Duals of generalized Orlicz Hilbert sequence spaces and matrix transformations

Damla Barlak ${ }^{\text {a }}$, Çiğdem A. Bektaş ${ }^{\text {b }}$
${ }^{a}$ Department of Statistics, Dicle University, Diyarbakır, Turkey
${ }^{b}$ Department of Mathematics, Firat University, Elazığ, Turkey

Abstract

In this paper, we define the sequence spaces $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ resulting from the infinite Hilbert matrix and the Musielak-Orlicz function. We give some topological properties and inclusion relations of these newly created spaces. We also identified $\alpha-, \beta-$ and γ-duals of the spaces. Finally, we tried to characterize some matrix transformations between these spaces.

1. Introduction and Preliminaries:

Hilbert defined the Hilbert matrix in 1894. The Hilbert matrix played both several branches of mathematics and computational sciences. The $n \times n$ matrix $H=\left(h_{i, j}\right)=\frac{1}{i+j-1}(i, j \in \mathbb{N})$ is a Hilbert matrix [1]. We consider the infinite Hilbert matrix H as follows:

$$
H=\left(\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & \ldots \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & \cdot \\
1 / 3 & 1 / 4 & \ldots & . & \cdot \\
1 / 4 & \ldots & . & . & \cdot \\
. & . & . & . & \\
. & \cdot & . & & \\
. & . & & &
\end{array}\right)
$$

and it can be showed in integral form as follows:

$$
H=\left(h_{i, j}\right)=\int_{0}^{1} x^{i+j-2} d x
$$

The inverse of Hilbert matrix H^{-1} is defined by

$$
H^{-1}=\left(h_{i, j}^{-1}\right)=(-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-i}\binom{i+j-1}{i-1}^{2}
$$

[^0]for all $i, j \in \mathbb{N}$.
Let us we denote the space of all real or complex sequence with w. We write the sequence spaces of all convergent, null and bounded sequences by c, c_{0} and l_{∞}, respectively. Also we will denote the space of all bounded, convergent and absolutely convergent series with $b s, c s$, and l_{1} respectively. Let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers and X, Y be subsets of w. We write $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ and $A x=A_{n}(x)$ for $n, k \in \mathbb{N}$. For a sequence space X, the matrix domain of an infinite matrix A is defined by
$$
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\}
$$
which is also a sequence space. We denote with (X, Y) the class of all matrices A such that $A: X \rightarrow Y$.
A matrix $A=\left(a_{n k}\right)$ is called a triangle if $a_{n k}=0$ for $k>n$ and $a_{n n} \neq 0$ for all $n \in \mathbb{N}$. For the triangle matrices A, B and a sequence $x, A(B x)=(A B) x$ holds. We remark that the triangle matrix A uniquely has an inverse matrix $A^{-1}=B$ and the matrix B is also triangle.

Let X be a normed sequence space. A sequence $\left(b_{n}\right)$ in X is called a Schauder basis for X if for every $x \in X$ there is a unique sequence $\left(\alpha_{n}\right)$ of scalars such that

$$
\lim _{n}\left\|x-\sum_{k=0}^{n} \alpha_{k} b_{k}\right\|=0
$$

A B-space is a complete normed space. A topological sequence space in which all coordinate functionals $\pi_{k}, \pi_{k}(x)=x_{k}$, are continuous is called a K-space. A $B K$-space is defined as a K-space which is also a B-space, that is, a $B K$-space is a Banach space with continuous coordinates. For example, the space $l_{p}(1 \leq p<\infty)$ is $B K$-space with $\|x\|_{p}=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}$ and c, c_{0} and l_{∞} are $B K$-space with $\|x\|_{\infty}=\sup \left|x_{k}\right|$.

Kızmaz [2] was firstly introduced the concept of the difference operator in the sequence spaces. Further Et and Çolak [3] generalized the idea of difference sequence spaces of Kızmaz.Besides this topic was studied by many authors ([4], [5]). Now, the difference matrix $\Delta=\left(\delta_{n k}\right)$ defined by

$$
\delta_{n k}=\left\{\begin{array}{cc}
(-1)^{n-k}, & (n-1 \leq k \leq n) \\
0, & (0<n-1 \text { or } n>k)
\end{array}\right.
$$

The difference operator order m is defined $\Delta^{(m)}: w \rightarrow w,\left(\Delta^{(1)} x\right)_{k}=\left(x_{k}-x_{k-1}\right)$ and $\Delta^{(m)} x=\left(\Delta^{(1)} x\right)_{k} \circ\left(\Delta^{(m-1)} x\right)_{k}$ for $m \geq 2$.

The triangle matrix $\Delta^{(m)}=\left(\delta_{n k}^{(m)}\right)$ defined by

$$
\delta_{n k}^{(m)}=\left\{\begin{array}{cc}
(-1)^{n-k}\binom{m}{n-k}, & (\max \{0, n-m\} \leq k \leq n) \\
0, & (0 \leq k<\max \{0, n-m\} \text { or } n>k)
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$ and for any fixed $m \in \mathbb{N}$.
Let $v=\left(v_{k}\right)$ be any fixed sequence of nonzero complex numbers. We define operators $\Delta^{(m)}: w \rightarrow w$ by $m \in \mathbb{N}, \Delta_{v}^{(0)} x_{k}=v_{k} x_{k}, \Delta_{v} x_{k}=\left(v_{k} x_{k}-v_{k-1} x_{k-1}\right), \Delta_{v}^{(m)} x_{k}=\Delta_{v}^{(m-1)} x_{k}-\Delta_{v}^{(m-1)} x_{k-1}$ and so that

$$
\Delta_{v}^{(m)} x_{k}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} v_{k-i} x_{k-i}
$$

Polat [6] and Kirisci and Polat [7] have defined some new sequence spaces using Hilbert matrix. Let h_{c}, h_{0} and h_{∞} be convergent Hilbert , null convergent Hilbert and bounded Hilbert sequence spaces, respectively.

An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, non-decreasing and convex such that $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to construct the following sequence space

$$
\ell_{M}=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

l_{M} is a Banach space with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

which is called an Orlicz sequence space. A sequence $\mathcal{M}=\left(M_{k}\right)$ of Orlicz functions is called the MusielakOrlicz function (see [9], [10]). For more details on sequence spaces, see ([11], [12], [13]) and the references there in.

Let X be a linear metric space. A function $p: X \rightarrow \mathbb{R}$ is called a paranorm, if
(P1) $p(x) \geq 0$ for $x \in X$,
(P2) $p(-x)=p(x)$ for all $x \in X$,
(P3) $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X$,
(P4) If $\left(\lambda_{n}\right)$ is a sequence of scalars with $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$ and $\left(x_{n}\right)$ is a sequence of vectors with $p\left(x_{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$, then $p\left(\lambda_{n} x_{n}-\lambda x\right) \rightarrow 0$ as $n \rightarrow \infty$.

A paranorm p for which $p(x)=0$ implies $x=0$ is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see ([9], Theorem 10.4.2, page 183)).

2. Main Results

In this section we define the sequence spaces $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and give some relations between them. These sequence spaces are linear and $B K$-spaces. We prove that the new Hilbert sequence spaces $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ are isometrically isomorphic to the space c, c_{0} and l_{∞} respectively.

Definition 2.1. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers. Also, let $p=\left(p_{k}\right)$ and $u=\left(u_{k}\right)$ be the bounded sequence and sequence of positive real numbers, respectively and $H=\left(h_{i, j}\right)$ be an infinite Hilbert matrix. In the present paper we have defined the following sequence spaces:

$$
\begin{aligned}
& h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} x_{k}\right|}{\rho}\right)\right]^{p_{k}} \text { exists, for some } \rho>0\right\}, \\
& h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} x_{k}\right|}{\rho}\right)\right]^{p_{k}}=0, \text { for some } \rho>0\right\}, \\
& h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)=\left\{x=\left(x_{k}\right) \in w: \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} x_{k}\right|}{\rho}\right)\right]^{p_{k}}<\infty, \text { for some } \rho>0\right\} .
\end{aligned}
$$

If we take $M_{k}(x)=x$ for all $k \in \mathbb{N}$ and $\left(v_{k}\right)=(1,1, \ldots), M_{k}(x)=x$ for all $k \in \mathbb{N}$, we obtain that $h_{c}\left(\Delta_{v}^{(m)}, u, p\right)$, $h_{0}\left(\Delta_{v}^{(m)}, u, p\right), h_{\infty}\left(\Delta_{v}^{(m)}, u, p\right)$ and $h_{c}\left(\Delta^{(m)}, u, p\right), h_{0}\left(\Delta^{(m)}, u, p\right), h_{\infty}\left(\Delta^{(m)}, u, p\right)$, respectively. Also if $\left(u_{k}\right)=(1)$ and $\left(p_{k}\right)=(1)$, for all $k \in \mathbb{N}$, we obtain $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}\right), h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}\right)$ and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}\right)$.

We define the sequence $y=\left(y_{n}\right)$ which will be frequently used, as the $H \Delta_{v}^{(m)}$-transform of a sequence as follows:

$$
\begin{align*}
\left(y_{n}\right) & =\left(H \Delta_{v}^{(m)} x\right)^{(\mathcal{M}, u, p)} \\
& =\sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \sum_{i=k}^{n}(-1)^{i-k}\left(i_{i-k}^{m}\right) x_{k} v_{k}\right|}{\rho}\right)\right]^{p_{k}} \tag{2.1}
\end{align*}
$$

for each $k, m, n \in \mathbb{N}$.
We will use the following inequality throughout the paper. If $0<p_{k} \leq \sup p_{k}=H, D=\max \left(1,2^{H-1}\right)$, then

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right\} \tag{2.2}
\end{equation*}
$$

for all k and $a_{k}, b_{k} \in \mathbb{C}$.
Theorem 2.2. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers. Also, let $p=\left(p_{k}\right)$ and $u=\left(u_{k}\right)$ be the bounded sequence and sequence of positive real numbers, respectively. Then $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ are linear spaces over the complex field \mathbb{C}.

Proof. We shall prove the assertion for $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ only and others can be proved similarly. Let $x=\left(x_{k}\right), y=\left(y_{k}\right) \in h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_{1} and ρ_{2} such that

$$
\begin{aligned}
& \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} x_{k}\right|}{\rho_{1}}\right)\right]^{p_{k}}<\infty, \\
& \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} y_{k}\right|}{\rho_{2}}\right)\right]^{p_{k}}<\infty,
\end{aligned}
$$

for some $\rho_{1}, \rho_{2}>0$. Let $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since $\mathcal{M}=\left(M_{k}\right)$ is a non-decreasing and convex, using (2.2) inequality, we have

$$
\begin{aligned}
& \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(\alpha x_{k}+\beta y_{k}\right)\right|}{\rho_{3}}\right)\right]^{p_{k}} \\
& \leq \\
& \leq \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} \alpha x_{k}\right|}{\rho_{3}}+\frac{\left|u_{k} \Delta_{v}^{(m)} \beta y_{k}\right|}{\rho_{3}}\right)\right]^{p_{k}} \\
& \leq \\
& \quad D \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} x_{k}\right|}{\rho_{1}}\right)\right]^{p_{k}} \\
& \quad+D \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} y_{k}\right|}{\rho_{2}}\right)\right]^{p_{k}} \\
& < \\
& \quad \infty .
\end{aligned}
$$

Thus, it becomes $\alpha x+\beta y \in h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. This proves that $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ is linear space. Similarly, it can be proved that $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ are linear spaces.

Theorem 2.3. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers. Also, let $p=\left(p_{k}\right)$ and $u=\left(u_{k}\right)$ be the bounded sequence and sequence of positive real numbers, respectively. Then $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ is a paranorm space with the following paranorm,
$g(x)=\inf \left\{(\rho)^{\frac{p_{k}}{c}}:\left(\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left.\right|_{k} \Delta_{\Delta}^{(n)} x_{k}}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{G}} \leq 1\right.$, for some $\left.\rho>0\right\}$,
where $0<p_{k} \leq \sup p_{k}=H$ and $G=\max (1, H)$.
Proof. (i) Clearly $g(x) \geq 0$ for $x=\left(x_{k}\right) \in h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. Since $M_{k}(0)=0$, we get $g(\theta)=0$.
(ii) $g(-x)=g(x)$ is trivial.
(iii) Let $x, y \in h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. Then there exist pozitive numbers ρ_{1}, ρ_{2} such that

$$
\begin{aligned}
& \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} x_{k}\right|}{\rho_{1}}\right)\right]^{p_{k}} \leq 1 \\
& \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{0}^{(m)} y_{k}\right|}{\rho_{2}}\right)\right]^{p_{k}} \leq 1
\end{aligned}
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then by using Minkowski's inequality, we have

$$
\begin{aligned}
& \left.\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}+y_{k}\right)\right|}{\rho}\right)\right]\right]^{p_{k}} \\
= & \left.\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}+y_{k}\right)\right|}{\rho_{1}+\rho_{2}}\right)\right]\right]^{p_{k}} \\
\leq & \frac{\rho_{1}}{\rho_{1}+\rho_{2}} \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} x_{k}\right|}{\rho_{1}}\right)\right]^{p_{k}} \\
& +\frac{\rho_{2}}{\rho_{1}+\rho_{2}} \sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)} y_{k}\right|}{\rho_{2}}\right)\right] \\
\leq & 1
\end{aligned}
$$

and thus,

$$
\begin{aligned}
g(x+y)= & \inf \left\{(\rho)^{\frac{p_{k}}{6}}:\left(\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}+y_{k}\right)\right|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{G}} \leq 1, \text { for some } \rho>0\right\} \\
\leq & \inf \left\{\left(\rho_{1}\right)^{\frac{p_{k}}{6}}:\left(\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}+y_{k}\right)\right|}{\rho_{1}}\right)\right]^{p_{k}}\right)^{\frac{1}{G}} \leq 1, \text { for some } \rho>0\right\} \\
& +\inf \left\{\left(\rho_{2}\right)^{\frac{p_{k}}{6}}:\left(\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(n)}\left(x_{k}+y_{k}\right)\right|}{\rho_{2}}\right)\right]^{p_{k}}\right)^{\frac{1}{6}} \leq 1, \text { for some } \rho>0\right\} .
\end{aligned}
$$

Therefore, $g(x+y) \leq g(x)+g(y)$.
Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition,

$$
\begin{aligned}
g(\lambda x) & =\inf \left\{(\rho)^{\frac{p_{k}}{6}}:\left(\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(n)}\left(\lambda x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}}\right)^{\frac{1}{G}} \leq 1, \text { for some } \rho>0\right\} \\
& =\inf \left\{(|\lambda| t)^{\frac{p_{k}}{6}}:\left(\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{t}\right)\right]^{p_{k}}\right)^{\frac{1}{6}} \leq 1, \text { for some } \rho>0\right\}
\end{aligned}
$$

where $t=\frac{\rho}{|\lambda|}>0$. Since $|\lambda|^{p_{k}} \leq \max \left(1,|\lambda|^{\text {sup } p_{k}}\right)$, we have

$$
g(\lambda x) \leq \max \left(1,|\lambda|^{\text {sup } p_{k}}\right) \cdot \inf \left\{(t)^{\frac{p_{k}}{G}}:\left(\sup _{n} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{t}\right)\right]^{p_{k}}\right)^{\frac{1}{G}} \leq 1, \text { for some } \rho>0\right\}
$$

So the fact that scalar multiplication is continuous is due to the above inequality. This completes the proof of the theorem.

Theorem 2.4. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $u=\left(u_{k}\right)$ be a sequence of positive real numbers and $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers. If for each $k, 0 \leq p_{k} \leq q_{k}<\infty, p=$ $\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ are bounded sequences of positive real numbers, then $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \subseteq h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, q\right)$.

Proof. Let $x \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$.Then

$$
\sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

This means that

$$
\frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}}<1
$$

for large enough k values. Since M_{k} is increasing and $p_{k} \leq q_{k}$, we have as $n \rightarrow \infty$

$$
\sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{q_{k}} \leq \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}} \rightarrow 0
$$

Thus $x \in h_{0}\left(\Delta^{(m)}, \mathcal{M}, u, q\right)$. This completes the proof.
Theorem 2.5. Let $\mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers and $\varphi=\lim _{t \rightarrow \infty} \frac{M_{k}(t)}{t}>0$. Then $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \subseteq h_{0}\left(\Delta_{v}^{(m)}, u, p\right)$.

Proof. Let $\varphi>0$ to prove that $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \subseteq h_{0}\left(\Delta_{v}^{(m)}, u, p\right)$. From the definition of $\varphi, M_{k}(t) \geq \varphi(t)$, for all $t>0$. Since $\varphi>0$, we have $t \leq \frac{1}{\varphi} M_{k}(t)$ for all $t>0$.

Let $x=\left(x_{k}\right) \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. Thus, we have

$$
\sum_{k=1}^{n} \frac{1}{n+k-1}\left[\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right]^{p_{k}} \leq \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}}
$$

which means that $x=\left(x_{k}\right) \in h_{0}\left(\Delta_{v}^{(m)}, u, p\right)$. This completes the proof.
Theorem 2.6. Let $\mathcal{M}^{\prime}=\left(M_{k}^{\prime}\right)$ and $\mathcal{M}^{\prime \prime}=\left(M_{k}^{\prime \prime}\right)$ be sequences of Orlicz functions and $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers, then

$$
h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}^{\prime}, u, p\right) \cap h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}^{\prime \prime}, u, p\right) \subseteq h_{0}\left(\Delta_{v}^{(m)},\left(\mathcal{M}^{\prime}+\mathcal{M}^{\prime \prime}\right), u, p\right)
$$

Proof. Let $x=\left(x_{k}\right) \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}^{\prime}, u, p\right) \cap h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}^{\prime \prime}, u, p\right)$. Therefore,

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}^{\prime}\left(\frac{\left|u_{k} \Delta^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}} \text { as } n \rightarrow \infty \\
& \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}^{\prime \prime}\left(\frac{\left|u_{k} \Delta_{v}^{(n)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}} \text { as } n \rightarrow \infty .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\sum_{k=1}^{n} & \frac{1}{n+k-1}\left[\left(M_{k}^{\prime}+M_{k}^{\prime \prime}\right)\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}} \\
\leq & K\left\{\sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}^{\prime}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}}\right\} \\
& +K\left\{\sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}^{\prime \prime}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}}\right\} \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus,

$$
\sum_{k=1}^{n} \frac{1}{n+k-1}\left[\left(M_{k}^{\prime}+M_{k}^{\prime \prime}\right)\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Therefore, $x=\left(x_{k}\right) \in h_{0}\left(\Delta_{v}^{(m)},\left(\mathcal{M}^{\prime}+\mathcal{M}^{\prime \prime}\right), u, p\right)$ and this completes the proof.

Theorem 2.7. Let $\mathcal{M}^{\prime}=\left(M_{k}^{\prime}\right)$ and $\mathcal{M}^{\prime \prime}=\left(M_{k}^{\prime \prime}\right)$ be sequences of Orlicz functions and $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex numbers, then

$$
h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}^{\prime}, u, p\right) \subseteq h_{0}\left(\Delta_{v}^{(m)},\left(\mathcal{M}^{\prime} \circ \mathcal{M}^{\prime \prime}\right), u, p\right)
$$

Proof. Let $x=\left(x_{k}\right) \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}^{\prime}, u, p\right)$. Then we have

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}^{\prime}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}}=0
$$

Let $\varepsilon>0$ and choose $\delta>0$ with $0<\delta<1$ such that $M_{k}(t)<\varepsilon$, for $0 \leq t \leq \delta$.

Write $y_{k}=\frac{1}{n+k-1}\left[M_{k}^{\prime}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]$ and consider

$$
\sum_{k=1}^{n}\left[M_{k}\left(y_{k}\right)\right]^{p_{k}}=\sum_{1}\left[M_{k}\left(y_{k}\right)\right]^{p_{k}}+\sum_{2}\left[M_{k}\left(y_{k}\right)\right]^{p_{k}}
$$

where the first summation is over $y_{k} \leq \delta$ and the second summation is over $y_{k}>\delta$. Since M_{k} is continuos, we have

$$
\begin{equation*}
\sum_{1}\left[M_{k}\left(y_{k}\right)\right]^{p_{k}}<\varepsilon^{H} \tag{2.3}
\end{equation*}
$$

and for $y_{k}>\delta$, we use the fact that

$$
y_{k}<\frac{y_{k}}{\delta} \leq 1+\frac{y_{k}}{\delta}
$$

From the definition, we have for $y_{k}>\delta$

$$
M_{k}\left(y_{k}\right)<2 M_{k}(1) \frac{y_{k}}{\delta}
$$

Hence,

$$
\begin{equation*}
\sum_{1}\left[M_{k}\left(y_{k}\right)\right]^{p_{k}} \leq \max \left(1,\left(2 M_{k}(1) \delta^{-1}\right)^{H}\right) \sum_{1}\left[y_{k}\right]^{p_{k}} \tag{2.4}
\end{equation*}
$$

From the equation (2.3) and (2.4), we have

$$
h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}^{\prime}, u, p\right) \subseteq h_{0}\left(\Delta_{v}^{(m)},\left(\mathcal{M}^{\prime} \circ \mathcal{M}^{\prime \prime}\right), u, p\right)
$$

Theorem 2.8. Hilbert sequence spaces $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ are isometrically isomorphic to the space c, c_{0} and l_{∞} respectively, that is, $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \cong c, h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \cong$ c_{0} and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \cong l_{\infty}$.

Proof. We'll just do the proof for $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \cong c_{0}$ for the others it can be done similarly. To demonstrate the theorem, we must show that there is linear bijection between the space $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and c_{0}. For this, we consider the transformation T defined by the notation (2.1), from $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ to c_{0} by $x \rightarrow y=T x$. The linearity of T is obvious. Moreover, when $T x=\theta$ it is trivial that $x=\theta=(0,0,0 \ldots)$ and hence T is injective. Next, let $y=\left(y_{n}\right) \in c_{0}$ and the sequence $x=\left(x_{n}\right)$ is defined as follows:

$$
x_{n}=v_{n}^{-1} \sum_{k=1}^{n}\left[\sum_{k=1}^{n}\binom{m+n-i-1}{i-k} h_{i k}^{-1}\right] y_{k}
$$

where $h_{i k}^{-1}$ is defined by (2.1). Then,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(H \Delta_{v}^{(m)} x\right)_{n}^{\mathcal{M}, u, p} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \Delta_{v}^{(m)}\left(x_{k}\right)\right|}{\rho}\right)\right]^{p_{k}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x_{k-i} v_{k-i}\right|}{\rho}\right)\right]^{p_{k}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \sum_{i=k}^{n}(-1)^{i-k}\binom{m}{i-k} x_{k} v_{k}\right|}{\rho}\right)\right]^{p_{k}} \\
& =\lim _{n \rightarrow \infty} y_{n}=0 .
\end{aligned}
$$

Thus, $x \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. As a result, it is clear that T is surjective. Since it is linear bijection, $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and c_{0} are linear isomorphic. This completes the proof.

Remark 2.9. It is well known that the spaces c, c_{0} and l_{∞} are $B K$-spaces. Let us considering the fact that $\Delta_{v}^{(m)}$ is a triangle, we can say that the Hilbert sequence spaces $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ are $B K$-spaces with the norm defined by

$$
\begin{align*}
\|x\|_{\Delta}^{\mathcal{M}}, u, p & =\left\|H \Delta_{v}^{(m)} x\right\|_{\infty}^{\mathcal{M}, u, p} \\
& =\sup _{n}\left|\sum_{k=1}^{n} \frac{1}{n+k-1}\left[M_{k}\left(\frac{\left|u_{k} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x_{k-i} v_{k-i}\right|}{\rho}\right)\right]^{p_{k}}\right| \tag{2.5}
\end{align*}
$$

Corollary 2.10. Define the space $d^{(k)}=\left(d_{n}^{(k)}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right)_{n \in \mathbb{N}}$

$$
d_{n}^{(k)}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)=\left\{\sum _ { k = 1 } ^ { n } \left[M_{k}\left(\begin{array}{cl}
\left(\begin{array}{ll}
u_{k} \sum_{i=k}^{n}\binom{m+n-i-1}{n-i} \\
\rho, h_{i k}^{-1} v_{k} \mid \\
0,
\end{array}\right.
\end{array}\right]^{p_{k}} \quad n \geq k\right.\right.
$$

for every fixed $k \in \mathbb{N}$. The following statements hold:
(i) The sequence $d_{n}^{(k)}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ is a basis for the space $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and every $x \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ has a unique representation of the form

$$
x=\sum_{k}\left(H \Delta_{v}^{(m)} x\right)_{k}^{\mathcal{M}, u, p} d^{(k)}
$$

(ii) The set $\left\{t, d^{(1)}, d^{(2)}, \ldots\right\}$ is a basis or the space $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and every $x \in h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ has a unique representation of the form

$$
x=s t+\sum_{k}\left[\left(H \Delta_{v}^{(m)} x\right)_{k}^{\mathcal{M}, u, p}-s\right] d^{(k)}
$$

where $\left.\left.\left.t=t_{n}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)=\sum_{k=1}^{n}\left[M_{k}\left(\frac{\left\lvert\, u_{k} \sum_{i=k}^{n}\binom{m+n-i-1}{n-i}\right.}{\rho}\right)\right]^{h_{i k}^{-1} v_{k}} \right\rvert\,\right)\right]^{p_{k}}$ for all $k \in \mathbb{N}$ and $s=\lim _{k \rightarrow \infty}\left(H \Delta_{v}^{(m)} x\right)_{k}^{\mathcal{M}, u, p}$.
Corollary 2.11. The Hilbert sequence spaces $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ are separable.
3. Characterizations of Matrix Transformation and $\alpha-, \beta-$ and γ-duals

Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers, X and Y be subsets of the sequence space w. Let $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ be two sequences. Thus, we can write $x y=\left(x_{k} y_{k}\right), x^{-1} * Y=\{a \in w: a x \in Y\}$ and $M(X, Y)=\cap_{x \in X^{-1}} * Y=\{a \in w: a x \in Y$, for all $x \in X\}$ for the multiplier space of X and Y. In the special cases of $Y=\left\{l_{1}, c s, b s\right\}$, we write $x^{\alpha}=x^{-1} * l_{1}, x^{\beta}=x^{-1} * c s, x^{\gamma}=x^{-1} * b s$ and $X^{\alpha}=M\left(X, l_{1}\right), X^{\beta}=M(X, c s)$, $X^{\gamma}=M(X, b s)$ for the α-dual, β-dual, γ-dual of X. By $A_{n}=\left(a_{n k}\right)$ we denote the sequence in the $n^{\text {th }}-$ row of A and write $A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k} \forall n \in \mathbb{N}$ and $A(x)=\left(A_{n}(x)\right)$, provided $A_{n} \in x^{\beta}$ for all n.

We shall begin with the lemmas due to Stieglitz ve Tietz [15] which will be used in the computation of the β - and γ-duals of the Hilbert sequence spaces.

Lemma 3.1. [16] Let X, Y be any two sequence spaces. $A \in\left(X: Y_{T}\right)$ if and only if $T A \in(X: Y)$, where A is an infinite matrix and T is a triangle matrix.

Lemma 3.2. (i) Let $A_{n}=\left(a_{n k}\right)$ be an infinite matrix. Then $A \in\left(c_{0}: l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty \tag{3.1}
\end{equation*}
$$

(ii) $A \in\left(c_{0}: c\right)$ if and only if (3.1) holds with

$$
\begin{equation*}
\lim _{n} a_{n k} \text { exists for all } k . \tag{3.2}
\end{equation*}
$$

(iii) $A \in\left(c_{0}: b s\right)$ if and only if

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|\sum_{n=0}^{m} a_{n k}\right|<\infty \tag{3.3}
\end{equation*}
$$

(iv) $A \in\left(c_{0}: c s\right)$ if and only if (3.3) holds with

$$
\begin{equation*}
\sum_{k} a_{n k} \text { convergent for all } k \tag{3.4}
\end{equation*}
$$

Lemma 3.3. (i) Let $A_{n}=\left(a_{n k}\right)$ be an infinite matrix. Then $A \in(c: c)$ if and only if (3.1) and (3.2) hold with

$$
\lim _{n \rightarrow \infty} \sum_{k} a_{n k} \text { exists. }
$$

(ii) $A \in\left(l_{\infty}: c\right)$ if and only if (3.2) holds with

$$
\begin{equation*}
\lim _{n} \sum_{k}\left|a_{n k}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} a_{n k}\right| . \tag{3.5}
\end{equation*}
$$

Lemma 3.4.(i) Let $A_{n}=\left(a_{n k}\right)$ be an infinite matrix. Then $A \in(c: c s)$ if and only if $(3.3),(3,4)$ hold and

$$
\begin{equation*}
\sum_{n} \sum_{k} a_{n k} \text { convergent. } \tag{3.6}
\end{equation*}
$$

(ii) $A \in\left(l_{\infty}: c s\right)$ if and only if (3.2) holds and

$$
\begin{equation*}
\lim _{m} \sum_{k}\left|\sum_{n=m}^{\infty} a_{n k}\right|=0 \tag{3.7}
\end{equation*}
$$

Lemma 3.5. [17] Let $U=\left(u_{n k}\right)$ be an infinite matrix of complex numbers for all $n, k \in \mathbb{N}$. Let $B^{U}=\left(b_{n k}\right)$ be defined via a sequence $a=\left(a_{k}\right) \in w$ and inverse of the triangle matrix $U=\left(u_{n k}\right)$ by

$$
b_{n k}=\sum_{j=k}^{n} a_{j} u_{j k}
$$

for all $n, k \in \mathbb{N}$.Then,

$$
\begin{aligned}
& X_{U}^{\alpha}=\left\{a=\left(a_{k}\right) \in w: B^{U} \in\left(X: l_{1}\right)\right\} \\
& X_{U}^{\beta}=\left\{a=\left(a_{k}\right) \in w: B^{U} \in(X: c)\right\} \\
& X_{U}^{\gamma}=\left\{a=\left(a_{k}\right) \in w: B^{U} \in\left(X: l_{\infty}\right)\right\} .
\end{aligned}
$$

Theorem 3.6. The $\alpha-, \beta$ - and γ-duals of the Hilbert sequence spaces defined as

$$
\begin{aligned}
{\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\alpha} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(c_{0}: l_{1}\right)\right\} \\
{\left[h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\alpha} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(c: l_{1}\right)\right\} \\
{\left[h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\alpha} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(l_{\infty}: l_{1}\right)\right\}, \\
{\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(c_{0}: c\right)\right\}, \\
{\left[h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta} } & =\left\{a=\left(a_{k}\right) \in w: W \in(c: c)\right\}, \\
{\left[h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(l_{\infty}: c\right)\right\}, \\
{\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\gamma} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(c_{0}: l_{\infty}\right)\right\}, \\
{\left[h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\gamma} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(c: l_{\infty}\right)\right\}, \\
{\left[h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\gamma} } & =\left\{a=\left(a_{k}\right) \in w: W \in\left(l_{\infty}: l_{\infty}\right)\right\} .
\end{aligned}
$$

Proof. We shall only compute the $\alpha-, \beta$ - and γ-duals of $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ sequence space. Let h_{n}^{-1} is defined by (2.1). Let us take any $a=\left(a_{k}\right) \in w$. We define the matrix $W=\left(w_{n k}\right)$ by

$$
w_{n k}=\sum_{k=1}^{n}\left[M_{k}\left(\frac{u_{k}\left|\sum_{i=k}^{n}\binom{m+n-i-1}{n-i} h_{i k}^{-1} a_{n} v_{n}^{-1}\right|}{\rho}\right)\right]^{p_{k}} .
$$

Consider the equation

$$
\begin{align*}
\sum_{k=1}^{n} a_{k} x_{k} & =\sum_{k=1}^{n}\left(a_{k} v_{k}^{-1}\right)\left(v_{k} x_{k}\right) \\
& =\sum_{k=1}^{n}\left[M_{k}\left(\frac{u_{k}\left|\sum_{i=1}^{k}\left\{\sum_{j=i}^{k}\binom{m+k-j-1}{k-j} h_{i j}^{-1}\right\} a_{k} v_{k}^{-1} y_{i}\right|}{\rho}\right)\right]^{p_{k}} \\
& =\sum_{k=1}^{n}\left[M_{k}\left(\frac{u_{k}\left|\sum_{i=1}^{k}\left\{\sum_{j=i}^{k}\binom{m+k-j-1}{k-j} h_{i j}^{-1} a_{i} v_{i}^{-1}\right\} y_{k}\right|}{\rho}\right)\right]^{p_{k}} \\
& =(W y)_{n} . \tag{3.8}
\end{align*}
$$

Using (3.8), we have $a x=\left(a_{k} x_{k}\right) \in \operatorname{cs}$ or bs whenever $x=\left(x_{k}\right) \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ if and only if $W y \in l_{1}, c$ or l_{∞} whenever $y=\left(y_{k}\right) \in c_{0}$. Then, from Lemma 3.1 and Lemma 3.5, we obtain that $a=\left(a_{k}\right) \in\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\alpha}$, $a=\left(a_{k}\right) \in\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta}$ or $a=\left(a_{k}\right) \in\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\gamma}$ if and only if $W \in\left(c_{0}: l_{1}\right), W \in\left(c_{0}: c\right)$ or $W \in\left(c_{0}: l_{\infty}\right)$, which is required result.

Therefore, the $\alpha-, \beta$ - and γ-duals of Hilbert sequence spaces will be helpful in the characterization of matrix transformations. Let X and Y be arbitrary subsets of w. We will show that the characterization of the classes $\left(X: Y_{T}\right)$ ve $\left(X_{T}: Y\right)$ can be reduced to (X, Y), where T is a triangle. Since if the sequence spaces $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and c_{0} are linearly isomorphic, then the equivalence class $x \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right) \Leftrightarrow y \in c_{0}$ holds. So using Lemma 3.1 and 3.5, we get the desired result.

Theorem 3.7. Let us consider the infinite matrices $A=\left(a_{n k}\right)$ and $B=\left(b_{n k}\right)$. These matrices get associated with each other by the relations:

$$
\begin{equation*}
b_{n k}=\sum_{k=1}^{n}\left[M_{k}\left(\frac{u_{k}\left|\sum_{j=k}^{\infty}\binom{m+n-j-1}{n-j} h_{j k}^{-1} a_{n j} v_{k}^{-1}\right|}{\rho}\right)\right]^{p_{k}} \tag{3.9}
\end{equation*}
$$

for all $k, m, n \in \mathbb{N}$. Then the following statements are true:
(i) $A \in\left(h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right): Y\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta}$ for all $n \in \mathbb{N}$ and $B \in\left(c_{0}, Y\right)$, where Y be any sequence space;
(ii) $A \in\left(h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right): Y\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left[h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta}$ for all $n \in \mathbb{N}$ and $B \in(c, Y)$, where Y be any sequence space;
(iii) $A \in\left(h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right): Y\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left[h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta}$ for all $n \in \mathbb{N}$ and $B \in\left(l_{\infty}, Y\right)$, where Y be any sequence space.

Proof. We suppose that the relation in (3.9) holds between $A=\left(a_{n k}\right)$ and $B=\left(b_{n k}\right)$.The spaces $h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and c_{0} are linearly isomorphic. Let $A \in\left(h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right): Y\right)$ and $y=\left(y_{k}\right) \in c_{0}$.Then $B H \Delta_{v}^{(m)}$ exists and $\left(a_{n k}\right) \in\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta}$ for all $k \in \mathbb{N}$, it means that $\left(b_{n k}\right) \in c_{0}$ for all $k, n \in \mathbb{N}$. Hence, $B y$ exists for each $y \in c_{0}$. Thus, if we take $m \rightarrow \infty$ in the equality,

$$
\sum_{k=1}^{m} a_{n k} x_{k}=\sum_{k=1}^{m}\left[M_{k}\left(\frac{\left|u_{k}\left[\sum_{i=1}^{k} \sum_{j=i}^{k}\binom{m+k-j-1}{k-j} h_{i j}^{-1}\right] a_{n k} v_{k}^{-1}\right|}{\rho}\right)\right]^{p_{k}}=\sum_{k} b_{n k} y_{k}
$$

for all $m, n \in \mathbb{N}$ which conclude that $B \in\left(c_{0}, Y\right)$. On the contrary, let $\left(a_{n k}\right)_{k \in \mathbb{N}} \in\left[h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right]^{\beta}$ for each $k \in \mathbb{N}$ and $B \in\left(c_{0}, Y\right)$ and $x=\left(x_{k}\right) \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. Then it is clear that $A x$ exists. Thus, we attain from the following equality for all $n \in \mathbb{N}$

$$
\sum_{k} b_{n k} y_{k}=\sum_{k} a_{n k} x_{k}
$$

as $m \rightarrow \infty$ that $A x=B y$ and it is easy to show that $A \in\left(h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right): Y\right)$. This completes the proof.
Theorem 3.8. Let us assume that components of the infinite matrices $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$ are connected with the following relation

$$
\begin{equation*}
e_{n k}=\sum_{k=1}^{n} \sum_{j=k}^{n} \frac{1}{n+j-1}\left[M_{k}\left(\frac{\left|u_{k} \sum_{j=k}^{n}(-1)^{j-k}\binom{m}{j-k} a_{j k} v_{k}^{-1}\right|}{\rho}\right)\right]^{p_{k}} \tag{3.10}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$ and X be any given sequence space. Then the following statements are true:
(i) $A=\left(a_{n k}\right) \in\left(X: h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right)$ if and only if $E \in\left(X: c_{0}\right)$;
(ii) $A=\left(a_{n k}\right) \in\left(X: h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right)$ if and only if $E \in(X: c)$;
(iii) $A=\left(a_{n k}\right) \in\left(X: h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)\right)$ if and only if $E \in\left(X: l_{\infty}\right)$.

Proof. Let us suppose that $z=\left(z_{k}\right) \in X$. Using the relation (3.10), we have

$$
\begin{equation*}
\sum_{k=1}^{m} e_{n k} z_{k}=\sum_{k=1}^{m}\left[\sum_{k=1}^{n} \sum_{j=k}^{n} \frac{1}{n+j-1}\left[M_{k}\left(\frac{\left|u_{k}\left[\sum_{j=k}^{n}(-1)^{j-k}\left(m_{j-k}^{m}\right) a_{j k} v_{k}^{-1}\right] z_{k}\right|}{\rho}\right)\right]^{p_{k}}\right] \tag{3.11}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$. Then, for $m \rightarrow \infty$ equation (3.11) gives us that $(E z)_{n}=\left\{H \Delta_{v}^{(m)}(A z)\right\}_{n}$. Thus, we can obtain that $A z \in h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ if and only if $E z \in c_{0}$. This completes the proof.

Now, we give some conditions:

$$
\begin{align*}
& \lim _{k} a_{n k}=0 \text { for all } n, \tag{3.12}\\
& \lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}\right|=0, \tag{3.13}\\
& \lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}-a_{n, k+1}\right|=0, \tag{3.14}\\
& \sup _{n} \sum_{k}\left|a_{n k}-a_{n, k+1}\right|<\infty, \tag{3.15}
\end{align*}
$$

$\lim _{k}\left(a_{n k}-a_{n, k+1}\right)$ exists for all k,

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}-a_{n, k+1}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty}\left(a_{n k}-a_{n, k+1}\right)\right|, \tag{3.17}\\
& \sup _{n}\left|\lim _{n \rightarrow \infty} a_{n k}\right|<\infty
\end{align*}
$$

Corollary 3.9. Let $A=\left(a_{n k}\right)$ be an infinite matrix and $X=h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), Y=h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $Z=h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. Then, the following statements hold:
(a) $A=\left(a_{n k}\right) \in\left(X, l_{\infty}\right)$ if and only if (3.1) holds with $b_{n k}$ instead of $a_{n k}$;
(b) $A=\left(a_{n k}\right) \in(X, b s)$ if and only if (3.3) holds with $b_{n k}$ instead of $a_{n k}$;
(c) $A=\left(a_{n k}\right) \in(Y, c s)$ if and only if(3.3), (3.4) and (3.6) hold with $b_{n k}$ instead of $a_{n k}$;
(d) $A=\left(a_{n k}\right) \in(Z, c)$ if and only if (3.2) and (3.5) hold with $b_{n k}$ instead of $a_{n k}$;
(e) $A=\left(a_{n k}\right) \in(Z, c s)$ if and only if (3.7) holds with $b_{n k}$ instead of $a_{n k}$;
(f) $A=\left(a_{n k}\right) \in(X, c)$ if and only if (3.1) and (3.2) hold with $b_{n k}$ instead of $a_{n k}$;
$(g) A=\left(a_{n k}\right) \in(X, c s)$ if and only if (3.3) and (3.4) holds with $b_{n k}$ instead of $a_{n k}$.
Corollary 3.10. Let $A=\left(a_{n k}\right)$ be an infinite matrix and $X=h_{0}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right), Y=h_{c}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$ and $\mathrm{Z}=h_{\infty}\left(\Delta_{v}^{(m)}, \mathcal{M}, u, p\right)$. Then, the following statements hold:
(a) $A=\left(a_{n k}\right) \in\left(l_{\infty}, X\right)$ if and only if (3.13) holds with $e_{n k}$ instead of $a_{n k}$;
(b) $A=\left(a_{n k}\right) \in(b s, X)$ if and only if (3.12) and (3.14) hold with $e_{n k}$ instead of $a_{n k}$;
(c) $A=\left(a_{n k}\right) \in(b s, Y)$ if and only if (3.12), (3.16) and (3.17) hold with $e_{n k}$ instead of $a_{n k}$;
(d) $A=\left(a_{n k}\right) \in(c s, Y)$ if and only if (3.15) and (3.2) hold with $e_{n k}$ instead of $a_{n k}$;
(e) $A=\left(a_{n k}\right) \in(b s, Z)$ if and only if (3.12) and (3.15) hold with $e_{n k}$ instead of $a_{n k}$;
(f) $A=\left(a_{n k}\right) \in(c s, Z)$ if and only if (3.15) and (3.18) hold with $e_{n k}$ instead of $a_{n k}$;
$(g) A=\left(a_{n k}\right) \in(c s, X)$ if and only if (3.2) and (3.15) hold with $e_{n k}$ instead of $a_{n k}$.

References

[1] P.V.K. Raja, A.S.N. Chakravarthy, P.S. Avadhani, A cryptosystem based on Hilbert matrix using cipher block chaining mode, arXiv preprint arxiv: 1110.1498 (2011).
[2] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981) 169-176.
[3] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow. J. Math. 21 (1995) 377-386.
[4] Ç.A. Bektaş, M. Et and R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2004) 423-432.
[5] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc., 23 (2000) 25-32.
[6] H. Polat, Some new Hilbert sequence spaces, Muş Alparslan Uni. J. Sci., 4 (2016) 367-372.
[7] M. Kirisci and H. Polat, Hilbert Matrix and difference operator order m, Facta Universitatis, Ser. Math. Inform., 34(2) (2019) 359-372. https://doi.org/10.22190/FUMI1902359K
[8] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math.,10 (1971) 379-390.
[9] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science (1989).
[10] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Ves., 49 (1997) 187-196.
[11] S.A. Mohiuddine and K. Raj, Vektor valued Orlicz-Lorentz sequence spaces and their operator ideals, J. Nonlinear Sci. Appl., 10 (2017) 338-353.
[12] K. Raj and S. Pandoh, Some generalized lacunary double Zweier convergent sequence spaces, Comment. Math., 56 (2016) $185-207$.
[13] K. Raj and C. Sharma, Applications of strongly convergent sequences to Fourier series by means of modulus functions, Acta Math. Hungar., 150 (2016) 396-411.
[14] A. Wilansky, Summability through functional analysis, North-Holland Math. Stud., 85 (1984).
[15] M. Stieglitz and H. Tietz, Matrixtransformationen von folgenräumen eine ergebnisübersicht, Mathematische Zeitschrift, 154 (1977) 1-16.
[16] F. Başar and B. Altay, On the space of sequences pf p-bounded variation and related matrix mappings, Ukranian Math. J., 55 (2003) 136-147.
[17] B. Altay and F. Başar, Certain topological properties and duals of the domain of triangle matrix in a sequence spaces, J. Math. Anal. Appl., 336 (2007) 632-645.

[^0]: 2020 Mathematics Subject Classification. 40F05; 46A45; 15B05; 40C05.
 Keywords. Orlicz function, difference operator, Hilbert matrix, matrix transformations, $\alpha-, \beta-, \gamma-$ duals.
 Received: 28 December 2022; Accepted: 05 June 2023
 Communicated by Dragan S. Djordjević
 Email addresses: damla.barlak@dicle.edu.tr (Damla Barlak), cbektas@firat.edu.tr (Çiğdem A. Bektaş)

