06 6.6096e – 06 8.4504e – 06

NHSS−like αopt 1.800 1.800 1.800 1.800
ϖopt 1.00 1.00 1.00 1.00
IT 26 20 18 17
CPU 0.8769 0.0453 1.3437 2.5905
RES 8.4831e – 06 8.4027e – 06 6.6096e – 06 8.4504e – 06

RMGHSS−like αopt 1.640 1.640 1.640 1.640
βopt 2.000 2.000 2.000 2.000
ϖopt 1.20 1.20 1.20 1.20
γ 0.40 0.40 0.40 0.40
IT 13 12 11 10
CPU 0.0005 0.0110 0.2076 2.8502
RES 8.4716e – 06 8.6833e – 06 8.6540e – 06 8.9804e – 06

rest of the methods, which is smaller than that of the rest of the methods. From Tables 5 and Tables 6, we
find that the proposed method has achieved a qualitative leap and reduced the number of iterative steps to
within five steps, and the ERR and the RES of the proposed RMGHSS-like method have also been greatly
reduced, which is unprecedented. The CPU time of the MBAS is less than the RMGHSS-like method , but
the iteration steps of the RMGHSS-like method is Greatly less than the MBAS method. Therefore, we can
infer that the RMGHSS-like method is generally more efficent than other four methods.



X. H. Shao, S. X. Yang / Filomat 37:26 (2023), 8845–8865 8861

Table 4: Computational results for Example 6.4 with different values of n and κ = -1 and τ = 1.

n 100 400 900 1600 2500

NI αopt 0.600 0.600 0.600 0.600 0.600
IT 22 24 24 25 25
CPU 0.0087 0.1056 0.7266 3.3418 10.5789
ERR 2.9207e – 04 5.6496e – 04 1.0792e – 03 1.0580e – 03 1.4039e – 03
RES 9.2354e – 06 7.5608e – 06 9.2031e – 06 6.6512e – 06 6.9966e – 06

MBAS αopt 0.200 0.200 0.200 0.200 0.200
IT 16 18 18 18 18
CPU 0.0007 0.0009 0.0229 0.0577 0.1741
ERR 2.5242e – 04 4.5506e – 04 9.4177e – 04 1.4334e – 03 1.9250e – 03
RES 7.8344e – 06 5.7642e – 06 7.5006e – 06 8.3818e – 06 8.9100e – 06

RPHSS−like αopt 4.600 4.600 4.600 4.600 4.600
ϖopt 1.20 1.20 1.20 1.20 1.20
IT 14 17 18 18 19
CPU 0.0005 0.0148 0.1064 0.3105 0.8088
ERR 1.9408 – 04 9.0802e – 04 1.5130e – 03 2.5143e – 03 2.1991e – 03
RES 4.9558e – 06 8.3513e – 06 8.2858e – 06 9.9737e – 06 6.8761e – 06

NHSS−like αopt 2.900 2.900 2.900 2.900 2.900
ϖopt 1.00 1.00 1.00 1.00 1.00
IT 13 15 16 16 16
CPU 0.0006 0.0190 0.0798 0.2789 0.6649
ERR 1.2914e – 04 8.7241e – 04 1.3192e – 03 2.1893e – 03 3.0562e – 03
RES 4.7199e – 06 8.1330e – 06 7.2904e – 06 8.7578e – 06 9.6287e – 06

RMGHSS−like αopt 1.960 1.960 1.960 1.960 1.960
βopt 3.500 3.500 3.500 3.500 3.500
ϖopt 1.20 1.20 1.20 1.20 1.20
γ 0.40 0.40 0.40 0.40 0.40
IT 8 10 11 11 11
CPU 0.0003 0.0086 0.0540 0.1629 0.4734
ERR 5.3861e – 05 6.9996e – 04 9.2827e – 04 1.6533e – 04 2.3730e – 04
RES 4.0810e – 06 9.8772e – 06 7.0297e – 06 8.8508e – 06 9.9257e – 06
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Table 5: Computational results for Example 6.4 with different values of n and κ = -1 and τ = 10.

n 100 400 900 1600 2500

NI αopt 0.500 0.500 0.500 0.500 0.500
IT 15 15 15 15 15
CPU 0.0032 0.0674 0.4630 2.0905 6.4030
ERR 1.2149e – 04 2.4836e – 04 3.7523e – 04 5.0210e – 04 6.2897e – 04
RES 9.2684e – 06 9.3743e – 06 9.4103e – 06 9.4284e – 06 9.43e93 – 06

MBAS αopt 0.700 0.700 0.700 0.700 0.700
IT 13 13 13 13 13
CPU 0.0002 0.0009 0.0154 0.0377 0.1119
ERR 7.3282e – 05 1.5035e – 04 2.2742e – 04 3.0449e – 04 3.8156e – 04
RES 5.6581e – 06 5.7487e – 06 5.7792e – 06 5.7945e – 06 5.8037e – 06

RPHSS−like αopt 3.430 3.430 3.430 3.430 3.430
ϖopt 1.20 1.20 1.20 1.20 1.20
IT 15 16 16 17 17
CPU 0.0005 0.0154 0.0814 0.3146 0.7282
ERR 8.9377 – 05 2.0445e – 04 3.6908e – 04 2.7192e – 04 3.5571e – 04
RES 8.6365e – 06 8.6094e – 06 9.8717e – 06 5.3638e – 06 5.5600e – 06

NHSS−like αopt 11.800 11.800 11.800 11.800 11.800
ϖopt 1.00 1.00 1.00 1.00 1.00
IT 6 6 6 6 6
CPU 0.0003 0.0086 0.0342 0.0986 0.2556
ERR 4.5508e – 05 6.8051e – 05 8.5089e – 05 9.9571e – 05 1.1250e – 04
RES 5.6578e – 06 4.2264e – 06 3.5153e – 06 3.0779e – 06 2.7755e – 06

RMGHSS−like αopt 4.070 4.070 4.070 4.070 4.070
βopt 17.188 17.188 17.188 17.188 17.188
ϖopt 1.20 1.20 1.20 1.20 1.20
γ 0.40 0.40 0.40 0.40 0.40
IT 3 3 3 3 3
CPU 0.0002 0.0046 0.0258 0.0549 0.1381
ERR 6.4733e – 07 1.0711e – 06 1.5820e – 06 2.1050e – 06 2.6323e – 06
RES 6.5092e – 08 5.2860e – 08 5.1842e – 08 5.1646e – 08 5.1615e – 08
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Table 6: Computational results for Example 6.4 with different values of n and κ = -1 and τ = 100.

n 100 400 900 1600 2500

NI αopt 1.500 1.500 1.500 1.500 1.500
IT 12 12 12 12 12
CPU 0.0024 0.0500 0.3984 1.6593 5.2037
ERR 5.3281e – 05 1.0680e – 04 1.6032e – 04 2.1384e – 04 2.6735e – 04
RES 5.1886e – 06 5.1909e – 06 5.1917e – 06 5.1921e – 06 5.1923e – 06

MBAS αopt 0.900 0.900 0.900 0.900 0.900
IT 11 11 11 11 11
CPU 0.0002 0.0009 0.0118 0.0450 0.0975
ERR 5.8419e – 05 1.1707e – 04 1.7571e – 04 2.3436e – 04 2.9301e – 04
RES 5.6296e – 06 5.6296e – 06 5.6296e – 06 5.6296e – 06 5.6296e – 06

RPHSS−like αopt 15.700 15.700 15.700 15.700 15.700
ϖopt 1.20 1.20 1.20 1.20 1.20
IT 14 14 14 14 14
CPU 0.0006 0.0137 0.0741 0.2597 0.5973
ERR 7.6042e – 05 1.3499e – 04 1.9272e – 04 2.5014e – 04 3.0744e – 04
RES 7.7135e – 06 6.8019e – 06 6.4540e – 06 6.2716e – 06 6.1593e – 06

NHSS−like αopt 97.400 97.400 97.400 97.400 97.400
ϖopt 1.00 1.00 1.00 1.00 1.00
IT 4 4 4 4 4
CPU 0.0002 0.0047 0.0295 0.0747 0.1669
ERR 1.4172e – 05 2.7122e – 05 3.9949e – 05 5.2741e – 05 6.5520e – 05
RES 1.4277e – 06 1.3634e – 06 1.3376e – 06 1.3238e – 06 1.3152e – 06

RMGHSS−like αopt 21.100 21.100 21.100 21.100 21.100
βopt 146.240 146.240 146.240 146.240 146.240
ϖopt 1.20 1.20 1.20 1.20 1.20
γ 0.40 0.40 0.40 0.40 0.40
IT 2 2 2 2 2
CPU 0.0001 0.0034 0.0145 0.0411 0.1229
ERR 6.4733e – 07 1.0711e – 06 1.5820e – 06 2.1050e – 06 2.6323e – 06
RES 6.5092e – 08 5.2860e – 08 5.1842e – 08 5.1646e – 08 5.1615e – 08
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7. Conclusions

In this paper, we have introduced the RMGHSS-like method for the AVE. We prove the convergence of
the method and analyse the relationship between the parameters and the convergence properties in detail
when matrix E is a Hermitian positive definite matrix under the minimum spectral radius. Numerical
experiments had been given to apprehend the effectiveness of the RMGHSS-like method. However, the
values of the optimal parameters of this iteration method need to be considered.
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