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Abstract. In this paper, we study characterization of sequential warped product gradient Ricci-Bourguignon
soliton. We derive applications of some vector fields like torse-forming vector field, torqued vector field,
conformal vector field on Ricci-Bourguignon soliton. We show that for torse-forming vector field, a Ricci-
Bourguignon soliton becomes an almost quasi-Einstein manifold. Next, we obtain the inheritance proper-
ties of the Einstein-like sequential warped product gradient Ricci-Bourguignon almost soliton of class type
P,A,B. We prove that, when the manifold is complete, the potential function depends only on M1 and M3

must be an Einstein manifold. We also present for a gradient Ricci-Bourguignon soliton sequential warped
product, the warping functions are constants under some certain conditions.

1. Introduction

The concept of warped products was introduced by O’Neill and Bishop to build Riemannian manifolds
with negative sectional curvature [4]. The study of warped products provides some important insights in
differential geometry as well as in the field of physics, since warped product space-time models are used to
obtain exact solutions to Einstein’s equation [1, 2, 17]. Let (B, 1B) and (F, 1F) be two Riemannian manifolds
with dim B = m > 0, dimF = k > 0 and f : B −→ (0,∞), f ∈ C∞(B). Consider the product manifold B × F
with its projections π : B × F→ B and σ : B × F→ F. The warped product B × f F is the manifold B × F with
the Riemannian structure such that ||X||2 = ||π∗(X)||2 + f 2(π(p))||σ∗(X)||2, for any vector field X on M. Thus
we have 1M = 1B + f 21F holds on M. Here B is called the base of M and F the fiber. The function f is called
the warping function of the warped product [17].
In 2015, S. Shenawy introduced a new class of warped product manifolds, namely sequential warped prod-
ucts where the base factor of the warped product is itself a new warped product manifold [20]. Sequential
warped products can be considered as a generalization of singly warped products. Let (Mi, 1 j) i = 1, 2, 3
be three Riemannian manifolds. Let f : M1 → (0,∞) and h : M1 ×M2 → (0,∞) be two smooth positive
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functions on M1 and M1 ×M2 respectively. Then the sequential warped product manifold, denoted by
(M1× f M2)×h M3, is the triple product manifold (M1×M2)×M3,with the metric tensor 1̄ = (11⊕ f 212)⊕h213.
The functions f and h are called warping functions.
Let (Mi, 1i), i = 1, 2 be two ni-dimensional Riemannian manifolds. Let f̄ : M1 × M2 → (0,∞) and
f : M1 → (0,∞) be two smooth positive functions. Then (n1 + n2 + 1)-dimensional product manifold
I ×h (M1 × f M2), with the metric tensor 1̄ = −h2dt2

⊕ (11 ⊕ f 212) is a standard static space-time, where I is an
open, connected subinterval ofR, and dt2 is the Euclidean metric tensor on I. Also (n1+n2+1)-dimensional
product manifold Ih× (M1× f M2),with the metric tensor 1̄ = −dt2

⊕h2(11⊕ f 212) is a generalized Robertson-
Walker space-time, where I is an open, connected subinterval of R, h : I → (0,∞) and f : M1 → (0,∞) are
smooth functions, and dt2 is the Euclidean metric tensor on I.

Ricci solitons, which are important geometric partial differential equation highlighted in many fields of
theoretical research and practical applications, are a natural generalization of the Einstein manifolds. In
1979, the idea of the Ricci-Bourguignon flow (or RB flow) as a generalization of Ricci flow was developed
by Jean-Pierre Bourguignon [5] using some unpublished work of Lichnerowicz and a paper of Aubin [3].
The Ricci-Bourguignon flow is an evolution equation for metrics on a Riemannian manifold given by

∂
∂t
1(t) = −2(Ric − Rρ1), (1)

where ρ ∈ R is a constant, Ric is the Ricci curvature and R is the scalar curvature of the Riemannian metric
1. It should be observed that the right hand side of the evolution equation (1) is of special interest for special
values of ρ in particular [10].
1. ρ = 1

2 , the Einstein tensor Ric − R
2 1 (Einstein soliton).

2. ρ = 1
n , the traceless Ricci tensor Ric − R

2 1.
3. ρ = 1

2(n−1) , the Schouten tensor Ric − R
2 1 (Schouten soliton).

4. ρ = 0, the Einstein tensor Ric (Ricci soliton).

In [10], S. Dwivedi introduced the notions of Ricci-Bourguignon and Ricci-Bourguignon almost solitons,
which generalize the Ricci and almost Ricci solitons, respectively. In the paper, the author explained integral
formulas for compact gradient Ricci-Bourguignon solitons and compact gradient Ricci-Bourguignon almost
solitons. Using the integral formula he observed that a compact gradient Ricci-Bourguignon almost soliton
is isometric to an Euclidean sphere under a certain condition.
A Riemannian manifold (M, 1) is called a Ricci-Bourguignon soliton (or RB soliton) if there exists a smooth
vector field V satisfying the following equation

Ric +
1
2

£V1 = (µ + Rρ)1, (2)

for some real constant µ and the Lie derivative £V1. Ricci-Bourguignon soliton appears as a self-similar
solution to Ricci-Bourguignon flow and often arises as a limit of dilation of singularities in the Ricci-
Bourguignon flow [6]. The Ricci-Bourguignon soliton is said to be shrinking, steady or expanding if µ is
positive, zero or negative, respectively.

If the vector field V is the gradient of a smooth function f , then (M, 1) is called a gradient Ricci-Bourguignon
soliton and equation (2) becomes

∇∇ f + Ric = (µ + Rρ)1. (3)

A Riemannian manifold (M, 1) is called a Ricci-Bourguignon almost soliton (or RB almost soliton) if there
exists a smooth vector field V and a soliton function µ : M → R such that the Ricci tensor Ric satisfies the
following equation

Ric +
1
2

£V1 = (µ + Rρ)1. (4)
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The Ricci-Bourguignon almost soliton is called shrinking, steady or expanding if µ is positive, zero or neg-
ative, respectively. A Ricci-Bourguignon almost soliton is said to be a gradient Ricci-Bourguignon almost
soliton if V = ∇ f for some smooth function f on M.

Motivated by the above studies, the first aim of this paper is to give a classification for Ricci-Bourguignon
solitons with torse-forming vector field, torqued vector field, conformal vector field. Secondly, we obtain
some geometric properties of the Einstein-like sequential warped product gradient Ricci-Bourguignon al-
most soliton of class type P,A,B. Finally We also characterize the warping functions of sequential warped
product with gradient Ricci-Bourguignon soliton.

2. Some vector fields on Ricci-Bourguignon soliton

In this section we investigate applications of some vector fields like torse-forming vector field, torqued
vector field, conformal vector field on Ricci-Bourguignon soliton. We begin by defining certain terms and
developing certain propositions that will lay the groundwork for the exposition that follows.

Definition 2.1 : A vector field τ on a Riemannian or pseudo Riemannian manifold M is called torse-
forming if for any vectors X ∈ χ(M) it satisfies [16, 21]

∇Xτ = ϕX + ψ(X)τ, (5)

where ϕ is a function, ψ is a 1-form, ∇ is Levi-Civita connection on M.
The vector field τ is called concircular [22] if the 1-form ψ vanishes identically in the above equation.

Definition 2.2: On a Riemannian or pseudo-Riemannian manifold a nowhere zero vector field τ is called a
torqued vector field if it satisfies [7]

∇Xτ = φX + α(X)τ, α(τ) = 0. (6)

The function φ is called the torqued function and the 1-form α is called the torqued form of τ.

Definition 2.3 : A vector field τ on a (pseudo) Riemannian manifold M with metric 1 called a conformal
vector field [9] if

£τ1 = 2ϕ1, (7)

for a smooth function ϕ ∈ C∞(M). In particular, τ is called conformal killing if ϕ = 0.

Definition 2.4 : A pseudo Riemannian manifold (M, 1) is called an almost quasi-Einstein manifold if

S = a1 + b(β ⊗ γ + γ ⊗ β), (8)

where a, b are functions and β, γ are 1-forms.

Proposition 2.5 : If the smooth vector field of a Ricci-Bourguignon soliton is a torse-forming τ, then (M, 1)
is an almost quasi-Einstein manifold.
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Proof: Let (M, 1, ξ, λ) be a Ricci-Bourguignon soliton where the smooth vector field ξ is a torse-forming τ.
From the definition of Lie-derivative we have

(£τ1)(X,Y) = 1(∇Xτ,Y) + 1(X,∇Yτ). (9)

Using (6) in (9) we obtain

(£τ1)(X,Y) = 1(ϕX + α(X)τ,Y) + 1(X, ϕY + α(Y)τ)
= 1(ϕX,Y) + α(X)1(τ,Y) + 1(ϕY,X) + α(Y)1(X, τ)
= 2ϕ1(X,Y) + α(X)1(τ,Y) + α(Y)1(τ,X), (10)

for any vector fields X,Y tangent to M.
Combining (2) and (10) we have

2(µ + ρR)1(X,Y) − S(X,Y) = 2ϕ1(X,Y) + α(X)1(τ,Y) + α(Y)1(τ,X),

which gives

S(X,Y) = [(µ + ρR) − ϕ]1(X,Y) −
1
2
α(X)1(τ,Y) −

1
2
α(Y)1(τ,X). (11)

If we denote the dual 1-form of τ by γ, then from (11) we get

S = [(µ + ρR) − ϕ]]1 −
1
2

[α ⊗ γ + γ ⊗ α]. (12)

Hence (M, 1) is an almost quasi-Einstein manifold.

Note 2.6 : If the smooth vector field of a Ricci-Bourguignon soliton is a torqued vector field τ, then
(M, 1) is an almost quasi-Einstein manifold.

Corollary 2.7 : If the smooth vector field of a Ricci-Bourguignon soliton is a concircular vector field τ,
then (M, 1) becomes an Einstein manifold.

Corollary 2.8 : If the smooth vector field of a Ricci-Bourguignon soliton is a conformal vector field τ,
then (M, 1) becomes an Einstein manifold.

3. Einstein-Like Sequential warped product and gradient Ricci-Bourguignon soliton

In [8] and [12], many authors have explored the geometric properties of sequential warped product
manifolds which are the natural generalizations of singly warped products. The existence of Einstein
sequential warped product manifolds has been studied in [18]. In [14] F.Karaca, C. Özgür have studied
on quasi-Einstein sequential warped product manifolds. In this section, we will study the inheritance
properties of the Einstein-like sequential warped product manifolds of class type P, A,B [19] inspired by
the above studies of sequential warped product manifolds.

Now we consider the following proposition 3.1 from [20] and proposition 3.2 from [11] , which will be
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helpful to prove our main results of this section.

Proposition 3.1 : Let M̄ = (M1× f M2)×h M3 be a sequential warped product with metric 1 = (11⊕ f 212)⊕h213
and also let Xi,Yi,Zi ∈ χ(Mi). Then
(i) R̄ic(X1,Y1) = Ric1(X1,Y1) − n2

f H f
1 (X1,Y1) − n3

h Hh(X1,Y1),
(ii)) R̄ic(X2,Y2) = Ric2(X2,Y2) − f 212(X2,Y2) f ∗ − n3

h Hh(X2,Y2),
(iii) R̄ic(X3,Y3) = Ric3(X3,Y3) − h213(X3,Y3)h∗,
(iv) R̄ic(Xi,Y j) = 0, i , j,

where n1 = dimM1, n2 = dimM2,n3 = dimM3, f ∗ = ∆
1 f
f + (n2 − 1) |∇

1 f |2

f 2 and h∗ = ∆h
h + (n1 + n2 − 1) |∇h|2

h2 .

Proposition 3.2 : Let M = (M1 × f M2) ×h M3 be a sequential warped product endowed with the met-
ric 1 = (11 ⊕ f 212) ⊕ h213. If (M, 1) is a gradient Ricci-Bourguignon soliton, then the potential function ψ
depends on (M1, 11).

Class A: A sequential warped product is called Einstein-like sequential warped product of class A if
the Ricci tensor satisfies

(∇XRic)(Y,Z) + (∇YRic)(X,Z) + (∇ZRic)(X,Y) = 0,

for any vector fields X,Y,Z ∈ χ(M). The above equation is equivalent to

(∇XRic)(X,X) = 0, (13)

for any vector field X ∈ χ(M) and and the Ricci tensor is also called cyclic parallel.

Class B: A sequential warped product is called Einstein-like sequential warped product of class B if
the Ricci tensor satisfies

(∇XRic)(Y,Z) − (∇YRic)(X,Z) = 0,

for any vector fields X,Y,Z ∈ χ(M). The Ricci tensor is called Codazzi tensor.

Class P: A sequential warped product is called Einstein-like sequential warped product of class P if the
Ricci tensor satisfies

(∇XRic)(Y,Z) = 0,

for any vector fields X,Y,Z ∈ χ(M).Then M is called Ricci symmetric.

Theorem 3.3 : In a sequential warped product manifold M = (M1 × f M2) ×h M3 where M is of class type
A. Then (a) (M1, 11) is an Einstein-like manifold of class A iff n2h(∇1

X1
H f )(X1,X1) + n3 f (∇1

X1
Hh)(X1,X1) =

hn2X1(ln f )H f (X1,X1) + n3 f X1(ln h)Hh(X1,X1).
(b) (M2, 12) is an Einstein-like manifold of classA iff (∇2

X2
Hh)(X2,X2) = X2(ln h)Hh(X2,X2).

Proof. Let M = (M1 × f M2) ×h M3 be a sequential warped product of classA. So

0 = (∇XRic)(X,X). (14)

Taking X = X1 and using proposition 3.1 (i) we obtain

0 = X1[Ric1(X1,X1) −
n2

f
H f (X1,X1) −

n3

h
Hh(X1,X1)

− 2[Ric1(∇1
X1

X1,X1) +
2n2

f
H f (∇1

X1
X1,X1) +

2n3

h
Hh(∇1

X1
X1,X1).
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This implies

0 = (∇1
X1

Ric1)(X1,X1) +
n2(X1 f )

f 2 H f (X1,X1) +
n3(X1h)

h2 Hh(X1,X1)

−
n2

f
(∇1

X1
H f )(X1,X1) −

n3

h
(∇1

X1
Hh)(X1,X1). (15)

Then we derive

n2(X1 f )
f 2 H f (X1,X1) +

n3(X1h)
h2 Hh(X1,X1) =

n2

f
(∇1

X1
H f )(X1,X1) +

n3

h
(∇1

X1
Hh)(X1,X1).

Hence we get the result.

For part (b), taking X = X2 in the equation (14) and using proposition 3.1 (ii) we obtain

0 = X2[Ric2(X2,X2) − f ∗12(X2,X2) −
n3

h
Hh(X2,X2)

− 2[Ric2(∇2
X2

X2,X2) − f ∗12(∇2
X2

X2,X2) −
n3

h
Hh(∇2

X2
X2,X2), (16)

where f ∗ = ∆
1 f
f + (n2 − 1) |∇

1 f |2

f 2 .
Thus we get

0 = (∇2
X2

Ric2)(X2,X2) +
n3(X2h)

h2 Hh(X2,X2)

−
n3

h
(∇2

X2
Hh)(X2,X2). (17)

Hence we get the result.

Proposition 3.4 : Let M = (M1 × f M2) ×h M3 be a sequential warped product gradient Ricci-Bourguignon
almost soliton with potential function ψ. If (Mi, 1i), i = 1, 2 is of class type A. Then (∇i

Xi
Hψ)(Xi,Xi) =

(Xiµ)1i(Xi,Xi).
Proof : Let M = (M1 × f M2) ×h M3 be a sequential warped product gradient Ricci-Bourguignon almost
soliton of classA. Then we obtain

0 = (∇i
Xi

Rici)(Xi,Xi).

Hence we have

0 = X1[(µ + ρR)1i(Xi,Xi) − (Hψ)(Xi,Xi)]
− 2[(µ + ρR)1i(∇i

Xi
Xi,Xi) − (Hψ)(∇i

Xi
Xi,Xi)].

Thus we derive
0 = (∇i

Xi
Hψ)(Xi,Xi) − (Xiµ)1i(Xi,Xi).

This completes the proof.

Theorem 3.5 : In a sequential warped product manifold M = (M1 × f M2) ×h M3 where M is of class type B.
Then
(a) (M1, 11) is an Einstein-like manifold of classA iff

n2h[(∇1
X1

H f )(Y1,Z1) − (∇1
Y1

H f )(X1,Z1)] + n3 f [(∇1
X1

Hh)(Y1,Z1) − (∇1
Y1

Hh)(X1,Z1)]

= hn2[X1(ln f )H f (Y1,Z1)

− Y1(ln f )H f (X1,Z1)] + f n3[X1(ln h)Hh(Y1,Z1) − Y1(ln h)Hh(X1,Z1)].
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(b) (M2, 12) is an Einstein-like manifold of class B iff

n2[(∇2
X2

Hh)(Y2,Z2) − (∇2
Y2

Hh)(X2,Z2)] = n3[X2(ln h)Hh(Y2,Z2) − Y2(ln h)Hh(X2,Z2)].

Proof. Let M = (M1 × f M2)×h M3 be a sequential warped product of class . Let us take the deviation tensor
B(X,Y,Z) as follows

B(X,Y)Z = (∇XRic)(Y,Z) − (∇YRic)(X,Z). (18)

We consider X = X1, Y = Y1, Z = Z1 and then we have

B(X1,Y1)Z1 = (∇X1 Ric)(Y1,Z1) − (∇Y1 Ric)(X1,Z1). (19)

Firstly we derive (∇X1 Ric)(Y1,Z1) as

(∇X1 Ric)(Y1,Z1) = X1Ric(Y1,Z1) − Ric(∇X1 Y1,Z1) − Ric(∇X1 Z1,Y1). (20)

Using proposition 3.1 (i) we obtain

(∇X1 Ric)(Y1,Z1) = (∇1
X1

Ric1)(Y1,Z1) +
n2(X1 f )

f 2 H f (Y1,Z1)

+
n3(X1h)

h2 Hh(Y1,Z1) −
n2

f
(∇1

X1
H f )(Y1,Z1)

−
n3

h
(∇1

X1
Hh)(Y1,Z1). (21)

By exchanging X1 and Y1 in the last equation (21) we get the deviation tensor. For Einstein-like manifolds
of class B, the deviation tensor vanishes from which we get the result (a).

For part (b), taking X = X2, Y = Y2 and Z = Z2 in the equation (18) and using proposition 3.1 (ii) we
obtain the result.

Proposition 3.6 : Let M = (M1 × f M2) ×h M3 be a sequential warped product gradient Ricci-Bourguignon
almost soliton with potential function ψ. If (Mi, 1i), i = 1, 2 is of class type B. Then (∇i

Yi
Hψ)(Xi,Zi) −

(∇i
Xi

Hψ)(Yi,Zi) = (Yiµ)1i(Xi,Zi) − (Xiµ)1i(Yi,Zi).
Proof : Let M = (M1 × f M2) ×h M3 be a sequential warped product gradient Ricci-Bourguignon almost
soliton of class B. Now we obtain

(∇i
Xi

Rici)(Yi,Zi) = Xi[(µ + ρR)1i(Yi,Xi) −Hψ(Yi,Zi)]

− [(µ + ρR)1i(∇i
Xi

Yi,Zi) −Hψ(∇i
Xi

Yi,Zi)]

− [(µ + ρR)1i(∇i
Xi

Zi,Yi) −Hψ(∇i
Xi

Zi,Yi)]. (22)

After simplification we get

(∇i
Xi

Rici)(Yi,Zi) = (Xiµ)1i(Yi,Zi) − (∇i
Xi

Hψ)(Yi,Zi) (23)

Similarly we have

(∇i
Yi

Rici)(Xi,Zi) = (Yiµ)1i(Xi,Zi) − (∇i
Yi

Hψ)(Xi,Zi) (24)

By these two equations (23) and (24) we obtain the result.
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Corollary 3.7 : In a sequential warped product manifold M = (M1 × f M2) ×h M3 where M is of class
type P. Then (a) (M1, 11) is an Einstein-like manifold of classA iff

n2h[(∇1
X1

H f )(Y1,Z1)] + n3 f [(∇1
X1

Hh)(Y1,Z1)]

= hn2[X1(ln f )H f (Y1,Z1)] + f n3[X1(ln h)Hh(Y1,Z1)].

(b) (M2, 12) is an Einstein-like manifold of class B iff

n2[(∇2
X2

Hh)(Y2,Z2)] − n3[X2(ln h)Hh(Y2,Z2)] = 0.

Corollary 3.8 : Let M = (M1 × f M2) ×h M3 be a sequential warped product gradient Ricci-Bourguignon
almost soliton with potential function ψ. If (Mi, 1i), i = 1, 2 is of class type P. Then Then (∇i

Xi
Hψ)(Yi,Zi) −

(Xiµ)1i(Yi,Zi) = 0.

4. Ricci-Bourguignon soliton on Sequential warped product

In this section we are proving some interesting result to characterize the warping functions of sequential
warped product with gradient Ricci-Bourguignon soliton.

Let M be a gradient Ricci-Bourguignon soliton sequential warped product with a potential function ψ
as the lift of a smooth function on M1. Let ϕ̃ = ϕ ◦ π be the lift of a smooth function ϕ on M1. By [13], we
get ψ = ϕ̃. Now, we have the following proposition.

Now, we state a lemma whose detailed proof is given in [15].

Lemma 4.1 : Let f be a smooth function on a Riemannian manifold M1, then for any vector X, the di-
vergence of the Hessian tensor H f satisfies

div(H f )(X) = Ric(∇ f ,X) − ∆(d f )(X), (25)

where ∆ = dδ + δd denotes the Laplacian on M1 acting on differential forms.

Theorem 4.2 : Let M = (M1 × f M2) ×h M3 be a complete sequential warped product with the metric with
the metric tensor 1̄ = (11 ⊕ f 212) ⊕ h213 where f : M1 → (0,∞) and h : M1 ×M2 → (0,∞) are two smooth
positive functions on M1 and M1 × M2 respectively, . If (M, 1̄) is a sequential warped product gradient
Ricci-Bourguignon soliton, then M3 is an Einstein manifold.

Proof : Let M = (M1 × f M2) ×h M3 be a complete sequential warped product with the potential func-
tion ψ : M1 → R which depends only on theM1 and if X3,Y3 ∈ χ(M3) , then from Lemma 4.1 we have

R̄ic(X3,Y3) = Ric3(X3,Y3) − h213(X3,Y3)
∆h
h
+ (n1 + n2 − 1)

|∇h|2

h2 . (26)

From (1) we obtain

R̄ic(X3,Y3) +Hψ(X3,Y3) = (µ + Rρ)1̄(X3,Y3). (27)
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Using (26) in (27) we have

Ric3(X3,Y3) − h213(X3,Y3)
∆h
h
+ (n1 + n2 − 1)

|∇h|2

h2 +Hψ(X3,Y3) = (µ + Rρ)h213(X3,Y3). (28)

Also we have

∇X3 (∇1̄ψ) =
(∇1M1

ψ)(h)

h
X3. (29)

Therefore

H1̄ψ(X3,Y3) =
(∇1M1

ψ)(h)

h
1̄(X3,Y3)

= h213(X3,Y3)
(∇1M1

ψ)(h)

h
.

So,

H1̄ψ(X3,Y3) = h(∇1M1
ψ)(h)1M3 (X3,Y3). (30)

Then putting the value of (30) in the equation (28) we derive

Ric3(X3,Y3) = ω13(X3,Y3),

where ω = (µ + Rρ)h2
− h(∇M1ψ)(h) + h∆(h) + (n1 + n2 − 1)|∇h|2. Hence the proof is completed.

Theorem 4.3 : Let M = (M1 × f M2) ×h M3 be a complete sequential warped product with the metric
with the metric tensor 1̄ = (11⊕ f 212)⊕h213 where f : M1 → (0,∞) and h : M1×M2 → (0,∞) are two smooth
positive functions on M1 and M1 ×M2 respectively and ϕ be a smooth function on M1 so that (M, 1̄) is a
sequential warped product gradient Ricci-Bourguignon soliton with the potential function ψ = ϕ̄, then
(i)

Ric1(X1,Y1) = (µ + Rρ)11(X1,Y1) −HM1
ϕ(X1,Y1) +

n2

f
H f

1 (X1,Y1)

+
n3

h
Hh(X1,Y1),

(ii)

Ric2(X2,Y2) = (µ + Rρ) f 212(X2,Y2) −HM1
ϕ(X2,Y2) + f 212(X2,Y2)[

∆1 f
f

+ (n2 − 1)
|∇

1 f |2

f 2 ] +
n3

h
Hh(X2,Y2),

(iii)

Ric3(X3,Y3) = ω13(X3,Y3),

where ω = (µ + Rρ)h2
− h(∇M1ψ)(h) + h∆(h) + (n1 + n2 − 1)|∇h|2.

Proof : For Xi,Yi,Zi ∈ χ(Mi), from proposition 3.1 we have
(i) R̄ic(X1,Y1) = Ric1(X1,Y1) − n2

f H f
1 (X1,Y1) − n3

h Hh(X1,Y1),

(ii)) R̄ic(X2,Y2) = Ric2(X2,Y2) − f 212(X2,Y2)[∆
1 f
f + (n2 − 1) |∇

1 f |2

f 2 ] − n3
h Hh(X2,Y2),

(iii) R̄ic(X3,Y3) = Ric3(X3,Y3) − h213(X3,Y3)[∆h
h + (n1 + n2 − 1) |∇h|2

h2 ].
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Using (1) and the fact HM
ψ(Xi,Yi) = HM1

ϕ(Xi,Yi) for i = 1, 2 we obtain
(i) Ric1(X1,Y1) = (µ + Rρ)11(X1,Y1) −HM1

ϕ(X1,Y1) + n2
f H f

1 (X1,Y1) + n3
h Hh(X1,Y1),

(ii) Ric2(X2,Y2) = (µ + Rρ) f 212(X2,Y2) −HM1
ϕ(X2,Y2) + f 212(X2,Y2)[∆

1 f
f + (n2 − 1) |∇

1 f |2

f 2 ] + n3
h Hh(X2,Y2).

Since we are assuming ψ = ϕ̃, the proof of (iii) is the same as in Theorem 4.2.

Theorem 4.4 : Let M = (M1
n1 × f M2

n2 ) ×h M3
n3 , n2,n3 > 1 be a gradient Ricci-Bourguignon soliton se-

quential warped product with smooth function ϕ on M1 satisfying the condition d(µ+Rρ)ϕ+ 1
2 |∇ϕ|

2
−∆ϕ =

n2
f 2∇ϕ( f )d f + ∇ϕ(h)dh + n1n2

f h ∇h f − 1
2 n1ρdR.

(i) If n2(µ+Rρ) f 2 + n2(n2 − 1)|∇ f |2 + n2( f∆ f )− n2 f∇ϕ f = c1, c1 being constant and h reaches both maximum
and minimum with µ ≤ −Rρ then h is a constant function on M1 ×M2.
(ii) If n3(µ+Rρ)h2 + n3(n3 − 1)|∇h|2 + n3(h∆h)− n2h∇ϕh = c2, c2 being constant and f reaches both maximum
and minimum with µ ≤ −Rρ then f is a constant function on M1.

Proof : Taking the trace of Proposition 3.1 (i) we get

r1 = n1(µ + Rρ) − ∆ϕ +
n2

f
∆ f +

n3

h
∆h, (31)

where r1 is the scalar curvature of (M1, 1M1 ). Thus from the equation (31) we have

dr1 = −d(∆ϕ) −
n2

f 2 (d f∆ f ) +
n2

f
d(∆ f ) −

n3

h
(dh∆h) +

n3

h
(∆h) + (ρdRn1)

From Bianchi second identity we have
dr1 = 2div(Ric1)

div(Ric1) = −div(∇2ϕ) + n2div(
∇

2
1 f
f

) + n3div(
∇

2h
h

).

We know that
div(∇2ϕ)(X) = Ric(∇ϕ,X) + d(∆ϕ)(X),

and
1
2
|∇ϕ|2(X) = ∇2(∇ϕ,X).

∴ div(Ric1)(X) = −Ric1(∇ϕ,X) − d(∆ϕ)(X) +
n2

f
Ric1(∇1 f , x) +

n2

f
∆(d f )(X)

−
n2

2 f 2 d|∇1 f |2(X) +
n3

h
Ric1(∇h,X) +

n3

h
∆(dh)(X)

−
n3

2h2 d(|∇h|2)(X). (32)

Again we have

Ric1(∇ϕ,X) = (µ + ρR)dϕ(X) +
n2

f
((∇1)2 f )(∇ϕ, x) +

n3

h
(∇2h)(∇ϕ,X)

−
1
2

d(|∇ϕ|2)(X), (33)

Ric1(∇ f ,X) = (µ + ρR)d f (X) +
n2

2 f
d(|∇ f |2)(X) +

n3

h
(∇2h)(∇ f ,X)

− (∇2ϕ)(∇ f ,X), (34)
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and

Ric1(∇h,X) = (µ + ρR)dh(X) +
n2

f
∇

2 f (∇h, x) +
n3

2h
d(|∇h|2)(X)

− (∇2ϕ)(∇h,X). (35)

Putting these equations (33), (34), (35) in (32) we obtain

div(Ric1)(X) = −(µ + ρR)dϕ(X) −
n2

f
(∇2

1 f )(∇ϕ,X) −
n3

h
(∇2h)(∇ϕ,X)

+
1
2

d(|∇ϕ1|
2)(X) +

n2

f
[(µ + ρR)d f (X) +

n2

2 f
d(|∇ f |2)(X) +

n3

h
(∇2h)(∇ f ,X)

− (∇2ϕ)(∇ f ,X)] +
n2

f
∆(d f )(X) −

n2

2 f 2 d(|∇ f |2)(X) +
n3

h
[(µ + ρR)dh(X)

+
n2

f
∇

2 f (∇h,X) +
n3

2h
d(|∇h|2)(X) − (∇2ϕ)(∇h,X)] +

n3

h
∆(dh)(X)

−
n3

2h2 d(|∇h|2)(X). (36)

We know that

d(∇ϕ( f ))(X) = (∇2ϕ)(∇ f ,X) + (∇2 f )(∇ϕ,X). (37)

Putting the equation (37) in (36) we obtain

div(Ric1)(X) = −(µ + ρR)(dϕ)(X) +
1
2

d(|∇ϕ|2)(X) − ∆(dϕ)(X) +
n2

f
(µ + ρR)(d f )(X)

+
n2

2

2 f 2 d(|∇ f |2)(X) −
n2

f
d(|∇ϕ|)(X) +

n2n3

f h
d(∇h( f ))(X)

+
n3

h
(µ + ρR)(dh)(X) +

n2
3

2h2 d(|∇h|2)(X) −
n3

h
d(∇ϕ(h))(X)

+
n2

f
∆(d f )(X) −

n2

2 f 2 d(|∇ f |2)(X) +
n3

h
∆(dh)(X)

−
n3

2h2 d(|∇h|2)(X). (38)

The equation (38) implies that

0 = [−(µ + ρR)dϕ(X) +
1
2

d(|∇ϕ|2)(X) −
1
2

d(∆ϕ)(X) −
n2

f
d(∇ϕ( f ))(X) −

n3

h
d(∇ϕ(h))(X)]

+
n2n3

f h
(∇h( f )(X)) + [

n2

f
(µ + ρR)d f (X) +

n2
2 − n2

2 f 2 d(|∇ f |2)(X) +
n2

2 f
∆(d f )(X)

+
n2

2 f 2 (d f )(∆ f )(X)] + [
n3

h
(µ + ρR)dh(X) +

n2
3 − n3

2h2 d(|∇h|2)(X) +
n3

2h
∆(dh)(X)

+
n3

2h2 (dh)(∆h)(X)] −
1
2
µdR(X)n1. (39)

Using the given condition

d(µ + Rρ)ϕ +
1
2
|∇ϕ|2 − ∆ϕ =

n2

f 2∇ϕ( f )d f + ∇ϕ(h)dh +
n1n2

f h
∇h f −

1
2
ρdRn1,

we have

0 =
1
f 2 d[n2(µ + ρR)( f 2)(X) + (n2

2 − n2)|∇ f |2(X) + n2( f∆ f )(X) − n2 f∇ϕ( f )(X)]

+
1
h2 d[n3(µ + ρR)(h2)(X) + (n2

3 − n3)|∇h|2(X) + n3(h∆h)(X) − n3h f∇ϕ(h)(X)].
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Case 1 : If n2(µ + Rρ) f 2 + n2(n2 − 1)|∇ f |2 + n2( f∆ f ) − n2 f∇ϕ f = c1, c1 being constant then we obtain

n3(µ + Rρ)h2 + n3(n3 − 1)|∇h|2 + n3(h∆h) − n2h∇ϕh = υ, (40)

where υ is constant.
Let (p1, q1), (p2, q2) ∈M1 ×M2 be the points where h attains its maximum and minimum in M1 ×M2. Then

∇h(p1, q1) = 0 = ∇h(p2, q2)

and
∆h(p1, q1) ≤ 0 ≤ ∆h(p2, q2).

Since h > 0 and µ < −Rρ we have

−(µ + Rρ)h2(p1, q1) ≥ −(µ + Rρ)h2(p2, q2).

From the equation we have

0 ≥ h(p1, q1)∆h(p1, q1) = υ − (µ + Rρ)h2(p1, q1) ≥ υ − (µ + Rρ)h2(p2, q2) = h(p2, q2)∆h(p2, q2) ≥ 0.

This implies
υ − (µ + Rρ)h2(p1, q1) = (µ + Rρ)h2(p2, q2)

Hence we get h is constant on M1 ×M2 when µ < −Rρ.
For µ = −Rρ we obtain that υ = 0.
The equation (40) reduces to

∆h − ∇ϕ(h) =
1
h

(1 − n3)|∇h|2 ≤ 0.

Therefore, h is constant on M1 ×M2 by the strong maximum principle.

Case 2 : If n3(µ + Rρ)h2 + n3(n3 − 1)|∇h|2 + n3(h∆h) − n2h∇ϕh = c2, c2 being constant then we obtain

n2(µ + Rρ) f 2 + n2(n2 − 1)|∇ f |2 + n2( f∆ f ) − n2 f∇ϕ f = τ, (41)

where τ is constant.
Similarly, it can be shown that f is constant on M1 by the strong maximum principle.

Conclusion : Sequential warped product comprise an important topic in Differential Geometry. Soli-
tons are the natural extension of the Einstein’s metric. We have done applications of some vector fields
on Ricci-Bourguignon soliton. Gradient Ricci-Bourguignon soliton are natural generalization of Einstein
manifold. We have characterized that the warping functions are constants for sequential warped product
gradient Ricci-Bourguignon soliton. The paper brings new ideas on the geometry of the manifold.

Acknowledgments : The authors wish to express their sincere thanks and gratitude to the referee for
the valuable suggestions towards the improvement of the paper.
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