Filomat 37:27 (2023), 9287–9297 https://doi.org/10.2298/FIL2327287K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Strong convergence theorems and a projection method using a balanced mapping in Hadamard spaces

Yasunori Kimura^a, Tomoya Ogihara^a

^aDepartment of Information Science, Toho University, Miyama, Funabashi, Chiba 274–8510, Japan

Abstract. In this paper, we prove a strong convergence theorem generated iterative of Halpern type using a balanced mapping of a countable family of nonexpansive mappings. Further, we propose a projection method with balanced mappings.

1. Introduction

Let *H* be a Hilbert space, *C* a nonempty subset of *H*, and *T* a nonexpansive mapping of *C* into itself. The problem of finding a fixed point of *T* is one of the most important problems in nonlinear analysis. In 2008, Takahashi et al. proposed a strong convergence theorem, which is called *the shrinking projection method*.

Theorem 1.1 (Takahashi et al. [10]). Let H be a Hilbert space, C a nonempty closed convex subset of H, T a nonexpansive mapping such that $\mathcal{F}(T) \neq \emptyset$, and $\{\alpha_n \mid n \in \mathbb{N}\} \subset [0, a] \subset [0, 1[$. For a point $x \in H$ chosen arbitrarily, generate a sequence $\{x_n\}$ and a sequence $\{C_n\}$ of sets by $x_1 \in C$, $C_0 = C$ and

 $y_n = \alpha_n x_n + (1 - \alpha_n) T x_n;$ $C_n = \{ z \in C \mid ||z - y_n|| \le ||z - x_n|| \} \cap C_{n-1};$ $x_{n+1} = P_{C_n} x$

for each $n \in \mathbb{N}$, where P_K is the metric projection of C onto a nonempty closed convex subset K of C. Then, $\{x_n\}$ converges strongly to $P_{\mathcal{F}(T)}x \in C$.

On the other hand, as another type of strongly convergent sequence to a fixed point, Kimura et al. proposed the following projection method in a Hilbert space in 2011. It is called *the combining projection method*.

Theorem 1.2 (Kimura et al. [8]). Let *C* a nonempty closed convex subset *C* of a Hilbert space and T_j a nonexpansive mapping of *C* into itself for $j \in \{1, 2, ..., N\}$ such that $\bigcap_{i=1}^{N} \mathcal{F}(T_i) \neq \emptyset$. Put $I_N = \{1, 2, ..., N\}$. Let $\{\alpha_n \mid n \in \mathbb{N}\} \subset \mathbb{N}$

²⁰²⁰ Mathematics Subject Classification. Primary 47H09;

Keywords. Hadamard space, balanced mapping, nonexpansive mapping, fixed point, Halpern type iteration, metric projection Received: 20 January 2023; Accepted: 26 April 2023

Communicated by Erdal Karapınar

Email addresses: yasunori@is.sci.toho-u.ac.jp (Yasunori Kimura), 6522005o@st.toho-u.jp (Tomoya Ogihara)

 $[0,1], \left\{\beta_n^j \mid j \in I_N, n \in \mathbb{N}\right\} \subset [0,1] \text{ such that } \sum_{j \in I_N} \beta_n^j = 1 \text{ for } n \in \mathbb{N}, \left\{\gamma_{n,k} \mid n,k \in \mathbb{N}, k \le n\right\} \text{ such that } \sum_{k=1}^n \gamma_{n,k} = 1$ for $n \in \mathbb{N}$, and $\{\delta_n \mid n \in \mathbb{N}\} \subset [0, 1]$. Define a sequence $\{x_n\}$ by $u, x_1 \in C$ and

$$y_{n}^{j} = \alpha_{n} x_{n} + (1 - \alpha_{n}) T_{j} x_{n} \text{ for } j \in I_{N};$$

$$C_{n}^{j} = \left\{ z \in C \mid ||z - y_{n}^{j}|| \leq ||z - x_{n}|| \right\} \text{ for } j \in I_{N};$$

$$v_{n,k}^{j} = P_{C_{k}^{j}} x_{n} \text{ for } k \in \{1, 2, ..., n\} \text{ and } j \in I_{N};$$

$$w_{n,k} = \sum_{j \in I_{N}} \beta_{k}^{j} v_{n,k}^{j} \text{ for } k \in \{1, 2, ..., n\};$$

$$x_{n+1} = \delta_{n} u + (1 - \delta_{n}) \sum_{k=1}^{n} \gamma_{n,k} w_{n,k}$$

for each $n \in \mathbb{N}$, where P_K is the metric projection of H onto a nonempty closed convex subset K of H. Suppose the following conditions hold:

- (a) $\liminf_{n\to\infty} \alpha_n < 1;$
- (b) $\beta_n^j > 0$ for all $j \in I_N$;
- (c) $\lim_{n\to\infty} \gamma_{n,k} > 0$ for all $k \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \sum_{k=1}^{n} |\gamma_{n+1,k} \gamma_{n,k}| < \infty$; (d) $\lim_{n\to\infty} \delta_n = 0$, $\sum_{n=1}^{\infty} \delta_n = \infty$ and $\sum_{n=1}^{\infty} |\delta_{n+1} \delta_n| < \infty$.

Then, $\{x_n\}$ converges strongly to $P_{\bigcap_{i=1}^N \mathcal{F}(T_i)}u$.

We can prove this theorem by using the following result for a countable family of nonexpansive mapping in a Banach space.

Theorem 1.3 (Aoyama et al. [1]). Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux *differentiable,* C a nonempty closed convex subset of E, $\{\alpha_n \mid n \in \mathbb{N}\} \subset [0, 1], \{\beta_n^k \mid k, n \in \mathbb{N}, k \leq n\} \subset [0, 1]$ such that $\sum_{k=1}^{n} \beta_n^k = 1$ for $n \in \mathbb{N}$, and S_k a nonexpansive mapping of C into itself for $k \in \mathbb{N}$ such that $\bigcap_{k=1}^{\infty} \mathcal{F}(S_k) \neq \emptyset$. Define $\{x_n\}$ by $x_1, u \in C$ and

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) \sum_{k=1}^n \beta_n^k S_k$$

for each $n \in \mathbb{N}$. Suppose the following conditions hold:

- (a) $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{n=1}^{\infty} \sum_{k=1}^{n} |\alpha_{n+1} \alpha_n| < \infty$; (b) $\lim_{n\to\infty} \beta_n^k > 0$ for $k \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \sum_{k=1}^{n} |\beta_{n+1}^k \beta_n^k| < \infty$.

Then, $\{x_n\}$ converges strongly to Qu, where Q is sunny nonexpansive retraction of E onto $\bigcap_{k=1}^{\infty} \mathcal{F}(S_k)$.

Huang and Kimura generalized Theorem 1.2 to the setting of Hadamard space [6]. In this result, they repeatedly use a usual convex combination between two points to construct the convex combination among three or more points. There is another approach to take a convex combination among such points; a notion of balanced mapping.

In this paper, we propose a convergence theorem generated by a Halpern type iterative sequence using a balanced mapping of a countable family of nonexpansive mappings. We apply this result to a new method using a balanced mapping of nonexpansive mappings in a Hadamard space, which is similar to [6]. It is different from the method proposed in [7]. In Section 2, we introduce a Hadamard space and a balanced mapping of nonexpansive mappings. In Section 3, we prove a convergence theorem generated by a Halpern iterative sequence using a balanced mapping of a countable family of nonexpansive mappings in a Hadamard space. In Section 4, we propose a projection method using a nonexpansive mapping and prove a convergence theorem.

2. Preliminaries

Let (X, d) be a metric space, and T a mapping of X into itself. The set of all fixed points of T is denoted by $\mathcal{F}(T)$. Let $\{x_n\}$ be a bounded sequence of X. An element $x_0 \in X$ is said to be an *asymptotic center of* $\{x_n\} \subset X$ if the following equality holds:

 $\limsup_{n\to\infty} d(x_n, x_0) = \inf_{x\in X} \limsup_{n\to\infty} d(x_n, x).$

A sequence $\{x_n\} \subset X$ is said to be Δ -*convergent to* $x_0 \in X$ if x_0 is a unique asymptotic center of all subsequences of $\{x_n\}$. It is denoted by $x_n \stackrel{\Delta}{\longrightarrow} x_0$. We say a mapping T is *nonexpansive* if for $x, y \in X$, it follows that $d(Tx, Ty) \leq d(x, y)$. If a mapping T is nonexpansive and $\mathcal{F}(T) \neq \emptyset$, it is closed convex. Further, a mapping T is called Δ -*demiclised* if for every $\{x_n\} \subset X$ satisfying $x_n \stackrel{\Delta}{\longrightarrow} x_0 \in X$ and $\lim_{n\to\infty} d(x_n, Tx_n) = 0$, it follows that $x_0 \in \mathcal{F}(T)$. We know that if a mapping T is nonexpansive, it is Δ -demiclosed.

Let $x, y \in X$ and γ_{xy} a mapping of [0, d(x, y)] into X. A mapping γ_{xy} is said to be *a geodesic with endpoints* x and y if $\gamma_{xy}(0) = x$, $\gamma_{xy}(d(x, y)) = y$ and $d(\gamma_{xy}(s), \gamma_{xy}(t)) = |s - t|$ for all $s, t \in [0, d(x, y)]$. X is called *a unique geodesic space* if for all $x, y \in X$, there exists a unique geodesic with endpoints x and y. The image of the geodesic with endpoints x and y is denoted by Im γ_{xy} . For $x, y \in X$ and $t \in [0, 1]$, there exists $z \in \text{Im } \gamma_{xy}$ such that d(x, z) = (1 - t)d(x, y) and d(y, z) = td(x, y), which is denoted by $z = tx \oplus (1 - t)y$.

Let *X* be a unique geodesic space and $x, y, z \in X$. Then, *a geodesic triangle of vertices* x, y, z is defined by $\operatorname{Im} \gamma_{xy} \cup \operatorname{Im} \gamma_{yz} \cup \operatorname{Im} \gamma_{zx}$, which is denoted by $\Delta(x, y, z)$. For $x, y, z \in X$, *a comparison triangle* to $\Delta(x, y, z) \subset X$ of vertices $\bar{x}, \bar{y}, \bar{z} \in \mathbb{E}^2$ is defined by $\operatorname{Im} \gamma_{\bar{x}\bar{y}} \cup \operatorname{Im} \gamma_{\bar{y}\bar{z}} \cup \operatorname{Im} \gamma_{\bar{z}\bar{x}}$ with $d(x, y) = d_{\mathbb{E}^2}(\bar{x}, \bar{y}), d(y, z) = d_{\mathbb{E}^2}(\bar{y}, \bar{z})$ and $d(z, x) = d_{\mathbb{E}^2}(\bar{z}, \bar{x})$, which is denoted by $\overline{\Delta}(\bar{x}, \bar{y}, \bar{z})$. A point $\bar{p} \in \operatorname{Im} \gamma_{\bar{x}\bar{y}}$ is called *a comparison point of* $p \in \operatorname{Im} \gamma_{xy}$ if $d(x, p) = d_{\mathbb{E}^2}(\bar{x}, \bar{p})$. A unique geodesic space *X* is called a CAT(0) space if for all $x, y, z \in X$, $p, q \in \Delta(x, y, z)$ and their comparison points $\bar{p}, \bar{q} \in \overline{\Delta}(\bar{x}, \bar{y}, \bar{z})$, it follows that $d(p, q) \leq d_{\mathbb{E}^2}(\bar{p}, \bar{q})$. A complete CAT(0) space is called *a Hadamard space*. In a CAT(0) space, the following lemmas hold:

Lemma 2.1 (Bačák [2]). Let X be a CAT(0) space, $x, y, z \in X$ and $t \in [0, 1]$. Then the following holds:

$$d(tx \oplus (1-t)y, z)^2 \le td(x, z)^2 + (1-t)d(y, z)^2 - t(1-t)d(x, y)^2.$$

Lemma 2.2 (He et al. [5]). Let X be a Hadamard space and $\{x_n\}$ a bounded sequence of X such that $x_n \stackrel{\Delta}{\rightarrow} x \in X$. Then $d(u, x) \leq \liminf_{n \to \infty} d(u, x_n)$ for $u \in X$.

Let *X* be a Hadamard space and put $I_N = \{1, 2, ..., N\}$. Let T_k a nonexpansive mapping of *X* into itself for $k \in I_N$ and $\{\alpha^k \mid k \in I_N\} \subset [0, 1]$ with $\sum_{k \in I_N} \alpha^k = 1$. Then *a balanced mapping U of* T_k is defined by

$$Ux = \operatorname{Argmin}_{y \in X} \sum_{k \in I_N} \alpha^k d(T_k x, y)^2$$

for all $x \in X$; see [4].

Theorem 2.3 (Hasegawa and Kimura [4]). Let X be a Hadamard space. Put $I_N = \{1, 2, ..., N\}$. Let T_k a nonexpansive mapping for all $k \in I_N$ such that $\bigcap_{k \in I_N} \mathcal{F}(T_k)$ is nonempty and $\{\alpha^k : k \in I_N\} \subset [0, 1]$ such that $\sum_{k \in I_N} \alpha^k = 1$. Define U: $X \to X$ by

$$Ux = \operatorname{Argmin}_{y \in X} \sum_{k \in I_N} \alpha^k d(T_k x, y)^2$$

for all $x \in X$. Then the following hold:

- (a) *U* is single-valued and nonexpansive;
- (b) $\mathcal{F}(U) = \bigcap_{k \in I_M} \mathcal{F}(T_k);$

(c) the inequality

$$\sum_{k=1}^{N} \alpha^{k} d(T_{k}x, Ux)^{2} \leq \sum_{k=1}^{N} \alpha^{k} d(T_{k}x, y)^{2} - d(Ux, y)^{2}$$

holds for $x, y \in X$.

The following lemma is important to prove a convergence theorem generated by a Halpern's iterative method using a balanced mapping of a countable family of nonexpansive mappings:

Lemma 2.4 (Aoyama et al. [1]). Let $\{s_n\}$ be a sequence of nonnegative real numbers, $\{\alpha_n\}$ a sequence of [0, 1] with $\sum_{n=1}^{\infty} \alpha_n = \infty$, $\{u_n\}$ a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} u_n < \infty$ and $\{t_n\}$ a real numbers with $\limsup_{n\to\infty} t_n \le 0$. Suppose that $s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n t_n + u_n$ for all $n \in \mathbb{N}$. Then $\lim_{n\to\infty} s_n = 0$.

3. A convergence theorem with balanced mappings

In this section, we generate a Halpern type iterative sequence using a balanced mapping of a countable family of nonexpansive mappings and prove the convergence theorem. We first show the properties of a balanced mapping of a countable family of nonexpansive mappings:

Lemma 3.1. Let X be a Hadamard space, T_k a nonexpansive mapping of X into itself for $k \in \mathbb{N}$ with $\bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \neq \emptyset$, $\{\alpha^k \mid k = 1, 2, ..., n\} \subset [0, 1]$ and $\{\beta^k \mid k = 1, 2, ..., n+1\} \subset [0, 1]$ such that $\sum_{k=1}^n \alpha^k = \sum_{k=1}^{n+1} \beta^k = 1$. Put

$$Ux = \operatorname{Argmin}_{y \in X} \sum_{k=1}^{n} \alpha^{k} d(T_{k}x, y)^{2} \text{ and } Vx = \operatorname{Argmin}_{y \in X} \sum_{k=1}^{n+1} \beta^{k} d(T_{k}x, y)^{2}$$

for all $x \in X$. Then the inequality

$$d(Ux, Vx) \le 4d(x, z) \sum_{k=1}^{n} \left| \beta^k - \alpha^k \right|$$

holds for all $x \in X$ and $z \in \bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$.

Proof. Let $x \in X$. If Ux = Vx, we get the result obviously. Suppose $Ux \neq Vx$. Let $t \in [0, 1[$. By Lemma 2.1, we get

$$\sum_{k=1}^{n} \alpha^{k} d(T_{k}x, Ux)^{2} \leq \sum_{k=1}^{n} \alpha^{k} d(T_{k}x, tUx \oplus (1-t)Vx)^{2}$$

$$\leq \sum_{k=1}^{n} \alpha^{k} (td(T_{k}x, Ux)^{2} + (1-t)d(T_{k}x, Vx)^{2} - t(1-t)d(Ux, Vx)^{2})$$

$$= t \sum_{k=1}^{n} \alpha^{k} d(T_{k}x, Ux)^{2} + (1-t) \sum_{k=1}^{n} \alpha^{k}_{n} d(T_{k}x, Vx)^{2} - t(1-t)d(Ux, Vx)^{2}$$

and hence

$$t(1-t)d(Ux,Vx)^2 \le (1-t)\left(\sum_{k=1}^n \alpha^k d(T_kx,Vx)^2 - \sum_{k=1}^n \alpha^k d(T_kx,Ux)^2\right).$$

Dividing 1 - t > 0 and letting $t \rightarrow 1$, we get

$$d(Ux, Vx)^{2} \leq \sum_{k=1}^{n} \alpha^{k} d(T_{k}x, Vx)^{2} - \sum_{k=1}^{n} \alpha_{n}^{k} d(T_{k}x, Ux)^{2} = \sum_{k=1}^{n} \alpha^{k} (d(T_{k}x, Vx)^{2} - d(T_{k}x, Ux)^{2}).$$
(1)

9290

Similarly, we get

$$d(Vx, Ux)^2 \leq \sum_{k=1}^{n+1} \beta^k (d(T_k x, Ux)^2 - d(T_k x, Vx)^2).$$

Then we have

$$\begin{aligned} d(Vx, Ux)^2 &= \sum_{k=1}^n \beta^k (d(T_k x, Ux)^2 - d(T_k x, Vx)^2) + \beta^{n+1} (d(T_{n+1} x, Ux)^2 - d(T_{n+1} x, Vx)^2) \\ &= \sum_{k=1}^n \beta^k (d(T_k x, Ux)^2 - d(T_k x, Vx)^2) + \left(1 - \sum_{k=1}^n \beta^k\right) \left(d(T_{n+1} x, U_n x)^2 - d(T_{n+1} x, U_{n+1} x)^2\right) \\ &= \sum_{k=1}^n \beta^k (d(T_k x, Ux)^2 - d(T_k x, Vx)^2) + \sum_{k=1}^n (\alpha^k - \beta^k) \left(d(T_{n+1} x, Ux)^2 - d(T_{n+1} x, Vx)^2\right) \\ &\leq \sum_{k=1}^n \beta^k (d(T_k x, Ux)^2 - d(T_k x, Vx)^2) + \sum_{k=1}^n \left|\beta^k - \alpha^k\right| \left|d(T_{n+1} x, Ux)^2 - d(T_{n+1} x, Vx)^2\right| \end{aligned}$$

and hence

$$d(Ux, Vx)^{2} \leq \sum_{k=1}^{n} \beta^{k} (d(T_{k}x, Ux)^{2} - d(T_{k}x, Vx)^{2}) + \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \left| d(T_{n+1}x, Ux)^{2} - d(T_{n+1}x, Vx)^{2} \right|.$$
(2)

Adding (1) and (2), we get

$$\begin{aligned} 2d(Ux,Vx)^2 &\leq \sum_{k=1}^n \alpha^k (d(T_kx,Vx)^2 - d(T_kx,Ux)^2) + \sum_{k=1}^n \beta^k (d(T_kx,Ux)^2 - d(T_kx,Vx)^2) \\ &+ \sum_{k=1}^n \left| \beta^k - \alpha^k \right| \left| d(T_{n+1}x,Ux)^2 - d(T_{n+1}x,Vx)^2 \right| \\ &\leq \sum_{k=1}^n \left| \beta^k - \alpha^k \right| \left(\left| d(T_kx,Ux)^2 - d(T_kx,Vx)^2 \right| \right) + \sum_{k=1}^n \left| \beta^k - \alpha^k \right| \left(\left| d(T_{n+1}x,Ux)^2 - d(T_{n+1}x,Vx)^2 \right| \right) \\ &\leq \sum_{k=1}^n \left| \beta^k - \alpha^k \right| \left(d(T_kx,Ux) + d(T_kx,Vx) \right) d(Ux,Vx) \\ &+ \sum_{k=1}^n \left| \beta^k - \alpha^k \right| \left(d(T_{n+1}x,Ux) + d(T_{n+1}x,Vx) \right) d(Ux,Vx). \end{aligned}$$

Dividing 2d(Ux, Vx) > 0, we get

$$d(Ux, Vx) \leq \frac{1}{2} \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \left(\left(d(T_{k}x, Ux) + d(T_{k}x, Vx) \right) + \frac{1}{2} \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \left(d(T_{n+1}x, Ux) + d(T_{n+1}x, Vx) \right) \right).$$

Let $z \in \bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \subset \bigcap_{k=1}^{n+1} \mathcal{F}(T_k) \subset \bigcap_{k=1}^n \mathcal{F}(T_k)$. By (a) of Theorem 2.3, mappings *U* and *V* are nonexpansive.

Then we get

$$\begin{aligned} d(Ux, Vx) &\leq \frac{1}{2} \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \left(d(T_{k}x, Ux) + d(T_{k}x, Vx) \right) + \frac{1}{2} \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \left(d(T_{n+1}x, Ux) + d(T_{n+1}x, Vx) \right) \\ &\leq \frac{1}{2} \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \left(d(T_{k}x, z) + d(z, Ux) + d(z, Vx) + d(T_{n+1}x, z) \right) \\ &+ \frac{1}{2} \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \left(d(T_{n+1}x, z) + d(z, Ux) + d(z, Vx) + d(T_{n+1}x, z) \right) \\ &\leq 4d(x, z) \sum_{k=1}^{n} \left| \beta^{k} - \alpha^{k} \right| \end{aligned}$$

and thus we get desired result. \Box

Lemma 3.2. Let X be a Hadamard space, C a nonempty bounded subset of X, T_k a nonexpansive mapping of X into itself for $k \in \mathbb{N}$ with $\bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \neq \emptyset$ and, $\{\alpha_n^k \mid n, k \in \mathbb{N}, k \le n\} \subset [0, 1]$ such that $\sum_{k=1}^n \alpha_n^k = 1$ for $n \in \mathbb{N}$. Let

$$U_n x = \operatorname{Argmin}_{y \in X} \sum_{k=1}^n \alpha_n^k d(T_k x, y)^2$$

for all $x \in X$ and $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} \sum_{k=1}^{n} |\alpha_{n+1}^k - \alpha_n^k| < \infty$, then

$$\sum_{n=1}^{\infty} \sup_{x \in C} d(U_{n+1}x, U_nx) < \infty.$$

Proof. Let $x \in C$. By Lemma 3.1, we get

$$d(U_n x, U_{n+1} x) \le 4d(x, z) \sum_{k=1}^n \left| \alpha_{n+1}^k - \alpha_n^k \right| \le 4M \sum_{k=1}^n \left| \alpha_{n+1}^k - \alpha_n^k \right|$$

for all $z \in \bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$, where $M = \sup_{x \in C} d(x, z)$. Since $\sum_{n=1}^{\infty} \sum_{k=1}^{n} |\alpha_{n+1}^k - \alpha_n^k| < \infty$, we get

$$\sum_{n=1}^{\infty} \sup_{x\in C} d(U_n x, U_{n+1} x) < \infty.$$

Consequently, we complete the proof. \Box

By Lemma 3.2, we can prove the following corollary easily.

Corollary 3.3. Let X be a Hadamard space, T_k a nonexpansive mapping of X into itself with $\bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \neq \emptyset$ and, $\{\alpha_n^k \mid n, k \in \mathbb{N}, k \leq n\} \subset [0, 1]$ such that $\sum_{k=1}^n \alpha_n^k = 1$ for $n \in \mathbb{N}$. Let

$$U_n x = \operatorname{Argmin}_{y \in X} \sum_{k=1}^n \alpha_n^k d(T_k x, y)^2$$

for all $x \in X$ and $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} \sum_{k=1}^{n} |\alpha_{n+1}^k - \alpha_n^k| < \infty$, then

$$\sum_{n=1}^{\infty} d(U_{n+1}x, U_nx) < \infty$$

and $\{U_n x\}$ is a Cauchy sequence for each $x \in X$.

9292

By Corollary 3.3, there exists a limit of $\{U_n x\}$. In the following lemma, we consider the properties of it.

Lemma 3.4. Let X be a Hadamard space, C a nonempty bounded subset of X, T_k a nonexpansive mapping of X into itself for $k \in \mathbb{N}$ with $\bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \neq \emptyset$ and, $\{\alpha_n^k \mid n, k \in \mathbb{N}, k \leq n\} \subset [0, 1]$ such that $\sum_{k=1}^n \alpha_n^k = 1$ for $n \in \mathbb{N}$. Let

$$U_n x = \operatorname{Argmin}_{y \in X} \sum_{k=1}^n \alpha_n^k d(T_k x, y)^2$$

for all $x \in X$ and $n \in \mathbb{N}$. Suppose the following conditions hold:

(a) $\lim_{n\to\infty} \alpha_n^k > 0 \text{ for } k \in \mathbb{N};$ (b) $\sum_{n=1}^{\infty} \sum_{k=1}^n |\alpha_{n+1}^k - \alpha_n^k| < \infty.$

Put $Ux = \lim_{n\to\infty} U_n x$ for each $x \in X$. Then, the following conditions hold:

(i) $\lim_{n\to\infty} \sup_{x\in C} d(U_nx, Ux) = 0;$

(ii) *U* is nonexpansive ; (iii) $\mathcal{F}(U) = \bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$.

Proof. (i) Let $m, n \in \mathbb{N}$ such that $n \leq m$ and $x \in X$. Then, we get

$$d(U_m x, U_n x) \le d(U_m x, U_{n+1} x) + d(U_{n+1} x, U_n x)$$

$$\le d(U_m x, U_{n+2} x) + d(U_{n+2} x, U_{n+1} x) + d(U_{n+1} x, U_n x)$$

$$\le \cdots$$

$$\le \sum_{l=n}^{m-1} d(U_l x, U_{l+1} x) \le \sum_{l=n}^{\infty} d(U_l x, U_{l+1} x)$$

and hence

$$d(U_m x, U_n x) \le \sum_{l=n}^{\infty} d(U_l x, U_{l+1} x).$$
(3)

By (3) and Corollary 3.3, letting $m \to \infty$, we get

$$\sup_{x\in C} d(Ux, U_n x) \leq \sum_{l=n}^{\infty} \sup_{x\in C} d(U_l x, U_{l+1} x).$$

Letting $n \to \infty$, we get $\lim_{n\to\infty} \sup_{x\in C} d(Ux, U_n x) = 0$.

(ii) Let $x, y \in X$. Since U_n is nonexpansive for $n \in \mathbb{N}$, we get

$$d(Ux, Uy) = \lim_{n \to \infty} d(U_n x, U_n y) \le \lim_{n \to \infty} d(x, y) = d(x, y)$$

and hence *U* is a nonexpansive mapping of *X* into itself.

(iii) Let $z \in \bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \subset \bigcap_{k=1}^n \hat{\mathcal{F}}(T_k) = \mathcal{F}(U_n)$ for $n \in \mathbb{N}$. Then, we get

$$Uz = \lim_{n \to \infty} U_n z = \lim_{n \to \infty} z = z$$

and thus $z \in \mathcal{F}(U)$. On the other hand, let $z \in \mathcal{F}(U)$ and $w \in \bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \subset \bigcap_{k=1}^{n} \mathcal{F}(T_k) = \mathcal{F}(U_n)$ for $n \in \mathbb{N}$. By (c) of Theorem 2.3, we get

$$\sum_{k=1}^{n} \alpha_n^k d(T_k z, U_n z)^2 \le \sum_{k=1}^{n} \alpha_n^k d(T_k z, U_n w)^2 - d(U_n z, U_n w)^2$$
$$= \sum_{k=1}^{n} \alpha_n^k d(T_k z, w)^2 - d(U_n z, w)^2$$
$$\le d(z, w)^2 - d(U_n z, w)^2.$$

Fix $j \in \mathbb{N}$ arbitrarily. Then, we have

$$0 \le \alpha_n^j d(T_j z, U_n z)^2 \le \sum_{k=1}^n \alpha_n^k d(T_k z, U_n z)^2 \le d(z, w)^2 - d(U_n z, w)^2$$

By (a), letting $n \to \infty$, we get $\lim_{n\to\infty} d(T_j z, U_n z) = 0$. Then, it follows that

$$d(T_jz,z) = d(T_jz,Uz) = \lim_{n \to \infty} d(T_jz,U_nz) = 0$$

and hence $z \in \mathcal{F}(T_j)$. Since $j \in \mathbb{N}$ is arbitrary, we get $z \in \bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$. Therefore we get $\mathcal{F}(U) = \bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$ and complete the proof. \Box

The following result was mentioned in [3] without proof. For the sake of completeness, we give the proof.

Theorem 3.5. Let X be a Hadamard space, T_k a nonexpansive mapping of X into itself for $k \in \mathbb{N}$ such that $\bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \neq \emptyset$, $\{\alpha_n^k \mid n, k \in \mathbb{N}, k \le n\} \subset [0, 1]$ such that $\sum_{k=1}^n \alpha_n^k = 1$ for all $n \in \mathbb{N}$, and $\{\delta_n \mid n \in \mathbb{N}\} \subset [0, 1]$. Let

$$U_n x = \operatorname{Argmin}_{y \in X} \sum_{k=1}^n \alpha_n^k d(T_k x, y)^2$$

for all $x \in X$ and $n \in \mathbb{N}$. Define a sequence $\{x_n\}$ by $u, x_1 \in X$ and

$$x_{n+1} = \delta_n u \oplus (1 - \delta_n) U_n x_n$$

for each $n \in \mathbb{N}$. Suppose the following conditions hold:

- (a) $\lim_{n\to\infty} \alpha_n^k > 0$ for $k \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \sum_{k=1}^n |\alpha_{n+1}^k \alpha_n^k| < \infty$; (b) $\lim_{n\to\infty} \delta_n = 0$, $\sum_{n=1}^{\infty} \delta_n = \infty$ and $\sum_{n=1}^{\infty} |\delta_{n+1} \delta_n| < \infty$.

Then, $\{x_n\}$ is convergent to $P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)} u$, where $P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)}$ is the metric projection of X onto $\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$.

Proof. Let $z \in \bigcap_{k=1}^{\infty} \mathcal{F}(T_k) \subset \bigcap_{k=1}^n \mathcal{F}(T_k) = \mathcal{F}(U_n)$ for $n \in \mathbb{N}$. Then, we get

$$d(x_{n+1},z) \leq \delta_n d(u,z) + (1-\delta_n)d(U_nx_n,z)$$

$$\leq \delta_n d(u,z) + (1-\delta_n)d(x_n,z)$$

$$\leq \max\{d(u,z), d(x_n,z)\}$$

$$\leq \max\{d(u,z), d(x_1,z)\}.$$

and hence $\{x_n\}$ and $\{U_nx_n\}$ are bounded for all $n \in \mathbb{N}$. Put $M = \max\{d(u, z), d(x_1, z)\}$. Let *C* be a bounded subset of *X* including $\{x_n\}$. Then, we get

$$\begin{aligned} d(x_{n+2}, x_{n+1}) &= d(\delta_{n+1}u \oplus (1 - \delta_{n+1})U_{n+1}x_{n+1}, \delta_n u \oplus (1 - \delta_n)U_n x_n) \\ &\leq d(\delta_{n+1}u \oplus (1 - \delta_{n+1})U_{n+1}x_{n+1}, \delta_n u \oplus (1 - \delta_n)U_{n+1}x_{n+1}) \\ &+ d(\delta_n u \oplus (1 - \delta_n)U_{n+1}x_{n+1}, \delta_n u \oplus (1 - \delta_n)U_n x_n) \\ &\leq |\delta_{n+1} - \delta_n|d(U_{n+1}x_{n+1}, u) + (1 - \delta_n)d(U_{n+1}x_{n+1}, U_n x_n) \\ &\leq |\delta_{n+1} - \delta_n|d(U_{n+1}x_{n+1}, u) + (1 - \delta_n)d(u_{n+1}x_{n+1}, u_n x_{n+1}) + d(U_n x_{n+1}, U_n x_n)) \\ &\leq |\delta_{n+1} - \delta_n|d(U_{n+1}x_{n+1}, u) + (1 - \delta_n)d(x_{n+1}, x_n) + (1 - \delta_n)d(U_{n+1}x_{n+1}, U_n x_{n+1}) \\ &\leq |\delta_{n+1} - \delta_n|d(U_{n+1}x_{n+1}, u) + (1 - \delta_n)d(x_{n+1}, x_n) + d(U_{n+1}x_{n+1}, U_n x_{n+1}) \\ &\leq |\delta_{n+1} - \delta_n|d(U_{n+1}x_{n+1}, u) + (1 - \delta_n)d(x_{n+1}, x_n) + d(U_{n+1}x_{n+1}, U_n x_{n+1}) \\ &\leq (1 - \delta_n)d(x_{n+1}, x_n) + |\delta_{n+1} - \delta_n|d(U_{n+1}x_{n+1}, u) + \sup_{x \in C} d(U_{n+1}x, U_n x) \\ &\leq (1 - \delta_n)d(x_{n+1}, x_n) + 2M|\delta_{n+1} - \delta_n| + \sup_{x \in C} d(U_{n+1}x, U_n x) \end{aligned}$$

for all $n \in \mathbb{N}$. By Lemma 3.2, we get $\sum_{n=1}^{\infty} \sup_{x \in C} d(U_n x, U_{n+1} x) < \infty$. Using Lemma 2.4, we get $\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$. Further, we get

$$d(x_n, U_n x_n) \le d(x_n, x_{n+1}) + d(x_{n+1}, U_n x_n) = d(x_n, x_{n+1}) + d(\delta_n u \oplus (1 - \delta_n) U_n x_n, U_n x_n)$$

= $d(x_n, x_{n+1}) + \delta_n d(u, U_n x_n)$

for all $n \in \mathbb{N}$. Letting $n \to \infty$, we get $\lim_{n\to\infty} d(x_n, U_n x_n) = 0$. By Corollary 3.3, we get $\{U_n x\}$ is a Cauchy sequence for each $x \in X$. Put $Ux = \lim_{n\to\infty} U_n x$. By Lemma 3.4, U is nonexpansive and $\mathcal{F}(U) = \bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$. Put

$$\gamma_n = d\left(u, P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)} u\right)^2 - (1 - \delta_n) d(u, U_n x_n)^2.$$

We next show $\limsup_{n\to\infty} \gamma_n \leq 0$. We can take a subsequence $\{\gamma_{n_i}\}$ of $\{\gamma_n\}$ such that

$$\lim_{i\to\infty}\gamma_{n_i}=\limsup_{n\to\infty}\gamma_n.$$

Further, since $\{x_{n_i}\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_{n_i}\}$ such that $x_{n_i} \stackrel{\Delta}{\longrightarrow} x_0 \in X$. We get

$$0 \le d\left(x_{n_{i_j}}, Ux_{n_{i_j}}\right) \le d\left(x_{n_{i_j}}, U_{n_{i_j}}x_{n_{i_j}}\right) + d\left(U_{n_{i_j}}x_{n_{i_j}}, Ux_{n_{i_j}}\right) \le d\left(x_{n_{i_j}}, U_{n_{i_j}}x_{n_{i_j}}\right) + \sup_{x \in C} d\left(U_{n_{i_j}}x, Ux\right).$$

By (i) of Lemma 3.4, letting $j \to \infty$, we obtain $\lim_{j\to\infty} d(x_{n_{i_j}}, Ux_{n_{i_j}}) = 0$. Since U is Δ -demiclosed, we have $x_0 \in \mathcal{F}(U) = \bigcap_{k=1}^{\infty} \mathcal{F}(T_k)$. It follows that

$$\begin{aligned} \left| \gamma_n - \left(d\left(u, P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)} u \right)^2 - d(u, x_n)^2 \right) \right| &= \left| d(u, x_n)^2 - d(u, U_n x_n)^2 + \delta_n d(u, U_n x_n)^2 \right| \\ &\leq \left| d(u, x_n)^2 - d(u, U_n x_n)^2 \right| + \delta_n d(u, U_n x_n)^2 \\ &\leq (d(u, x_n) + d(u, U_n x_n)) d(x_n, U_n x_n) + \delta_n d(u, U_n x_n)^2 \to 0. \end{aligned}$$

By Lemma 2.2, letting $n \to \infty$, we get

$$\limsup_{n \to \infty} \gamma_n = \lim_{i \to \infty} \gamma_{n_i} = \lim_{j \to \infty} \gamma_{n_{i_j}} = \lim_{j \to \infty} \left(d \left(u, P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)} u \right)^2 - d \left(u, x_{n_{i_j}} \right)^2 \right)$$
$$= d \left(u, P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)} u \right)^2 - \lim_{j \to \infty} d \left(u, x_{n_{i_j}} \right)^2$$
$$\leq d \left(u, P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)} u \right)^2 - d(u, x_0)^2$$
$$\leq 0.$$

By Lemma 2.1, we have

$$\begin{split} d\left(x_{n+1}, P_{\bigcap_{k=1}^{\infty}\mathcal{F}(T_k)}u\right)^2 &\leq \delta_n d\left(u, P_{\bigcap_{k=1}^{\infty}\mathcal{F}(T_k)}u\right)^2 + (1-\delta_n)d\left(U_n x_n, P_{\bigcap_{k=1}^{\infty}\mathcal{F}(T_k)}u\right)^2 - \delta_n (1-\delta_n)d(u, U_n x_n)^2 \\ &= (1-\delta_n)d\left(x_n, P_{\bigcap_{k=1}^{\infty}\mathcal{F}(T_k)}u\right)^2 + \delta_n \gamma_n. \end{split}$$

Using Lemma 2.4, we get $\lim_{n\to\infty} d(x_n, P_{\bigcap_{k=1}^{\infty} \mathcal{F}(T_k)}u) = 0$. Consequently, we get the desired result. \Box

4. New type of the projection method

In this section, we propose *the combining projection method of balanced type* and prove a strong convergence theorem using Theorem 3.5.

Theorem 4.1. Let X be a Hadamard space. Let T a nonexpansive mapping of X into itself such that $\mathcal{F}(T)$ is nonempty, $\{\alpha_n \mid n \in \mathbb{N}\} \subset [0,1], \{\beta_n^k \mid n,k \in \mathbb{N}, k \leq n\} \subset [0,1]$ such that $\sum_{k=1}^n \beta_n^k = 1$ for all $n \in \mathbb{N}$, and $\{\delta_n \mid n \in \mathbb{N}\} \subset [0,1]$. Define sequences $\{x_n\}$ and $\{y_n\}$ of X, a sequence $\{C_n\}$ of subset of X, and mappings $\{U_n\}$ by $u \in X, x_1 \in X$ and

$$y_n = \alpha_n x_n \oplus (1 - \alpha_n) T x_n;$$

$$C_n = \{z \in X \mid d(y_n, z) \le d(x_n, z)\};$$

$$U_n x_n = \operatorname{Argmin}_{y \in X} \sum_{k=1}^n \beta_n^k d(P_{C_k} x_n, y)^2;$$

$$x_{n+1} = \delta_n u \oplus (1 - \delta_n) U_n x_n$$

for each $n \in \mathbb{N}$, where P_K is the metric projection of X onto a nonempty closed convex subset K of X. Suppose the following conditions hold:

- (a) $\{z \in X \mid d(z, v) \le d(z, v')\}$ is convex for all $v, v' \in X$;
- (b) $\liminf_{n\to\infty} \alpha_n < 1$;
- (c) $\lim_{n\to\infty}\beta_n^k > 0$ for $k \in \mathbb{N}$, $\sum_{n=1}^{\infty}\sum_{k=1}^n |\beta_{n+1}^k \beta_n^k| < \infty$;
- (d) $\lim_{n\to\infty} \delta_n = 0$, $\sum_{n=1}^{\infty} \delta_n = \infty$ and $\sum_{n=1}^{\infty} |\delta_{n+1} \delta_n| < \infty$.

Then, $\{x_n\}$ *is convergent to* $P_{\mathcal{F}(T)}u$ *.*

Proof. Let $z \in \mathcal{F}(T)$. Since *T* is nonexpansive, we get

$$d(y_n, z) \le \alpha_n d(x_n, z) + (1 - \alpha_n) d(Tx_n, z) \le d(x_n, z)$$

and hence $\mathcal{F}(T) \subset C_n$ for all $n \in \mathbb{N}$. Since C_n is a nonempty closed convex set, the metric projection P_{C_n} is well-defined for $n \in \mathbb{N}$. Then, we get

$$\bigcap_{k=1}^{\infty}\mathcal{F}(P_{C_k})=\bigcap_{k=1}^{\infty}C_k\supset\mathcal{F}(T)\neq \emptyset$$

Since P_{C_k} is nonexpansive for all $k \in \mathbb{N}$, we obtain U_n is nonexpansive. By Theorem 3.5, we get $x_n \to P_{\bigcap_{n=1}^{\infty} C_n} u$. Put $x_0 = P_{\bigcap_{n=1}^{\infty} C_n} u$. Since $x_0 \in \bigcap_{n=1}^{\infty} C_n$, letting $n \to \infty$, we get $y_n \to x_0$. By (b), there exists a subsequence $\{\alpha_{n_i}\}$ of $\{\alpha_n\}$ such that $\lim_{i\to\infty} \alpha_{n_i} \in [0, 1[$. Then, we get

$$d(x_{n_i}, Tx_{n_i}) = \frac{1}{1 - \alpha_{n_i}} d(x_{n_i}, y_{n_i}) \le \frac{1}{1 - \alpha_{n_i}} \left(d(x_{n_i}, x_0) + d(x_0, y_{n_i}) \right)$$

Letting $i \to \infty$, we get $\lim_{i\to\infty} d(x_{n_i}, Tx_{n_i}) = 0$. Further, we get

$$d(x_0, Tx_0) \le d(x_0, x_{n_i}) + d(x_{n_i}, Tx_{n_i}) + d(Tx_{n_i}, Tx_0)$$

and hence $x_0 \in \mathcal{F}(T)$. Therefore we get $x_n \to P_{\mathcal{F}(T)}u$ and complete the proof. \Box

If we consider Theorem 1.2 with N = 1, we obtain a convergence theorem for a single mapping. This result is a special case of Theorem 4.1.

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant Number JP21K03316.

References

- [1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, *Approximation of common fixed points of countable family of nonexpansive mapping in a Banach space*, Nonlinear Anal. **67** (2007), 2350–2360.
- [2] M. Bačák, Convex analysis and optimization in Hadamard space, Walter de Gruyter, Boston, 2014.
- [3] T. Hasegawa, Convergence theorems with a balanced mapping on Hadamard spaces, Master thesis, Toho University, 2019.

- [4] T. Hasegawa and Y. Kimura, Convergence to a fixed point of a balanced mapping by the Mann algorithm in a Hadamard space, Linear and Nonlinear Anal. 4 (2018), 445–452.
- [5] J. S. He, D. H. Fang, G. López and C. Li, Mann's algorithm for nonexpanseve mappings in CAT(κ) spaces, Nonlinear Anal. 75 (2012), 445–452.
- [6] S. Huang and Y. Kimura, A projection method for approximating fixed points of quasinonexpansive mappings in Hadamard spaces, Fixed Point Theory and Applications, **2016** (2-16), 13 pages.
- [7] Y. Kimura, Convergence of a sequence of sets in a Hadamard space and shrinking projection method for a real Hilbert ball, Abstr. Appl. Anal. 2010 (2010), 11, Art. ID582475.
- [8] Y. Kimura, W. Takahashi and J.C. Yao, Strong convergence of an iterative scheme by a new type of projection method for a family of quasinonexpansive mapping, J Optim Theory Appl. 149 (2011), 239–253.
- [9] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive groups, J. Math. Anal. Appl. 279 (2003), 372–379.
- [10] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276–286.