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Abstract. In this paper, we present sequential warped product submanifolds of locally product Riemannian
manifolds and show that there exists a class of non-trivial sequential warped product submanifolds of a
locally product Riemannian manifold of the form (Mθ ×σ1 M⊥)×σ2 MT by giving non-trivial examples. Also,
we prove some useful results for such warped products and establish Chen’s inequality which represents a
relationship between the squared norm of the second fundamental form for the warping functions σ1 and
σ2 . Further, some applications of our main result are given.

1. Introduction

In the 1960s, Bishop and O’Neill [7] introduced singly or ordinary warped product manifolds in order
to create Riemannian manifolds with negative sectional curvature. It is well-known that warped product
manifolds play an important role in differential geometry as well as in physics. Several classes of warped
product submanifolds have appeared in the last twenty years. Also, warped product submanifolds have
been studied for the different structures on manifolds, Chen’s books are useful resources for a detailed
study of warped product manifolds and warped product submanifolds [11, 12].

As a generalization of Riemannian products and warped products, Nolker in [20] defined and studied
multiply warped products. For more details, we refer to (see [13], [16], [36]). Bi-warped products are special
classes of multiply warped products and studied in almost Hermitian manifolds as well as almost contact
manifolds (for instance, see; [1], [31], [32], [34], [35], CSA22).

In [27], Shenawy introduced a new concept of warped products as sequential warped products such that
the base or fiber or both in sequential warped product are warped product itself (see [15]). Recently, Sahin
in [26] studied sequential warped product submanifolds having the factors as holomorphic submanifolds,
totally real submanifolds and pointwise slant submanifolds of Kaehler manifolds.

In this article, we study sequential warped product submanifolds which are defined by harmonizing an
invariant submanifold MT, an anti-invariant submanifold M⊥ and a proper slant submanifold Mθ of locally
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product Riemannian manifolds. We provide several useful lemmas for the proof of our main theorem.
Finally, we establish B.-Y. Chen’s inequality for the squared norm of second fundamental form of such
submanifolds. The equality case is also considered.

The paper is organized as follows: Section 2, in this section, we recall preliminaries and definitions
needed further study. In Section 3, we study sequential warped product submanifolds. In this section, we
give non-trivial examples of sequential warped product submanifolds of the form (Mθ ×σ1 M⊥)×σ2 MT such
that Mθ is a slant submanifold and M⊥ is an anti-invariant submanifold, MT is an invariant submanifold.
Some useful results are deriven in section 3 which we need to prove the main result. In Section 4, the main
result of this paper is proved. The main result is leading to several applications given in the last section.

2. Preliminaries

In this section, we give preliminaries and definitions needed for this paper. In fact, in subsection
2.1, we recall the definition of the sequential warped product manifolds. In subsection 2.2, we give the
basic background for submanifolds of Riemannian manifolds, definition of locally product Riemannian
manifolds and some classes of submanifolds.

2.1. Sequentail warped product manifolds
The formal definition of sequential warped product manifolds is given as follows:

Definition 2.1. [15] Let Mi be three pseudo-Riemannian manifolds with metrics 1i, for i = 1, 2, 3. Let σ1 : M1 →

(0,∞) and σ2 : M1 ×M2 → (0,∞) be two smooth positive functions on M1 and M1 ×M2, respectively. Then the
sequential warped product manifold, denoted by (M1×σ1 M2)×σ2 M3, is the triple product manifold M = (M1×M2)×M3
furnished with the metric tensor

1 = (11 ⊕ σ1
212) ⊕ σ2

213,

the functions σ1 and σ2 are called warping functions.

In particular, if warping functions σ1 and σ2 are constant, then M is a Riemannian product manifold; and if
σ2 is constant, then M is an ordinary warped product; if σ1 is constant, then M is a generic warped product
submanifold of order 1 (e.g. [29]), if σ2 is defined only on M1, then M is called a bi-warped product manifold
M1 ×σ1 M2 ×σ2 M3 (e.g., [1], [33]) with two fibres which is a special case of multiply warped products.

The following proposition gives the basic formula for the Levi-Civita connection of the sequential
warped products that will be used during this study.

Proposition 2.2. [15] Let M = (M1 ×σ1 M2) ×σ2 M3 be a sequential warped product manifolds with metric 1̃ =
(11 ⊕ σ1

212) ⊕ σ2
213. Then, we have

(1) ∇X1 X2 = ∇X2 X1 = X1(ln σ1)X2

(2) ∇X1 X3 = ∇X3 X1 = X1(ln σ2)X3

(3) ∇X2 X3 = ∇X3 X2 = X2(ln σ2)X3,

for each Xi ∈ Γ(TMi) , for i = 1, 2, 3.

2.2. Submanifolds of locally product Riemannian manifolds
Let M̃ be an m-dimensional Riemannian manifold with a tensor field F of type (1, 1) such that F2 = I (F ,

±I) where I denotes the identity transformation. Then we say that M̃ is an almost product manifold with
almost product structure F [37]. If an almost product manifold M̃ admits a Riemannian metric 1 such that

1(FX,FY) = 1(X,Y), 1(FX,Y) = 1(X,FY), (1)

for any vector fields X and Y on M̃, then M̃ is called an almost product Riemannian manifold. Let ∇̃ denotes
the Levi Cevita connection on M̃ with respect to 1. If (∇̃XF)Y = 0, for all X,Y ∈ Γ(TM̃), where Γ(TM̃)
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denotes the Lie algebra of vector fields in M̃, then (M̃, 1) is called a locally product Riemannian manifold
with Riemannian metric 1 [6]. Let M be a submanifold of a locally product Riemannian manifold M̃ with
induced Riemannian metric 1 and if ∇ and ∇⊥ are the induced Riemannian connections on the tangent
bundle TM and the normal bundle T⊥M of M, respectively. Then, the formulas of Gauss and Weingarten
are respectively given by

∇̃XY = ∇XY + h(X,Y), (2)

∇̃XN = −ANX + ∇⊥XN, (3)

for each X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and the
shape operator (corresponding to the normal vector field N) respectively for the immersion of M into M̃.
Furthermore, they are related by

1(h(X,Y),N) = 1(ANX,Y). (4)

Now, for any vector field X ∈ Γ(TM), we put

FX = TX + ωX, (5)

where TX and ωX are the tangential and the normal components of FX, respectively. Similarly, for any
vector field N ∈ Γ(T⊥M), we write

FN = tN + nN, (6)

where tN is the tangential component and nN is the normal component of FN. We choose a local field
of orthonormal frame {e1, . . . en, en+1, . . . em} in M̃ such that {e1, . . . en} is an orthonormal basis of the tangent
bundle TM and {en+1 . . . em} is an orthonormal basis of the normal bundle T⊥M, we have the squared norm
of the second fundamental form h is defined by

∥h∥2 =
n∑

i, j=1

1(h(ei, e j), h(ei, e j)), and hr
i j = 1

(
h(ei, e j), er

)
, (7)

where i, j = 1, . . . ,n, r ∈ {n + 1, · · · ,m}, for any p ∈M. Furthermore, for a differentiable function σ on M, we
know that ∥∇σ∥2 =

∑n
i=1(ei(σ))2, where ∇σ is the gradient of σ which is defined as 1(∇σ,X) = X(σ), for any X

tangent to M.
A submanifold M of a locally product Riemannian manifold M̃ is said to be totally umbilical submanifold

if h(X,Y) = 1(X,Y)H, for any X,Y ∈ Γ(TM), where H is the mean curvature vector field of M is given by
H = 1

n
∑n

i=1 h(ei, ei). A submanifold M is said to be totally geodesic if h(X,Y) = 0 for X,Y ∈ Γ(TM). Let D1

and D2 be any two distributions on M. Then we say that M is D1 totally geodesic, if h(X1,Y1) = 0 for all
X1,Y1 ∈ Γ(D1) and we say that D1

⊕D2-mixed geodesic if h(X1,X2) = 0 for X1 ∈ Γ(D1) and X2 ∈ Γ(D2).
By the analogy with submanifolds in a Kaehler manifold, different classes of submanifolds in a locally

product Riemannian manifold were considered.

1. A submanifold M of a locally product Riemannian manifold M̃ is said to be slant (for instance, see
[9] and [23]), if for each non-zero vector X tangent to M, the angle θ(X) between FX and TpM is a
constant, i.e., it does not depend on the choice of p ∈M and X ∈ TpM.

2. A submanifold M of a locally product Riemannian manifold M̃ is called semi-slant (see, [18] and [21]),
if it has two orthogonal distributions DT and Dθ , such that DT : p −→ DT

p ⊂ TpM is an invariant with
respect to F i.e., for any X ∈ Γ(DT), we have FX ∈ Γ(DT), and the complementary distribution Dθ is
slant, i.e., θ(X) is the angle between FX and Dθp is constant for any X ∈ Dθp and p ∈M.

3. A submanifold M of a locally product Riemannian manifold M̃ is called a semi-invariant submanifold
(see [6], [19]) [22]) of M̃ if it has two orthogonal distributions DT and D⊥ such that DT is invariant
distribution with respect to F and the orthogonal complementary distribution D⊥ is anti-invariant
with respect to F, i.e., for any X ∈ Γ(D⊥), we have FX ∈ Γ(T⊥M).
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4. A submanifold M of a locally product Riemannian manifold M̃ is said be pseudo-slant (or Hemi-slant)
(see [8] and [28]), if it has two orthogonal distributions D⊥ and Dθ such that D⊥ is anti-invariant and
Dθ is slant.
Finally, we recall the definition of skew semi-invariant (CR-slant) submanifolds from [17], as follows

Definition 2.3. [17] Let M be a submanifold of a l.p.R. manifold M̃. Then M is said to be a generic submanifold
if there exists an integer k and functions λi, i ∈ {1, . . . , k} defined on M with values in (0, 1) such that

(1) Each λ2
i (p), 1 ≤ i ≤ k is a distinct eigenvalue of T2 with

TpM = Dp ⊕D
⊥

p ⊕D
λ1
p ⊕ · · · ⊕D

λk
p ,

for any p ∈M.
(2) The dimensions of Dp, D⊥p and Dλi

p ,1 ≤ i ≤ k are independent for any p ∈M.
Moreover, if each λi is constant on M, then we say that M is a skew semi-invariant submanifold of M̃.

Definition 2.4. A submanifold M of a locally product Riemannian manifold M̃ is said to be a skew semi-
invariant submanifold of order 1, if there exist orthogonal distributions DT, D⊥ and Dθ on M such that

(i) TM = DT
⊕D⊥ ⊕Dθ.

(ii) The distribution DT is invariant, i.e. F(DT) = DT.
(iii) The distribution D⊥ is anti-invariant, i.e., FD⊥ ⊂ T⊥M.
(iv) The distribution Dθ is proper slant with slant angle θ , 0, π2 .

It is easy to see that M is a slant [23] submanifold of a locally product Riemannian manifold M̃ if and
only if there exists a constant λ ∈ [0, 1] such that

T2 = λI (8)

where I denotes the identity transformation of the tangent bundle TM of the submanifold M. Furthermore,
in this case, if θ is the slant angle of M, then λ = cos2 θ.

As a result of (8), we have the following relations

1(TX,TY) = (cos2 θ)1(X,Y),

1(ωX, ωY) = (sin2 θ)1(X,Y),

for any X,Y ∈ Γ(TM).

3. Sequential warped product submanifolds

In this section, we study the sequential warped products of a proper slant submanifold Mθ, an invariant
submanifold MT and an anti-invariant submanifold M⊥ in a locally product Riemannian manifold M̃. There
are following possible classes of sequential warped products in locally product Riemannian manifolds.

1. (MT ×σ1 M⊥) ×σ2 Mθ,
2. (Mθ ×σ1 MT) ×σ2 M⊥ ,
3. (MT ×σ1 Mθ) ×σ2 M⊥,
4. (M⊥ ×σ1 MT) ×σ2 Mθ,
5. (M⊥ ×σ1 Mθ) ×σ2 MT,
6. (Mθ ×σ1 M⊥) ×σ2 MT.

First, we verify whether the above classes of sequential warped product submanifolds do exist or not
in a locally product Riemannian manifold M̃. For this, we have the following results.

The following is an immediate result of Theorem 3.1 in [3] and Theorem 3.1 in [24].
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Corollary 3.1. There do not exist any proper sequential warped product submanifolds (MT ×σ1 M⊥) ×σ2 Mθ and
(Mθ ×σ1 MT) ×σ2 M⊥ in a locally product Riemannian manifold M̃ such that Mθ is a proper slant submanifold, M⊥

is an anti-invariant submanifold and MT is an invariant submanifold of M̃.

Also from Theorem 3.3 in [4] and Theorem 3.1 in [25], we deduce the following result.

Corollary 3.2. There do not exist any proper sequential warped product submanifolds of the types (MT×σ1 Mθ)×σ2 M⊥

and (M⊥ ×σ1 MT) ×σ2 Mθ in a locally product Riemannian manifold M̃.

Furthermore, from Theorem 3.4 in [4], we obtain the following non-existence result.

Corollary 3.3. There do not exist any proper sequential warped product submanifolds of the form (M⊥×σ1 Mθ)×σ2 MT
in a locally product Riemannian manifold M̃.

From the above results, we find that there do not exist any proper sequential warped products upto
the case 1-5 and hence, the remaining class of sequential warped products is the sixth case is of the form
(Mθ ×σ1 M⊥) ×σ2 MT and we see that such warped products exist in locally product Riemannian manifolds.

In the following examples we find the existence of proper sequential warped products of the form
(Mθ ×σ1 M⊥) ×σ2 MT.

Example 3.4. Consider the 12-Euclidean space R12 = R7
× R3

× R2 with the cartesian coordinates
(x1, x2, x3, x4, x5, x6, x7, y1, y2, y3, z1, z2) and the almost product structure given by

F
( ∂
∂xi

)
=

∂
∂xi

, F
( ∂
∂y j

)
= −

∂
∂y j

, F
( ∂
∂zk

)
=

∂
∂zk

, 1 ≤ i ≤ 7, 1 ≤ j ≤ 3, 1 ≤ k ≤ 2,

If a submanifold M of R12 is defined by the immersion

ϕ(u, v, r) = (u cos v,u sin v,u,u cos r,u sin r, v cos r, v sin r,u sin v,u cos v, v,u − r,u + r)

with u, v , 0, then its tangent space TM is spanned by the vectors X,Y and Z, where

X = cos v
∂
∂x1
+ sin v

∂
∂x2
+

∂
∂x3
+ cos r

∂
∂x4
+ sin r

∂
∂x5
+ sin v

∂
∂y1
+ cos v

∂
∂y2
+

∂
∂z1
+

∂
∂z2

,

Y = −u sin v
∂
∂x1
+ u cos v

∂
∂x2
+ cos r

∂
∂x6
+ sin r

∂
∂x7
+ u cos v

∂
∂y1
− u sin v

∂
∂y2
+

∂
∂y3

,

Z = −u sin r
∂
∂x4
+ u cos r

∂
∂x5
− v sin r

∂
∂x6
+ v cos r

∂
∂x7
−

∂
∂z1
+

∂
∂z2

.

On the other hand, if T⊥M = FD⊥⊕ωDθ⊕µ is the normal bundle of M, then T⊥M is spanned by the normal
vector fields N1, N2, N3, N4, N5, N5, N6, N7, N8 and N9 such that

N1 = FY, N2 = cos v
∂
∂x1
−

∂
∂x3
+ sin v

∂
∂y1

, N3 = −
∂
∂x1
+

∂
∂y2

,

N4 = (cos r − u sin r)
∂
∂x3
−

∂
∂x4
+ u sin r

∂
∂z1

, N5 = −(cos r + uu sin r)
∂
∂x3
+

∂
∂x4
+ u sin r

∂
∂z2

,

N6 = cos v
∂
∂x1
+ sin v

∂
∂x2
− 2

∂
∂x3
+ cos r

∂
∂x4
+ sin r

∂
∂x5

, N7 = −
∂
∂x2
+

∂
∂y2

,

N8 = sin v
∂
∂x1
− cos v

∂
∂x2
+ u cos r

∂
∂x6
+ u sin r

∂
∂x7

, N9 = sin v
∂
∂x1
− cos v

∂
∂x2
+ u

∂
∂y3

.

It is clear that FY is perpendicular to TM, thus D⊥ = Span{Y} is an anti-invariant distribution and DT =
Span{Z} is an invariant distribution. Moreover, Dθ = Span{X} is a slant distribution with slant angle
θ = cos−1( 2

3 ). Clearly, M is a CR-slant submanifold. Furthermore, each distribution is integrable. Let M⊥,
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Mθ and MT be integral manifolds of D⊥, Dθ and DT, respectively. Then the metric tensor 1 of M is given
by

ds2 = 6du2 + 2(u2 + 1)dv2 + (u2 + v2 + 2)dr2

1 = 1Mθ + σ1
21M⊥ + σ2

21MT ,

where σ1 =
√

2(u2 + 1) and σ2 =
√

u2 + v2 + 2 are warping functions defined on Mθ and Mθ ×M⊥, respec-
tively. Thus M is a sequential warped product submanifold of the form (Mθ ×σ1 M⊥) ×σ2 MT.

Example 3.5. Let M be a submanifold of the Euclidean 10-space R10 defined by

ψ(u, v,w) = (u cos v,u sin v,w sin v,w cos v, 2u,u sin w,u cos w,−w,u sin w,u cos w),

with u, v , 0 and the product structure is given by

F
( ∂
∂xi

)
= −

∂
∂xi

, F
( ∂
∂y j

)
= −

∂
∂y j

, F
( ∂
∂zk

)
=

∂
∂zk

, i = 1, . . . , 5. j = 1, 2, 3, k = 1, 2.

Then the tangent space is spanned by

Z1 = cos v
∂
∂x1
+ sin v

∂
∂x2
+ 2

∂
∂x5
+ sin w

∂
∂y1
+ cos w

∂
∂y2
+ sin w

∂
∂z1
+ cos w

∂
∂z2

,

Z2 = −u sin v
∂
∂x1
+ u cos v

∂
∂x2
+ w cos v

∂
∂x3
− w sin v

∂
∂x4

,

Z3 = sin
∂
∂x3
+ cos v

∂
∂x4
+ u cos w

∂
∂y1
− u sin w

∂
∂y2
−

∂
∂y3

u cos w
∂
∂z1
− u sin w

∂
∂z2

.

Also, the normal bundle is spanned by

W1 = cos v
∂
∂x1
+ sin v

∂
∂x2
−

∂
∂x5
+ sin w

∂
∂y1
+ cos w

∂
∂y2

,

W2 = −
∂
∂y1
+

∂
∂z1

, W3 = −
1
2
∂
∂x5
+ sin w

∂
∂y1
+ cos w

∂
∂y2

,

W4 = − sin v
∂
∂x3
− cos v

∂
∂x4
− u cos w

∂
∂y1
+ u sin w

∂
∂y2
+

∂
∂y3
+ u cos w

∂
∂z1
− u sin w

∂
∂z2

,

W5 = sin v
∂
∂x3
+ cos v

∂
∂x4
+

∂
∂y3

, W6 = − cos w
∂
∂y1
+ sin w

∂
∂y2
− u

∂
∂y3

,

W7 = − cos w
∂
∂y1
− u

∂
∂y3
+ sin w

∂
∂z2

.

Clearly, Dθ = Span{Z1} is slant distribution with slant angle θ = cos−1( 5
7 ) , D⊥ = Span{Z3} is an anti-

invariant distribution andDT = Span{Z2} is an invariant distribution. Obviously, all three distributions are
integrable. If the integral manifolds of Dθ, D⊥ and DT are Mθ, M⊥, and MT, respectively. Then, the metric
1 is given by

ds2 = 7du2 + (1 + 2u2)dw2 + (u2 + w2)dv2

1 = 1Mθ + σ1
21M⊥ + σ2

21MT .

Thus M is is a sequential warped product submanifold ofR10 of the form (Mθ ×σ1 M⊥)×σ2 MT with warping
functions σ1 =

√

1 + 2u2 and σ2 =
√

u2 + w2.
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In the following, we use conveniently the vector fields X1,Y1 are in Dθ; X2,Y2 are vector fields in D⊥

and X3,Y3 are vector fields in DT.
Now, we prove the following preparatory lemmas which are useful to prove the main result.

Lemma 3.6. Let M = (Mθ ×σ1 M⊥) ×σ2 MT be a sequential warped product submanifold of a locally product
Riemannian manifold M̃. Then we have

(i) 1(h(X1,Y1),FX2) = −1(h(X1,X2), ωY1),
(ii) 1(h(X2,Y2), ωX1) = TX1(ln σ1)1(X2,Y2) − 1(h(X1,X2),FY2),

(iii) 1(h(X2,X3),FY2) = −1(h(Y2,X3),FX2) = 0,

for each X1,Y1 ∈ Γ(Dθ), X2,Y2 ∈ Γ(D⊥) and X3 ∈ Γ(DT).

Proof. For any vector fields X1,Y1 ∈ Γ(Dθ) and X2 ∈ Γ(D⊥), we have

1(h(X1,Y1),FX2) = 1(∇̃X1 Y1,FX2) = 1(∇̃X1 FY1,X2).

Using (5), Proposition 2.2 (1) and (3), we get

1(h(X1,Y1),FX2) = −X1(ln σ2)1(TY1,X2) − 1(AωY1 X1,X2).

Using the orthogonality of vector fields of Dθ and D⊥, we find

1(h(X1,Y1),FX2) = −1(h(X1,X2), ωY1),

which is (i). For (ii), from (2) and (5), we have

1(h(X2,Y2), ωX1) = 1(∇̃X2 Y2,FX1) − 1(∇̃X2 Y2,TX1) = 1(∇̃X2 FY2,X1) + 1(Y2,∇X2 TX1).

Then, (3), (4) and Proposition 2.2 (1) imply that

1(h(X2,Y2), ωX1) = −1(h(X1,X2),FY2) + TX1(ln σ1)1(X2,Y2)

which gives (ii). For the third part, we have

1(h(X2,X3),FY2) = 1(∇̃X2 X3,FY2) = 1(∇̃X2 FX3,Y2) = X2(ln σ2)1(FX3,Y2) = 0,

which is the second equality of (iii). Furthermore, we find

1(h(X2,X3),FY2) = 1(∇̃X3 X2,FY2) = 1(∇̃X3 FX2,Y2) = −1(AFX2 X3,Y2) = −1(h(Y2,X3),FX2),

which proves the first equality of (iii). Hence, the proof is complete.

Lemma 3.7. Let M = (Mθ ×σ1 M⊥) ×σ2 MT be a sequential warped product submanifold of a locally product
Riemannian manifold M̃. Then, we have

(i) 1(h(X1,X3), ωY1) = −1(h(Y1,X3), ωX1) = 0,
(ii) 1(h(X1,X3),FX2) = −1(h(X2,X3), ωX1) = 0,

for any X1,Y1 ∈ Γ(Dθ), X2 ∈ Γ(D⊥) and X3 ∈ Γ(DT) .

Proof. From (2), (5) and Proposition 2.2, we find

1(h(X1,X3), ωY1) = 1(∇̃X1 FX3,Y1) − 1(∇̃X1 X3,TY1)
= X1(ln σ2)1(FX3,Y1) − X1(ln σ2)1(X3,TY1) = 0,
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which is the second equality of (i). Similarly, we have

1(h(X1,X3), ωY1) = 1(∇̃X3 TX1,Y1) + 1(∇̃X3ωX1,Y1) − 1(∇̃X3 X1,TY1)
= TX1(ln σ2)1(X3,Y1) − 1(h(Y1,X3), ωX1) − X1(ln σ2)1(X3,TY1),

By orthogonality of two distribution, we get from the above relation the first equality of (i). In a similar
fashion, we find

1(h(X1,X3),FX2) = 1(∇̃X1 FX3,X2) = X1(ln σ2)1(FX3,X2) = 0,

which is the second equality of (ii). On the other hand,

1(h(X1,X3),FX2) = 1(∇̃X3 TX1,X2) + 1(∇̃X3ωX1,X2) = TX1(ln σ2)1(X2,X3) − 1(AωX1 X3,X2).

Hence, by the orthogonality of vector fields and from (4), we get the first equality of (ii). Hence, the proof
is complete.

Lemma 3.8. Let M = (Mθ ×σ1 M⊥) ×σ2 MT be a sequential warped product submanifold of a locally product
Riemannian manifold M̃. Then we have

(i) 1(h(X3,Y3),FX2) = −X2(ln σ2)1(X3,FY3),
(ii) 1(h(X3,Y3), ωX1) = −X1(ln σ2)1(X3,FY3) + TX1(ln σ2)1(X3,Y3),

for X1 ∈ Γ(Dθ), X2 ∈ Γ(D⊥) and X3,Y3 ∈ Γ(DT).

Proof. The first part simply implies from (2) and Proposition 2.2. For (ii), again using (2) and (5), we have

1(h(X3,Y3), ωX1) = 1(∇̃X3 Y3 − ∇X3 Y3,FX1 − TX1) = −1(FY3, ∇̃X3 X1) − 1(∇̃X3 Y3,TX1).

Then, from Proposition 2.2, we derive

1(h(X3,Y3), ωX1) = −X1(ln σ2)1(X3,FY3) + TX1(ln σ2)1(X3,Y3)

which is (ii) and hence the lemma is proved completely.

Proposition 3.9. There is no proper sequential warped product submanifold in a locally product Riemannian manifold
M̃ of the form (Mθ ×σ1 M⊥) ×σ2 MT, where Mθ is slant submanifold and M⊥ is anti-invariant submanifold, MT is
invariant submanifold of M̃ if and only if h(DT,DT) ⊥ FD⊥.

Proof. follows from Lemma 3.8 (i).

Proposition 3.10. There does not exist any proper sequential warped product submanifold in a locally product
Riemannian manifold M̃ of the form (Mθ ×σ1 M⊥) ×σ2 MT if and only if h(DT,DT) ⊥ ωDθ.

Proof. Suppose that h(DT,DT) ⊥ ωDθ, which means that

1(h(X3,Y3), ωX1) = 0

for any X1 ∈ Γ(Dθ) and X3 ,Y3 ∈ Γ(DT), using that fact in Lemma 3.8 (ii), we find that

TX1(ln σ2) 1(X3,Y3) = X1(ln σ2) 1(X3,FY3). (9)

Interchanging X1 by TX1 and Y3 by FY3 in (9) and using (8) and (1), we obtain

cos2 θX1(ln σ2) 1(X3,FY3) = TX1(ln σ2) 1(X3,Y3). (10)

Then, from (9) and(10), we derive

sin2 θX1(ln σ2) 1(X3,FY3) = 0,

Since Mθ is proper slant and 1 is Riemannian metric we obtain X1(ln σ2) = 0, hence σ2 is constant, the
converse follows directly.

From Proposition 3.9, Proposition 3.10, and Lemma 3.8, we have the following result.

Theorem 3.11. For a non-trivial proper sequential warped product of the form (Mθ ×σ1 M⊥) ×σ2 MT in a locally
product Riemannian manifold M̃: the components of second fundamental form h(DT,DT) neither orthogonal to both
FD⊥ and ωDθ nor M is DT totally geodesic.
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4. B.-Y. Chen’s inequality for Sequential warped products

In this section, we prove the Chen’s first inequality for the squared norm of the second fundamental
form in terms of the warping functions of a sequential warped product submanifold (Mθ ×σ1 M⊥)×σ2 MT in
a locally product Riemannian manifold.

For this, let M = (Mθ ×σ1 M⊥)×σ2 MT be an n-dimensional sequential warped product submanifold of an
m-dimensional locally product Riemannian manifold M̃ with dim(Mθ) = q, dim(MT) = p and dim (M⊥) = r,
and we denote the tangent bundles of M⊥, MT and Mθ byD⊥,DT andDθ, respectively. The tangent bundles
TM and the normal bundle T⊥M are decomposed by

TM = D⊥ ⊕DT
⊕Dθ, T⊥M = FD⊥ ⊕ ωDθ ⊕ µ

Then we choose a local orthonormal frame of TM is {e1, ..., en}, such that the orthonormal frames of D⊥, DT

and Dθ, respectively are given by

D⊥ = Span{e1, · · · , er}, D
T = Span {er+1 = ẽ1 = Fẽ1, · · · , er+k = ẽk = Fẽk, er+k+1 = ẽk+1 = −Fẽk+1, · · · ,

er+p = ẽp = −Fẽp}, D
θ = Span{er+p+1 = ê1 = secθTê1, · · · , en = êq = secθTêq}.

Then, the orthonormal frame fields of the normal subbundle of FD⊥, ωDθ and µ, respectively are

FD⊥ = Span{en+1 = e∗1 = Fe1, · · · , en+r = e∗r = Fer},

ωDθ = Span{en+r+1 = e∗r+1 = cscθωê1, · · · , en+r+q = e∗r+q = cscθωêq}

µ = Span{er+n+q+1 = e∗r+q+1, · · · , em = e∗m−n−r−q}.

Now, we are able to establish the main result of this section as follows.

Theorem 4.1. Let M = (Mθ ×σ1 M⊥) ×σ2 MT be a Dθ ⊕D⊥ mixed geodesic sequential warped product submanifold
in a locally product Riemannian manifold M̃ where Mθ, M⊥ and MT are proper slant, anti-invariant and invariant
submanifolds of M̃, respectively. Then, the second fundamental form h satisfies

∥h∥2 ≥ r cot2 θ
∥∥∥∇θ ln σ1

∥∥∥2 + p
∥∥∥∇⊥ ln σ2

∥∥∥2 + p csc2 θ(1 − cosθ)2
∥∥∥∇θ ln σ2

∥∥∥2 (11)

where r = dim (M⊥), p = dim(MT) and ∇θ ln σi is the gradient of ln σi along Mθ , for i = 1, 2 and ∇⊥ ln σ2 is the
gradient of ln σ2 along M⊥.

Moreover, the equality in (11) holds identically if and only if

(i) Mθ ×σ1 M⊥ is totally geodesic in M̃ and MT is totally umbilical in M̃.

(ii) M is also Dθ ⊕DT and D⊥ ⊕DT mixed geodesic but not DT totally geodesic in M̃.

Proof. From (7), we have

∥h∥2 =
n∑

i, j=1

1(h(ei, e j), h(ei, e j)) =
m∑

k=n+1

n∑
i, j=1

1(h(ei, e j), ek)2.
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since M is Dθ ⊕D⊥ mixed geodesic and using the frame fields of DT, D⊥, Dθ , FD⊥, ωDθ and µ , we derive

∥h∥2 =
r∑

k=1

q∑
i, j=1

1(h(êi, ê j),Fek)2 +

q∑
i, j,k=1

1(h(êi, ê j), ωêk)2 csc2 θ +

q∑
i, j=1

m∑
k=r+n+q+1

1(h(êi, ê j), ek)2 (12)

+

r∑
i, j,k=1

1(h(ei, e j),Fek)2 +

r∑
i, j=1

q∑
k=1

1(h(ei, e j), ωêk)2 csc2 θ +

q∑
i, j=1

m∑
k=r+n+q+1

1(h(ei, e j), ek)2

+

r∑
k=1

p∑
i, j=1

1(h(ẽi, ẽ j),Fek)2 +

p∑
i, j=1

q∑
k=1

1(h(ẽi, ẽ j), ωêk)2 csc2 θ +

q∑
i, j=1

m∑
k=r+n+q+1

1(h(ẽi, ẽ j), ek)2

+ 2
r∑

k=1

p∑
i=1

q∑
j=1

1(h(ẽi, ê j),Fek)2 + 2
p∑

i=1

q∑
j,k=1

1(h(ẽi, ê j), ωêk)2 csc2 θ + 2
p∑

i=1

q∑
j=1

m∑
k=r+n+q+1

1(h(ẽi, ê j), ek)2

+ 2
r∑

j,k=1

p∑
i=1

1(h(ẽi, e j),Fek)2 + 2
r∑

j=1

p∑
i=1

q∑
k=1

1(h(ẽi, e j), ωêk)2 csc2 θ + 2
r∑

j=1

p∑
i=1

m∑
k=r+n+q+1

1(h(ẽi, e j), ek)2.

By leaving the µ-components terms in the right hand side and using Lemma 3.6, Lemma 3.7 and Lemma
3.8 with the hypothesis of theorem, we obtain

∥h∥2 ≥ csc2 θ
r∑

i, j=1

q∑
k=1

[
Têk(ln σ1)1(ei, e j)

]2
+

r∑
k=1

p∑
i, j=1

[
− ek(ln σ2)1(ẽi,Fẽ j)

]2
+ csc2 θ

p∑
i, j=1

q∑
k=1

[
− êk(ln σ2)1(ẽi,Fẽ j) + Têk(ln σ2)1(ẽi, ẽ j)

]2
.

Then, from the frame fields of Dθ we have êk = secθTêk, for k = 1, · · · , q, then Têk = cosθêk the above
expression takes the form

∥h∥2 ≥ csc2 θ
r∑

i, j=1

q∑
k=1

[
Têk(ln σ1)1(ei, e j)

]2
+

r∑
k=1

p∑
i, j=1

[
− ek(ln σ2)1(ẽi,Fẽ j)

]2
+ csc2 θ

p∑
i, j=1

q∑
k=1

[
− êk(ln σ2)1(ẽi,Fẽ j) + Têk(ln σ2)1(ẽi, ẽ j)

]2
and using gradient definition, we arrive at

∥h∥2 ≥ r cot2 θ∥∇θ ln σ1∥
2 + p∥∇⊥ ln σ2∥

2 + p csc2 θ ∥∇θ ln σ2∥
2(1 − cosθ)2.

which is inequality (11). For the equality case, from the leaving µ-components, we get

h(TM,TM) ⊥ µ. (13)

From Lemma 3.6 (i) and leaving the second term in (11), we get

h(Dθ,Dθ) ⊥ FD⊥, h(Dθ,Dθ) ⊥ ωDθ. (14)

Then from (13) and (14), we obtain

h(Dθ,Dθ) = {0}. (15)
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Also, from Lemma 3.7 (i) and (iii), we obtain

h(Dθ,DT) ⊥ FD⊥, h(Dθ,DT) ⊥ ωDθ. (16)

Thus, from (13) and (16), we have

h(Dθ,DT) = {0}. (17)

From Lemma 3.6 (iii) and Lemma 3.7 (ii), we derive

h(D⊥,DT) = {0}. (18)

Since M is Dθ ⊕D⊥ mixed geodesic, we get

h(Dθ,D⊥) = {0}. (19)

Also, from Theorem 3.11, we have

h(DT,DT) , {0}. (20)

From ([7],[10]), we have Mθ ×σ1 M⊥ is totally geodesic in M, then Mθ is also totally geodesic in M [7], using
this fact with (15), (17) and (19), we conclude that Mθ ×σ1 M⊥ is totally geodesic in M̃. Also, since MT is
totally umbilical in M with Theorem 3.11 and (13), (17), (18) we observe that MT is a totally umbilical in
M̃, which is (i). On the other hand, all conditions together with (17) and (18) imply that M is Dθ ⊕DT and
D⊥ ⊕DT mixed geodesic and M isDθ totally geodesic but from (20) M is notDT, which is (ii). The converse
of equality follows directly from the assumptions. Hence, the proof of the theorem is complete.

5. Some Applications of the main result

W have the following consequences of Theorem 4.1:

If σ2 is constant on M⊥, then M becomes bi-warped product, which has been discussed in [1]. In this
case Theorem 4.1 provide the following result:

Theorem 5.1. Let M = Mθ ×σ1 M⊥ ×σ2 MT be a bi-warped product submanifold of a locally product Riemannian
manifold M̃ such that M is D⊥ ⊕Dθ -mixed geodesic. Then

(i) The second fundamental form h and the warping functions σ1 and σ2 of M satisfy

∥h∥2 ≥ r cot2 θ ∥∇θ(ln σ1)∥2 + p csc2 θ (1 − cosθ)2
∥∇

θ(ln σ2)∥2 (21)

where r = dim M⊥, p = dim MT and ∇θ(ln σi) is gradient of ln σi, i = 1, 2.
(ii) If equality sign in (i) holds identically, then Mθ is a totally geodesic submanifold of M̃ and M⊥ and MT are

totally umbilical submanifolds of M̃ with their mean curvature vectors−∇θ(ln σ1) and−∇θ(ln σ2), respectively;
M is also a D ⊕D⊥-mixed geodesic submanifold of M̃.

Therefore, Theorem 4.1 extended to Theorem 6 in [1] which is Theorem 5.1.
If Mθ = {0}, then M = M⊥ ×σ2 MT is a warped product semi-invariant submanifold and studied in [24]

and [5]. Hence, Theorem 4.1 implies that

Theorem 5.2. Let M =M⊥×σ2 MT be a semi-invariant warped product submanifold of a locally product Riemannian
manifold M̃. Then, the squared norm of the second fundamental form of M satisfies

∥h∥2 ≥ p
∥∥∥∇⊥(ln σ2)

∥∥∥2 , (22)

where ∇⊥(ln σ2) is the gradient of ln σ2 and p is the dimension of MT. If the equality sign holds identically, then, M⊥

is totally geodesic submanifold of M̃ and M is mixed geodesic. Moreover, M is never a minimal submanifold of M̃.
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Hence, Theorem 5.2 is a special case of Theorem 4.1 which is Theorem 4.2 in [24] and Theorem 4.1 in [5].
If dim M⊥ = 0, then M changes to a warped product semi-slant submanifold of the form M =Mθ×σ2 MT,

studied in [4], [25] and [2]. In this case Theorem 4.1 has the following form:

Theorem 5.3. Let M = Mθ ×σ2 MT be a proper warped product semi-slant submanifold of a locally product Rie-
mannian manifold M̃, then the squared norm of the second fundamental form of the warped product immersion
satisfies

∥h∥2 ≥ p(cscθ − cotθ)2
∥∇

θ ln σ2∥
2,

where p = dim MT and∇θ ln σ2 is gradient of the function ln σ2 along Mθ. If the equality sign in (i) holds identically,
then Mθ is totally geodesic in M̃ and MT is a totally umbilical submanifold of M̃. Furthermore, Mθ×σ2 MT is a mixed
geodesic submanifold of M̃.

The above inequality shows that Theorem 4.1 generalizes the main result Theorem 3.1 of [2].
If dim MT = 0, then the sequential warped product changes to warped product pseudo-slant submani-

fold of the form M =Mθ ×σ1 M⊥, which we studied in [30], in this case Theorem 4.1 gives:

Theorem 5.4. [30] Let M = Mθ ×σ1 M⊥ be a mixed geodesic warped product pseudo-slant submanifold of a locally
product Riemannian manifold M̃. Then, we have:
The squared norm of the second fundamental form h of M satisfies

||h||2 ≥ r cot2 θ||∇θ ln σ1||
2,

where r = dim M⊥ and ∇θ ln σ1 is the gradient of ln σ1 along Mθ.

As a result, Theorem 5.1 of [30] is a special case of Theorem 4.1.

Acknowledgement. The authors are thankful to the editors and the anonymous referees for their valuable
suggestions and constructive comments for improving the quality and the presentation of this paper in the
present form.
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