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Abstract. In this paper, we define the sequence spaces hc

(
∆(m)

v ,M,u, p
)
, h0

(
∆(m)

v ,M,u, p
)

and h∞
(
∆(m)

v ,M,u, p
)

resulting from the infinite Hilbert matrix and the Musielak-Orlicz function. We give some topological prop-
erties and inclusion relations of these newly created spaces. We also identified α−, β− and γ−duals of the
spaces. Finally, we tried to characterize some matrix transformations between these spaces.

1. Introduction and Preliminaries:

Hilbert defined the Hilbert matrix in 1894. The Hilbert matrix played both several branches of mathe-
matics and computational sciences.The n × n matrix H =

(
hi, j

)
= 1

i+ j−1
(
i, j ∈N

)
is a Hilbert matrix [1]. We

consider the infinite Hilbert matrix H as follows:

H =



1 1/2 1/3 1/4 ...
1/2 1/3 1/4 ... .
1/3 1/4 ... . .
1/4 ... . . .
. . . .
. . .
. .


and it can be showed in integral form as follows:

H = (hi, j) =
∫ 1

0
xi+ j−2dx

The inverse of Hilbert matrix H−1 is defined by

H−1 =
(
h−1

i, j

)
= (−1)i+ j (i + j − 1

) ( n + i − 1
n − j

) (
n + j − 1

n − i

) (
i + j − 1

i − 1

)2
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for all i, j ∈N.
Let us we denote the space of all real or complex sequence with w. We write the sequence spaces of

all convergent, null and bounded sequences by c, c0 and l∞, respectively. Also we will denote the space
of all bounded, convergent and absolutely convergent series with bs, cs, and l1 respectively. Let A = (ank)
be an infinite matrix of real or complex numbers and X,Y be subsets of w.We write An (x) =

∑
k ankxk and

Ax = An (x) for n, k ∈N. For a sequence space X, the matrix domain of an infinite matrix A is defined by

XA = {x = (xk) ∈ w : Ax ∈ X}

which is also a sequence space. We denote with (X,Y) the class of all matrices A such that A : X→ Y.
A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann , 0 for all n ∈ N. For the triangle

matrices A,B and a sequence x, A(Bx) = (AB)x holds. We remark that the triangle matrix A uniquely has an
inverse matrix A−1 = B and the matrix B is also triangle.

Let X be a normed sequence space. A sequence (bn) in X is called a Schauder basis for X if for every
x ∈ X there is a unique sequence (αn) of scalars such that

lim
n

∥∥∥∥∥∥∥x −
n∑

k=0

αkbk

∥∥∥∥∥∥∥ = 0.

A B-space is a complete normed space. A topological sequence space in which all coordinate functionals
πk, πk (x) = xk, are continuous is called a K-space. A BK-space is defined as a K-space which is also a B-space,
that is, a BK-space is a Banach space with continuous coordinates. For example, the space lp(1 ≤ p < ∞) is

BK-space with ∥x∥p =
(∑
∞

k=0 |xk|
p
) 1

p and c, c0 and l∞ are BK-space with ∥x∥∞ = sup
k
|xk| .

Kızmaz [2] was firstly introduced the concept of the difference operator in the sequence spaces. Further
Et and Çolak [3] generalized the idea of difference sequence spaces of Kızmaz.Besides this topic was studied
by many authors ([4], [5]) . Now, the difference matrix ∆ = (δnk) defined by

δnk =

{
(−1)n−k , (n − 1 ≤ k ≤ n)

0, (0 < n − 1 or n > k) .

The difference operator order m is defined∆(m) : w→ w,
(
∆(1)x

)
k
= (xk − xk−1) and∆(m)x =

(
∆(1)x

)
k
◦

(
∆(m−1)x

)
k

for m ≥ 2.
The triangle matrix ∆(m) =

(
δ(m)

nk

)
defined by

δ(m)
nk =

 (−1)n−k
(

m
n − k

)
, (max{0,n −m} ≤ k ≤ n)

0, (0 ≤ k < max{0,n −m} or n > k)

for all k,n ∈N and for any fixed m ∈N.
Let v = (vk) be any fixed sequence of nonzero complex numbers. We define operators ∆(m) : w → w by

m ∈N, ∆(0)
v xk = vkxk, ∆vxk = (vkxk − vk−1xk−1) , ∆(m)

v xk = ∆
(m−1)
v xk − ∆

(m−1)
v xk−1 and so that

∆(m)
v xk =

m∑
i=0

(−1)i
(

m
i

)
vk−ixk−i

Polat [6] and Kirisci and Polat [7] have defined some new sequence spaces using Hilbert matrix. Let hc, h0
and h∞ be convergent Hilbert , null convergent Hilbert and bounded Hilbert sequence spaces, respectively.
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An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non-decreasing and convex
such that M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞ as x → ∞. Lindenstrauss and Tzafriri [8] used the
idea of Orlicz function to construct the following sequence space

ℓM =

x ∈ w :
∞∑

k=1

M
(
|xk|

ρ

)
< ∞, for some ρ > 0


lM is a Banach space with the norm

∥x∥ = inf

ρ > 0 :
∞∑

k=1

M
(
|xk|

ρ

)
≤ 1


which is called an Orlicz sequence space. A sequenceM = (Mk) of Orlicz functions is called the Musielak-
Orlicz function (see [9], [10]). For more details on sequence spaces, see ([11], [12], [13]) and the references
there in.

LetX be a linear metric space. A function p : X→ R is called a paranorm, if
(P1) p (x) ≥ 0 for x ∈ X ,
(P2) p (−x) = p (x) for all x ∈ X ,
(P3) p

(
x + y

)
≤ p (x) + p

(
y
)

for all x, y ∈ X ,
(P4) If (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of vectors with

p (xn − x)→ 0 as n→∞, then p (λnxn − λx)→ 0 as n→∞.
A paranorm p for which p (x) = 0 implies x = 0 is called total paranorm and the pair

(
X, p

)
is called a

total paranormed space. It is well known that the metric of any linear metric space is given by some total
paranorm (see ([9], Theorem 10.4.2, page 183)).

2. Main Results

In this section we define the sequence spaces hc

(
∆(m)

v ,M,u, p
)
, h0

(
∆(m)

v ,M,u, p
)

and h∞
(
∆(m)

v ,M,u, p
)

and
give some relations between them. These sequence spaces are linear and BK-spaces. We prove that the new
Hilbert sequence spaces hc

(
∆(m)

v ,M,u, p
)
, h0

(
∆(m)

v ,M,u, p
)

and h∞
(
∆(m)

v ,M,u, p
)

are isometrically isomorphic
to the space c, c0 and l∞ respectively.

Definition 2.1. LetM=(Mk) be a sequence of Orlicz functions, v = (vk) be any fixed sequence of non-zero
complex numbers. Also, let p =

(
pk

)
and u = (uk) be the bounded sequence and sequence of positive real

numbers, respectively and H =
(
hi, j

)
be an infinite Hilbert matrix. In the present paper we have defined the

following sequence spaces:

hc

(
∆(m)

v ,M,u, p
)
=

x = (xk) ∈ w : lim
n→∞

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v xk

∣∣∣
ρ




pk

exists, for some ρ > 0

 ,

h0

(
∆(m)

v ,M,u, p
)
=

x = (xk) ∈ w : lim
n→∞

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v xk

∣∣∣
ρ




pk

= 0, for some ρ > 0

 ,
h∞

(
∆(m)

v ,M,u, p
)
=

x = (xk) ∈ w : sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v xk

∣∣∣
ρ




pk

< ∞, for some ρ > 0

 .
If we take Mk (x) = x for all k ∈N and (vk) = (1, 1, ...), Mk (x) = x for all k ∈N, we obtain that hc

(
∆(m)

v ,u, p
)
,

h0

(
∆(m)

v ,u, p
)
, h∞

(
∆(m)

v ,u, p
)

and hc

(
∆(m),u, p

)
, h0

(
∆(m),u, p

)
, h∞

(
∆(m),u, p

)
, respectively. Also if (uk) = (1) and(

pk
)
= (1), for all k ∈N,we obtain hc

(
∆(m)

v ,M
)
, h0

(
∆(m)

v ,M
)

and h∞
(
∆(m)

v ,M
)
.
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We define the sequence y =
(
yn

)
which will be frequently used, as the H∆(m)

v -transform of a sequence as
follows: (

yn
)
=

(
H∆(m)

v x
)(M,u,p)

=

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk

∑n
i=k (−1)i−k ( m

i−k
)
xkvk

∣∣∣
ρ




pk

(2.1)

for each k,m,n ∈N.
We will use the following inequality throughout the paper. If 0 < pk ≤ sup pk = H, D = max

(
1, 2H−1

)
,

then

|ak + bk|
pk ≤ D

{
|ak|

pk + |bk|
pk
}

(2.2)

for all k and ak, bk ∈ C.
Theorem 2.2. LetM=(Mk) be a sequence of Orlicz functions, v = (vk) be any fixed sequence of non-zero

complex numbers. Also, let p =
(
pk

)
and u = (uk) be the bounded sequence and sequence of positive real

numbers, respectively. Then hc

(
∆(m)

v ,M,u, p
)
, h0

(
∆(m)

v ,M,u, p
)

and h∞
(
∆(m)

v ,M,u, p
)

are linear spaces over
the complex field C.

Proof. We shall prove the assertion for h∞
(
∆(m)

v ,M,u, p
)

only and others can be proved similarly. Let

x = (xk) , y =
(
yk

)
∈ h∞

(
∆(m)

v ,M,u, p
)

and α, β ∈ C. Then there exist positive numbers ρ1 and ρ2 such that

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v xk

∣∣∣
ρ1




pk

< ∞,

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v yk

∣∣∣
ρ2




pk

< ∞,

for some ρ1, ρ2 > 0. Let ρ3 = max
(
2 |α|ρ1, 2

∣∣∣β∣∣∣ρ2

)
. SinceM = (Mk) is a non-decreasing and convex, using

(2.2) inequality, we have

supn
∑n

k=1
1

n + k − 1

Mk


∣∣∣uk∆

(m)
v

(
αxk + βyk

)∣∣∣
ρ3




pk

≤ sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v αxk

∣∣∣
ρ3

+

∣∣∣uk∆
(m)
v βyk

∣∣∣
ρ3




pk

≤ D sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v xk

∣∣∣
ρ1




pk

+D sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v yk

∣∣∣
ρ2




pk

< ∞.

Thus, it becomes αx + βy ∈ h∞
(
∆(m)

v ,M,u, p
)
. This proves that h∞

(
∆(m)

v ,M,u, p
)

is linear space. Similarly, it

can be proved that hc

(
∆(m)

v ,M,u, p
)

and h0

(
∆(m)

v ,M,u, p
)

are linear spaces.
Theorem 2.3. LetM=(Mk) be a sequence of Orlicz functions, v = (vk) be any fixed sequence of non-zero

complex numbers. Also, let p =
(
pk

)
and u = (uk) be the bounded sequence and sequence of positive real

numbers, respectively. Then h∞
(
∆(m)

v ,M,u, p
)

is a paranorm space with the following paranorm,



D. Barlak, Ç. A. Bektaş / Filomat 37:27 (2023), 9089–9102 9093

1 (x) = inf

(ρ) pk
G :

(
supn

∑n
k=1

1
n + k − 1

[
Mk

( ∣∣∣∣uk∆
(m)
v xk

∣∣∣∣
ρ

)]pk) 1
G

≤ 1, for some ρ > 0

 ,
where 0 < pk ≤ sup pk = H and G = max (1,H).
Proof. (i) Clearly 1 (x) ≥ 0 for x = (xk) ∈ h∞

(
∆(m)

v ,M,u, p
)
. Since Mk (0) = 0,we get 1 (θ) = 0.

(ii) 1 (−x) = 1 (x) is trivial.
(iii) Let x, y ∈ h∞

(
∆(m)

v ,M,u, p
)
. Then there exist pozitive numbers ρ1, ρ2 such that

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v xk

∣∣∣
ρ1




pk

≤ 1

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v yk

∣∣∣
ρ2




pk

≤ 1

Let ρ = ρ1 + ρ2. Then by using Minkowski’s inequality, we have

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v

(
xk + yk

)∣∣∣
ρ




pk

= sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v

(
xk + yk

)∣∣∣
ρ1 + ρ2




pk

≤
ρ1

ρ1 + ρ2
sup

n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v xk

∣∣∣
ρ1




pk

+
ρ2

ρ1 + ρ2
sup

n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v yk

∣∣∣
ρ2




pk

≤ 1

and thus,

1
(
x + y

)
= inf

(ρ) pk
G :

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v

(
xk + yk

)∣∣∣
ρ




pk
1
G

≤ 1, for some ρ > 0


≤ inf

(ρ1
) pk

G :

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v

(
xk + yk

)∣∣∣
ρ1




pk
1
G

≤ 1, for some ρ > 0


+ inf

(ρ2
) pk

G :

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v

(
xk + yk

)∣∣∣
ρ2




pk
1
G

≤ 1, for some ρ > 0

 .
Therefore, 1

(
x + y

)
≤ 1 (x)+ 1

(
y
)
.

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By
definition,
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1 (λx) = inf

(ρ) pk
G :

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (λxk)

∣∣∣
ρ




pk
1
G

≤ 1, for some ρ > 0


= inf

(|λ| t)
pk
G :

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
t




pk
1
G

≤ 1, for some ρ > 0


where t =

ρ

|λ|
> 0. Since |λ|pk ≤ max (1, |λ|sup pk ), we have

1 (λx) ≤ max (1, |λ|sup pk ) . inf

(t)
pk
G :

sup
n

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
t




pk
1
G

≤ 1, for some ρ > 0

 .
So the fact that scalar multiplication is continuous is due to the above inequality. This completes the proof
of the theorem.

Theorem 2.4. LetM = (Mk) be a sequence of Orlicz functions, u = (uk) be a sequence of positive real
numbers and v = (vk) be any fixed sequence of non-zero complex numbers. If for each k, 0 ≤ pk ≤ qk < ∞, p =(
pk

)
and q =

(
qk

)
are bounded sequences of positive real numbers, then h0

(
∆(m)

v ,M,u, p
)
⊆ h0

(
∆(m)

v ,M,u, q
)
.

Proof. Let x ∈ h0

(
∆(m)

v ,M,u, p
)
.Then

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

→ 0 as n→∞

This means that

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

< 1

for large enough k values. Since Mk is increasing and pk ≤ qk, we have as n→∞

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




qk

≤

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

→ 0.

Thus x ∈ h0

(
∆(m),M,u, q

)
. This completes the proof.

Theorem 2.5. LetM = (Mk) be a sequence of Orlicz functions, v = (vk) be any fixed sequence of non-zero

complex numbers and φ = lim
t→∞

Mk (t)
t
> 0. Then h0

(
∆(m)

v ,M,u, p
)
⊆ h0

(
∆(m)

v ,u, p
)
.

Proof. Let φ > 0 to prove that h0

(
∆(m)

v ,M,u, p
)
⊆ h0

(
∆(m)

v ,u, p
)
. From the definition of φ,Mk (t) ≥ φ (t) ,

for all t > 0. Since φ > 0,we have t ≤ 1
φMk (t) for all t > 0.

Let x = (xk) ∈ h0

(
∆(m)

v ,M,u, p
)
. Thus, we have

n∑
k=1

1
n + k − 1


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ


pk

≤

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk
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which means that x = (xk) ∈ h0

(
∆(m)

v ,u, p
)
. This completes the proof.

Theorem 2.6. LetM
′

=
(
M′

k

)
andM

′′

=
(
M′′

k

)
be sequences of Orlicz functions and v = (vk) be any fixed

sequence of non-zero complex numbers, then

h0

(
∆(m)

v ,M
′

,u, p
)
∩ h0

(
∆(m)

v ,M
′′

,u, p
)
⊆ h0

(
∆(m)

v ,
(
M

′

+M
′′
)

,u, p
)
.

Proof. Let x = (xk) ∈ h0

(
∆(m)

v ,M
′

,u, p
)
∩ h0

(
∆(m)

v ,M
′′

,u, p
)
. Therefore,

n∑
k=1

1
n + k − 1

M′

k


∣∣∣uk∆

(m) (xk)
∣∣∣

ρ

pk

as n→∞

n∑
k=1

1
n + k − 1

M′′

k


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

as n→∞.

Then, we have∑n
k=1

1
n + k − 1

(M′

k +M′′

k

) 
∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

≤ K

 n∑
k=1

1
n + k − 1

M′

k


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk
+K

 n∑
k=1

1
n + k − 1

M′′

k


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk
→ 0 as n→∞.

Thus,

n∑
k=1

1
n + k − 1

(M′

k +M
′′

k

) 
∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

→ 0 as n→∞.

Therefore, x = (xk) ∈ h0

(
∆(m)

v ,
(
M

′

+M
′′
)

,u, p
)

and this completes the proof.

Theorem 2.7. LetM
′

=
(
M′

k

)
andM

′′

=
(
M′′

k

)
be sequences of Orlicz functions and v = (vk) be any fixed

sequence of non-zero complex numbers, then

h0

(
∆(m)

v ,M
′

,u, p
)
⊆ h0

(
∆(m)

v ,
(
M

′

◦M
′′
)

,u, p
)

Proof. Let x = (xk) ∈ h0

(
∆(m)

v ,M
′

,u, p
)
. Then we have

lim
n→∞

n∑
k=1

1
n + k − 1

M′

k


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

= 0.

Let ε > 0 and choose δ > 0 with 0 < δ < 1 such that Mk (t) < ε, for 0 ≤ t ≤ δ.
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Write yk =
1

n + k − 1

M′

k


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ


 and consider

n∑
k=1

[
Mk

(
yk

)]pk =
∑

1

[
Mk

(
yk

)]pk +
∑

2

[
Mk

(
yk

)]pk

where the first summation is over yk ≤ δ and the second summation is over yk > δ. Since Mk is continuos,
we have

∑
1

[
Mk

(
yk

)]pk < εH (2.3)

and for yk > δ, we use the fact that

yk <
yk

δ
≤ 1 +

yk

δ
.

From the definition, we have for yk > δ

Mk
(
yk

)
< 2Mk (1)

yk

δ
.

Hence,

∑
1

[
Mk

(
yk

)]pk
≤ max

(
1,

(
2Mk (1) δ−1

)H
)∑

1

[
yk

]pk (2.4)

From the equation (2.3) and (2.4), we have

h0

(
∆(m)

v ,M
′

,u, p
)
⊆ h0

(
∆(m)

v ,
(
M

′

◦M
′′
)

,u, p
)
.

Theorem 2.8. Hilbert sequence spaces hc

(
∆(m)

v ,M,u, p
)
, h0

(
∆(m)

v ,M,u, p
)

and h∞
(
∆(m)

v ,M,u, p
)

are iso-

metrically isomorphic to the space c, c0 and l∞ respectively, that is, hc

(
∆(m)

v ,M,u, p
)
� c, h0

(
∆(m)

v ,M,u, p
)
�

c0 and h∞
(
∆(m)

v ,M,u, p
)
� l∞.

Proof. We’ll just do the proof for h0

(
∆(m)

v ,M,u, p
)
� c0 for the others it can be done similarly. To

demonstrate the theorem, we must show that there is linear bijection between the space h0

(
∆(m)

v ,M,u, p
)

and c0. For this, we consider the transformation T defined by the notation (2.1), from h0

(
∆(m)

v ,M,u, p
)

to c0

by x→ y = Tx. The linearity of T is obvious. Moreover, when Tx = θ it is trivial that x = θ = (0, 0, 0...) and
hence T is injective. Next, let y =

(
yn

)
∈ c0 and the sequence x = (xn) is defined as follows:

xn = v−1
n

n∑
k=1

 n∑
k=1

(
m + n − i − 1

i − k

)
h−1

ik

 yk

where h−1
ik is defined by (2.1). Then,
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lim
n→∞

(
H∆(m)

v x
)M,u,p

n
= lim

n→∞

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk∆

(m)
v (xk)

∣∣∣
ρ




pk

= lim
n→∞

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk

∑m
i=0 (−1)i (m

i
)
xk−ivk−i

∣∣∣
ρ




pk

= lim
n→∞

n∑
k=1

1
n + k − 1

Mk


∣∣∣uk

∑n
i=k (−1)i−k ( m

i−k
)
xkvk

∣∣∣
ρ




pk

= lim
n→∞

yn = 0.

Thus, x ∈ h0

(
∆(m)

v ,M,u, p
)
. As a result, it is clear that T is surjective. Since it is linear bijection,

h0

(
∆(m)

v ,M,u, p
)

and c0 are linear isomorphic. This completes the proof.

Remark 2.9. It is well known that the spaces c, c0 and l∞ are BK-spaces. Let us considering the fact
that ∆(m)

v is a triangle, we can say that the Hilbert sequence spaces hc

(
∆(m)

v ,M,u, p
)
, h0

(
∆(m)

v ,M,u, p
)

and

h∞
(
∆(m)

v ,M,u, p
)

are BK-spaces with the norm defined by

∥x∥M,u,p
∆

=
∥∥∥H∆(m)

v x
∥∥∥M,u,p

∞

=sup
n

∣∣∣∣∣∣∣
n∑

k=1

1
n + k − 1

Mk


∣∣∣uk

∑m
i=0 (−1)i (m

i
)
xk−ivk−i

∣∣∣
ρ




pk
∣∣∣∣∣∣∣ (2.5)

Corollary 2.10. Define the space d(k) =
(
d(k)

n

(
∆(m)

v ,M,u, p
))

n∈N

d(k)
n

(
∆(m)

v ,M,u, p
)
=


∑n

k=1

Mk


∣∣∣∣∣∣∣uk

∑n
i=k

 m + n − i − 1
n − i

h−1
ik vk

∣∣∣∣∣∣∣
ρ




pk

, n ≥ k

0, n < k

for every fixed k ∈N. The following statements hold:
(i) The sequence d(k)

n

(
∆(m)

v ,M,u, p
)

is a basis for the space h0

(
∆(m)

v ,M,u, p
)

and every x ∈ h0

(
∆(m)

v ,M,u, p
)

has a unique representation of the form

x =
∑

k

(
H∆(m)

v x
)M,u,p

k
d(k)

(ii) The set
{
t, d(1), d(2), ...

}
is a basis or the space hc

(
∆(m)

v ,M,u, p
)

and every x ∈ hc

(
∆(m)

v ,M,u, p
)

has a
unique representation of the form

x = st +
∑

k

[(
H∆(m)

v x
)M,u,p

k
− s

]
d(k)
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where t = tn

(
∆(m)

v ,M,u, p
)
=

∑n
k=1

Mk


∣∣∣∣∣∣∣uk

∑n
i=k

 m + n − i − 1
n − i

h−1
ik vk

∣∣∣∣∣∣∣
ρ




pk

for all k ∈N and s = lim
k→∞

(
H∆(m)

v x
)M,u,p

k
.

Corollary 2.11. The Hilbert sequence spaces h0

(
∆(m)

v ,M,u, p
)

and hc

(
∆(m)

v ,M,u, p
)

are separable.

3. Characterizations of Matrix Transformation and α−, β− and γ−duals

Let A = (ank) be an infinite matrix of complex numbers, X and Y be subsets of the sequence space w.
Let x = (xk) and y =

(
yk

)
be two sequences. Thus, we can write xy =

(
xkyk

)
, x−1

∗ Y = {a ∈ w : ax ∈ Y}
and M (X,Y) = ∩x∈X−1 ∗ Y = {a ∈ w : ax ∈ Y, for all x ∈ X} for the multiplier space of X and Y. In the special
cases of Y = {l1, cs, bs} , we write xα = x−1

∗ l1, xβ = x−1
∗ cs, xγ = x−1

∗ bs and Xα = M (X, l1) , Xβ = M (X, cs) ,
Xγ =M (X, bs) for the α−dual, β−dual, γ−dual of X. By An = (ank) we denote the sequence in the nth

−row of
A and write An (x) =

∑
∞

k=1 ankxk ∀n ∈N and A (x) = (An (x)) , provided An ∈ xβ for all n.
We shall begin with the lemmas due to Stieglitz ve Tietz [15] which will be used in the computation of

the β− and γ−duals of the Hilbert sequence spaces.
Lemma 3.1. [16] Let X,Y be any two sequence spaces. A ∈ (X : YT) if and only if TA ∈ (X : Y) , where A

is an infinite matrix and T is a triangle matrix.
Lemma 3.2. (i) Let An = (ank) be an infinite matrix. Then A ∈ (c0 : l∞) if and only if

sup
n

∑
k

|ank| < ∞ (3.1)

(ii) A ∈ (c0 : c) if and only if (3.1) holds with

lim
n

ank exists for all k. (3.2)

(iii) A ∈ (c0 : bs) if and only if

sup
n

∑
k

∣∣∣∣∣∣∣
m∑

n=0

ank

∣∣∣∣∣∣∣ < ∞. (3.3)

(iv) A ∈ (c0 : cs) if and only if (3.3) holds with

∑
k

ank convergent for all k. (3.4)

Lemma 3.3. (i) Let An = (ank) be an infinite matrix. Then A ∈ (c : c) if and only if (3.1) and (3.2) hold with

lim
n→∞

∑
k

ank exists.

(ii) A ∈ (l∞ : c) if and only if (3.2) holds with

lim
n

∑
k

|ank| =
∑

k

∣∣∣∣ lim
n→∞

ank

∣∣∣∣ . (3.5)

Lemma 3.4.(i) Let An = (ank) be an infinite matrix. Then A ∈ (c : cs) if and only if (3.3), (3,4) hold and
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∑
n

∑
k

ank convergent. (3.6)

(ii) A ∈ (l∞ : cs) if and only if (3.2) holds and

lim
m

∑
k

∣∣∣∣∣∣∣
∞∑

n=m

ank

∣∣∣∣∣∣∣ = 0. (3.7)

Lemma 3.5. [17] Let U = (unk) be an infinite matrix of complex numbers for all n, k ∈ N. Let BU = (bnk)
be defined via a sequence a = (ak) ∈ w and inverse of the triangle matrix U = (unk) by

bnk =

n∑
j=k

a ju jk

for all n, k ∈N.Then,

XαU =
{
a = (ak) ∈ w : BU

∈ (X : l1)
}
,

XβU =
{
a = (ak) ∈ w : BU

∈ (X : c)
}

XγU =
{
a = (ak) ∈ w : BU

∈ (X : l∞)
}
.

Theorem 3.6. The α−, β− and γ-duals of the Hilbert sequence spaces defined as

[
h0

(
∆(m)

v ,M,u, p
)]α

= {a = (ak) ∈ w : W ∈ (c0 : l1)} ,[
hc

(
∆(m)

v ,M,u, p
)]α

= {a = (ak) ∈ w : W ∈ (c : l1)} ,[
h∞

(
∆(m)

v ,M,u, p
)]α

= {a = (ak) ∈ w : W ∈ (l∞ : l1)} ,[
h0

(
∆(m)

v ,M,u, p
)]β

= {a = (ak) ∈ w : W ∈ (c0 : c)} ,[
hc

(
∆(m)

v ,M,u, p
)]β

= {a = (ak) ∈ w : W ∈ (c : c)} ,[
h∞

(
∆(m)

v ,M,u, p
)]β

= {a = (ak) ∈ w : W ∈ (l∞ : c)} ,[
h0

(
∆(m)

v ,M,u, p
)]γ

= {a = (ak) ∈ w : W ∈ (c0 : l∞)} ,[
hc

(
∆(m)

v ,M,u, p
)]γ

= {a = (ak) ∈ w : W ∈ (c : l∞)} ,[
h∞

(
∆(m)

v ,M,u, p
)]γ

= {a = (ak) ∈ w : W ∈ (l∞ : l∞)} .

Proof. We shall only compute the α−, β− and γ-duals of h0

(
∆(m)

v ,M,u, p
)

sequence space. Let h−1
n is

defined by (2.1). Let us take any a = (ak) ∈ w. We define the matrix W = (wnk) by

wnk =

n∑
k=1

Mk


uk

∣∣∣∣∣∣∑n
i=k

(
m + n − i − 1

n − i

)
h−1

ik anv−1
n

∣∣∣∣∣∣
ρ




pk

.
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Consider the equation

n∑
k=1

akxk =

n∑
k=1

(
akv−1

k

)
(vkxk)

=

n∑
k=1

Mk


uk

∣∣∣∣∣∣∑k
i=1

{∑k
j=i

(
m + k − j − 1

k − j

)
h−1

i j

}
akv−1

k yi

∣∣∣∣∣∣
ρ




pk

=

n∑
k=1

Mk


uk

∣∣∣∣∣∣∑k
i=1

{∑k
j=i

(
m + k − j − 1

k − j

)
h−1

i j aiv−1
i

}
yk

∣∣∣∣∣∣
ρ




pk

=
(
Wy

)
n . (3.8)

Using (3.8), we have ax = (akxk) ∈ cs or bs whenever x = (xk) ∈ h0

(
∆(m)

v ,M,u, p
)

if and only if Wy ∈ l1, c or l∞
whenever y =

(
yk

)
∈ c0. Then, from Lemma 3.1 and Lemma 3.5, we obtain that a = (ak) ∈

[
h0

(
∆(m)

v ,M,u, p
)]α
,

a = (ak) ∈
[
h0

(
∆(m)

v ,M,u, p
)]β

or a = (ak) ∈
[
h0

(
∆(m)

v ,M,u, p
)]γ

if and only if W ∈ (c0 : l1), W ∈ (c0 : c) or
W ∈ (c0 : l∞) ,which is required result.

Therefore, the α−, β− and γ-duals of Hilbert sequence spaces will be helpful in the characterization of
matrix transformations. Let X and Y be arbitrary subsets of w. We will show that the characterization of
the classes (X : YT) ve (XT : Y) can be reduced to (X,Y), where T is a triangle. Since if the sequence spaces
h0

(
∆(m)

v ,M,u, p
)

and c0 are linearly isomorphic, then the equivalence class x ∈ h0

(
∆(m)

v ,M,u, p
)
⇔ y ∈ c0

holds. So using Lemma 3.1 and 3.5, we get the desired result.
Theorem 3.7. Let us consider the infinite matrices A = (ank) and B = (bnk). These matrices get associated

with each other by the relations:

bnk =

n∑
k=1

Mk


uk

∣∣∣∣∣∣∑∞j=k

(
m + n − j − 1

n − j

)
h−1

jk anjv−1
k

∣∣∣∣∣∣
ρ




pk

(3.9)

for all k,m,n ∈N. Then the following statements are true:

(i) A ∈
(
h0

(
∆(m)

v ,M,u, p
)

: Y
)

if and only if {ank}k∈N ∈
[
h0

(
∆(m)

v ,M,u, p
)]β

for all n ∈N and B ∈ (c0,Y) ,where
Y be any sequence space;

(ii) A ∈
(
hc

(
∆(m)

v ,M,u, p
)

: Y
)

if and only if {ank}k∈N ∈
[
hc

(
∆(m)

v ,M,u, p
)]β

for all n ∈ N and B ∈ (c,Y) ,
where Y be any sequence space;

(iii) A ∈
(
h∞

(
∆(m)

v ,M,u, p
)

: Y
)

if and only if {ank}k∈N ∈
[
h∞

(
∆(m)

v ,M,u, p
)]β

for all n ∈ N and B ∈ (l∞,Y) ,
where Y be any sequence space.

Proof. We suppose that the relation in (3.9) holds between A = (ank) and B = (bnk) .The spaces
h0

(
∆(m)

v ,M,u, p
)

and c0 are linearly isomorphic. Let A ∈
(
h0

(
∆(m)

v ,M,u, p
)

: Y
)

and y =
(
yk

)
∈ c0.Then

BH∆(m)
v exists and (ank) ∈

[
h0

(
∆(m)

v ,M,u, p
)]β

for all k ∈ N, it means that (bnk) ∈ c0 for all k,n ∈ N. Hence, By
exists for each y ∈ c0.Thus, if we take m→∞ in the equality,
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m∑
k=1

ankxk =

m∑
k=1

Mk


∣∣∣∣∣∣uk

[∑k
i=1

∑k
j=i

(
m + k − j − 1

k − j

)
h−1

i j

]
ankv−1

k

∣∣∣∣∣∣
ρ




pk

=
∑

k

bnkyk

for all m,n ∈ N which conclude that B ∈ (c0,Y) . On the contrary, let (ank)k∈N ∈
[
h0

(
∆(m)

v ,M,u, p
)]β

for each

k ∈N and B ∈ (c0,Y) and x = (xk) ∈ h0

(
∆(m)

v ,M,u, p
)
. Then it is clear that Ax exists. Thus, we attain from the

following equality for all n ∈N

∑
k

bnkyk =
∑

k

ankxk

as m→∞ that Ax = By and it is easy to show that A ∈
(
h0

(
∆(m)

v ,M,u, p
)

: Y
)
. This completes the proof.

Theorem 3.8. Let us assume that components of the infinite matrices A = (ank) and E = (enk) are
connected with the following relation

enk =

n∑
k=1

n∑
j=k

1
n + j − 1

Mk


∣∣∣∣uk

∑n
j=k (−1) j−k ( m

j−k
)
a jkv−1

k

∣∣∣∣
ρ




pk

(3.10)

for all m,n ∈N and X be any given sequence space. Then the following statements are true:
(i) A = (ank) ∈

(
X : h0

(
∆(m)

v ,M,u, p
))

if and only if E ∈ (X : c0) ;

(ii) A = (ank) ∈
(
X : hc

(
∆(m)

v ,M,u, p
))

if and only if E ∈ (X : c) ;

(iii) A = (ank) ∈
(
X : h∞

(
∆(m)

v ,M,u, p
))

if and only if E ∈ (X : l∞) .

Proof. Let us suppose that z = (zk) ∈ X. Using the relation (3.10), we have

m∑
k=1

enkzk =

m∑
k=1


n∑

k=1

n∑
j=k

1
n + j − 1

Mk


∣∣∣∣uk

[∑n
j=k (−1) j−k ( m

j−k
)
a jkv−1

k

]
zk

∣∣∣∣
ρ




pk (3.11)

for all m,n ∈ N. Then, for m → ∞ equation (3.11) gives us that (Ez)n =
{
H∆(m)

v (Az)
}

n
. Thus, we can obtain

that Az ∈ h0

(
∆(m)

v ,M,u, p
)

if and only if Ez ∈ c0. This completes the proof.
Now, we give some conditions:

lim
k

ank = 0 for all n , (3.12)

lim
n→∞

∑
k

|ank| = 0, (3.13)

lim
n→∞

∑
k

∣∣∣ank − an,k+1

∣∣∣ = 0, (3.14)

sup
n

∑
k

∣∣∣ank − an,k+1

∣∣∣ < ∞, (3.15)
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lim
k

(
ank − an,k+1

)
exists for all k, (3.16)

lim
n→∞

∑
k

∣∣∣ank − an,k+1

∣∣∣ =∑
k

∣∣∣∣ lim
n→∞

(
ank − an,k+1

)∣∣∣∣ , (3.17)

sup
n

∣∣∣∣ lim
n→∞

ank

∣∣∣∣ < ∞, (3.18)

Corollary 3.9. Let A = (ank) be an infinite matrix and X = h0

(
∆(m)

v ,M,u, p
)
, Y = hc

(
∆(m)

v ,M,u, p
)

and

Z = h∞
(
∆(m)

v ,M,u, p
)
. Then, the following statements hold:

(a) A = (ank) ∈ (X, l∞) if and only if (3.1) holds with bnk instead of ank;
(b) A = (ank) ∈ (X, bs) if and only if (3.3) holds with bnk instead of ank;
(c) A = (ank) ∈ (Y, cs) if and only if(3.3), (3.4) and (3.6) hold with bnk instead of ank;
(d) A = (ank) ∈ (Z, c) if and only if (3.2) and (3.5) hold with bnk instead of ank;
(e) A = (ank) ∈ (Z, cs) if and only if (3.7) holds with bnk instead of ank;(

f
)

A = (ank) ∈ (X, c) if and only if (3.1) and (3.2) hold with bnk instead of ank;(
1
)

A = (ank) ∈ (X, cs) if and only if (3.3) and (3.4) holds with bnk instead of ank.

Corollary 3.10. Let A = (ank) be an infinite matrix and X = h0

(
∆(m)

v ,M,u, p
)
, Y = hc

(
∆(m)

v ,M,u, p
)

and

Z = h∞
(
∆(m)

v ,M,u, p
)
. Then, the following statements hold:

(a) A = (ank) ∈ (l∞,X) if and only if (3.13) holds with enk instead of ank;
(b) A = (ank) ∈ (bs,X) if and only if (3.12) and (3.14) hold with enk instead of ank;
(c) A = (ank) ∈ (bs,Y) if and only if (3.12), (3.16) and (3.17) hold with enk instead of ank;
(d) A = (ank) ∈ (cs,Y) if and only if (3.15) and (3.2) hold with enk instead of ank;
(e) A = (ank) ∈ (bs,Z) if and only if (3.12) and (3.15) hold with enk instead of ank;(

f
)

A = (ank) ∈ (cs,Z) if and only if (3.15) and (3.18) hold with enk instead of ank;(
1
)

A = (ank) ∈ (cs,X) if and only if (3.2) and (3.15) hold with enk instead of ank.
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