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Abstract. The purpose of this study is to look at a family of starting value problem for semilinear fuzzy
fractional elliptic equation with fractional Caputo derivatives. Firstly, we are going to extend the definition
of laplacian operator under generalized H-differentiability in the Fuzzy systems. Secondly, the fuzzy
integral equation are founded. Then, the existence and uniqueness of a fuzzy solution are etablished
utilizing the Banach fixed point assessment method under Lipschitz conditions. Finally, we conclude our
work by a conclusion.

1. Introduction

It is common knowledge that fuzzy mathematics elegantly simulates unpredictable processes [1, 2]
as well as investigated in discourse analysis, psychology, information science, choice, and other relevant
industrial and applied scientific domains; This is due to its incredible versatility and usefulness (see [2]).
Because there is still the potential of uncertainty in real life, fuzzy ambiguity must be considered in way
to properly adapt theory to practice [3]. One of the fundamental properties of fuzzy sets is the use of
membership functions over realistic facts to mitigate information loss [4].

In recent years, fraction differential operators, a type of absolute operator, have provided a larger degree
of flexibility [5–8]. Caputo, as each of us aware, invented the notion of Caputo fractional derivative in 1967.
A fewer-known thrut is that the notion of fractional derivative was established 20 years before Caputo by
the Russian mathematician Gerasimov. As a result, it’s also known as the Gerasimov-Caputo derivative
[9]. Moreover, fractional order differential equations combine and properly characterize difficulties [4] and
collect all function information in a weighted version [10]. Consequently, fractional-order differential equa-
tions are frequently employed in modelling viscous-elastic, chaotic, non - linear physiological functions, as
well as other real world processes, particularly in explaining Memories and heredity features, and help to
advance vital fields such as biochemistry and physics [11]. That is, real-world situations may be completely
explained theoretically using fractional PDEs, and they might aid us in reaching more precise information
[12].
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Iqbal and Niazi investigated a type of equations of Caputo’s fuzzy fractional evolution in 2021 and came
to several noteworthy discoveries, including the controllability and the existence and uniqueness of mild
solutions (see [13, 14]). Around ten years previously, Arshad and Lupulescu [16], and Agarwal et al. [15]
used a variety of techniques to demonstrate the existence and uniqueness of solutions to fuzzy FODE.

Inspired by the above studies, We explore the existence and uniqueness of fuzzy solutions to the
underlying semi-linear fuzzy fractional elliptic problem in this research.

C
1HDq

t u ⊕ ∆u = F(y, t,u(y, t)), (y, t) ∈ Ω × J = (0,T) =: △T, (1)

with the following conditions:
u(y, t) = 0̃, (y, t) ∈ ∂Ω × J,
u(y, 0) = f (y), y ∈ Ω
ut(y, 0) = 1(y), y ∈ Ω

(2)

where Ω ⊂ R is a bounded space with a smooth boundary ∂Ω, and T > 0 is a predetermined number. In 1,
q ∈ (1, 2) is the fractional order and C

1HDq
t signifies the fuzzy Caputo fractional derivative with regard to t.

The manuscript is laid out as pursuing: Following this introduction, We have offered some options
related to fuzzy sets theory in section 2. we expand the concept of laplacian operator under extended
H-differentiability in Section 3. In Section 4, we introduce the fuzzy nonlinear integral equation satisfied
by the solution of the dilemma (1)–(2). We provide our key conclusions, the existence and uniqueness of
a fuzzy solution for the semilinear fuzzy differential equation using the Banach fixed point theorem, in
Section 5.

2. Preliminaries

In this section we recall fundamental tools of fuzzy theory that will be used through this research.
Let En represents the set of all fuzzy numbers Φ in Rn, in particular, E1 reflects the set of all fuzzy

numbers Φ over mathbbR.

Definition 1. [17] Φ : R → [0, 1] A fuzzy membership function is alluded to as a fuzzy number if and only if the
very next cases are met:

(1) Φ is normal. This indicates that there’s a ξ such as Φ (ξ) = 1.

(2) Φ is fuzzy convex.

(3) Φ is upper semi continuous.

(4) Supp(Φ) = {ρ ∈ R | Φ(ρ) > 0} is a compact set as a support set.

If Φ is a fuzzy number on R, therefore, the α-cut of Φ is [Φ]α = {s ∈ R | Φ(s) ≥ α}, for α ∈ (0, 1].
Since [Φ]α is a compact set of all α ∈ [0, 1], then we can represent [Φ]α by [Φl(α),Φr(α)].

Definition 2. [17] Assume thatΥ andΨ are two level-wise fuzzy sets. The generalized Hukuhara differenceΥ⊖1Ψ
is established as described in the following:

Υ ⊖1 Ψ = ϖ⇔

{
Υ = Ψ + ϖ (i)
or Ψ = Υ + (−1)ϖ, (ii) (3)

For the α-levels,(
Υ ⊖1 Ψ

)α
= [min{Υl(α) −Ψl(α),Υr(α) −Ψr(α)},max{Υl(α) −Ψl(α),Υr(α) −Ψr(α)}]
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Lemma 1. (See [18].) If u, v ∈ En, thus for α ∈ (0, 1],

[u + v]α =
[
uαl + vαl ,u

α
r + vαr

]
,

[u · v]α =
[
min

{
uαi vαj

}
,max

{
uαi vαj

}]
, i, j = l, r,

[u − v]α =
[
uαl − vαr ,u

α
r − vαl

]
.

Let ι signify an element inRn and S symbolize a non-empty subsoace ofRn. The distance d(ι,S) separating
ι and S is given as

d(ι,S) = inf{∥ι − ϑ∥ : ϑ ∈ S}

Next consider S and X to be non-empty subspace of Rn. The Hausdorff split of X and S is stated as

d∗H(X,S) = sup{d(ν,S) : ν ∈ X}

In practice,
d∗H(S,X) , d∗H(X,S).

The Hausdorff length of nonempty subsets of S and X of Rn is given as

dH(S,X) = max
{
d∗H(S,X), d∗H(X,S)

}
. (4)

It is now symmetrical in S and X. Additionally,

(1) dH(S,X) ≥ 0 with dH(S,X) = 0 iff S̄ = X̄,

(2) dH(S,B) = dH(X,S)

(3) dH(S,X) ≤ dH(S,Y) + dH(Y,X)

for all non-empty subsets of Rn’s S,X, andY. The Hausdorffmeasure (4) is a kind of metric.
The supremum measure d∞ on En is characterized as:

d∞(ϕ,φ) = sup
{
dH

(
[ϕ]α, [φ]α

)
: α ∈ (0, 1]

}
,

for all ϕ,φ ∈ En, and is clearly distance on En.
The supremum measure H1 on C (J,En) is characterized as follows:

H1(ψ,Θ) = sup
{
d∞(ψ(s),Θ(s)) : s ∈ J

}
,

for each ψ,Θ ∈ C (J,En).

Definition 3. [19] Let f ∈ LE1
(J). The fuzzy Riemann Liouville integral of f with order 0 < q is stated as:

Iq
RL f (s) =

1
Γ(q)

⊙

∫ s

0
(s − t)q−1

⊙ f (t)ds, (5)

where Γ is the Gamma function defined as

Γ(t) =
∫
∞

0
st−1e−sds

Definition 4. [20] Let f ∈ LE1
(J). The definition of Caputo gH derivative of f (t) is as follow

C
1HDq f (s) =



1
Γ(n − q)

⊙

∫ s

0
(s − τ)n−q−1

⊙ f (n)
1H (τ)dτ, n − 1 < q < n

(
d
ds

)n−1

f (s) , q = n − 1

(6)
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Lemma 2. Let Φ ∈ LE1
(J) and ∀q ∈ (n − 1,n) we gain

(i) CDqIqΦ(s) = Φ(s)

(ii) IqCDqΦ(s) = Φ(s) ⊖1H Φ (0) ⊖1H (s) ⊙Φ′ (0) ⊖1H · · · ⊖1H
(s)(n−1)

(n − 1)!
⊙Φ(n−1) (0) .

Definition 5. [21] Let 1 : [0,∞) → Y ⊂ RF be continuous such that e−sτ
⊙ 1(τ) is integrable. The fuzzy Laplace

transform of 1, indicated by L[1(τ)], is therefore computed as

L[1(τ)] := G(s) =
∫
∞

0
e−sτ
⊙ 1(τ)dτ, s > 0.

Proposition 1. If Φ is a fuzzy peacewise continuous function on [0,∞] with exponential levels a, so

L((Φ ⋆Ψ)(x)) = L(Φ(x)) ⊙ L(Ψ(x))

whereΨ is a peacewise continuous real function on [0,∞).

Proof.

L(Φ(x)) ⊙ L(Ψ(x)) =
(∫

∞

0
e−sτ
⊙Φ(τ)dτ

)
⊙

(∫
∞

0
e−sσ
⊙Ψ(σ)dσ

)
=

∫
∞

0

(∫
∞

0
e−s(τ+σ)

⊙Φ(τ)dτ
)
⊙Ψ(σ)dσ

Holding τ constant in the inside integral, We gain by replacing x = τ + σ and dσ = dt

L(Φ(x)) ⊙ L(Ψ(x)) =
∫
∞

0

(∫
∞

σ
e−sx
⊙Φ(τ) ⊙Ψ(x − τ)dx

)
dτ

=

∫
∞

0

∫
∞

σ
e−sx
⊙Φ(τ) ⊙Ψ(x − τ)dxdτ

=

∫
∞

0
e−sx
⊙

(∫ x

0
Φ(x − σ) ⊙Ψ(σ)dτ

)
dσ

= L((Φ ⋆Ψ)(x))

Proposition 2. For every α > 0, we get the subsequent outcome∫ t

0
Eα,1 (Asα) ds = tEα,2 (Atα)

Proof. ∫ t

0
Eα,1 (Asα) ds =

∫ t

0

∞∑
n=0

snα

Γ(nα + 1)
Ands

=

∞∑
n=0

∫ t

0 snαds

Γ(nα + 1)
An

=

∞∑
n=0

tnα+1

(nα + 1)Γ(nα + 1)
An

=

∞∑
n=0

tnα+1

Γ(nα + 2)
An

= tEα,2 (Atα)
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Lemma 3. For all α ∈ [1, 2] and s > 0,
1. sα−1 (sα − A)−1 = L

(
Eα,1 (Atα)

)
(s),

2. sα−2 (sα − A)−1 = L
(
tEα,2 (Atα)

)
(s),

3. (sα − A)−1 = 1
Γ(α−1)L

(∫ t

0 (t − s)α−2Eα,1 (Asα) ds
)
.

Proof. 1. For s > 0,

L
(
Eα,1 (Atα)

)
(s) = L

 +∞∑
n=0

tαnAn

Γ(αn + 1)


=

+∞∑
n=0

L (tαn)
An

Γ(αn + 1)

=

+∞∑
n=0

1
snα+1 An

= sα−1 (sα − A)−1

2. For s > 0, sα−1 (sα − A)−1 = L
(
Eα,1 (Atα)

)
(s), then

sα−2 (sα − A)−1 = s−1sα−1 (sα − A)−1

= L (1)(s)L
(
Eα,1 (Atα)

)
(s)

= L
(
1 ∗ Eα,1 (Atα)

)
(s)

= L

(∫ t

0
Eα,1 (Atα)

)
(s)

= L
(
tEα,2 (tαA)

)
(s)

3. From (1), we get
(sα − A)−1 = s1−αL

(
Eα,1 (Atα)

)
(s)

= L

(
tα−2

Γ(α − 1)

)
L

(
Eα,1 (Atα)

)
(s)

= L

(
tα−2

Γ(α − 1)
∗ Eα,1 (Atα)

)
(s)

= L

(∫ t

0

(t − δ)α−2

Γ(α − 1)
Eα,1 (Aδα) dδ

)
(s),

As a consequence, the intended goal.

Lemma 4. [21]
(1) Allow φ,ϕ : [0,∞)→ Y ⊂ RF to be continuous functions, c1, c2 ∈ R+. Therefore

L

[
c1 ⊙ φ(s) + c2 ⊙ ϕ(s)

]
= c1 ⊙ L[φ(s)] + c2 ⊙ L[ϕ(s)]

(2) Allow φ : [0,∞)→ Y ⊂ RF to be a continuous function. Thus

L
[
eas
⊙ φ(t)

]
= φ(t − c), t − c > 0.

Definition 6. [22] Assume G to be a vector set in R. A fuzzy inner product on G is a mapping ⟨., .⟩ : G×G −→ E1

such as ∀Θ,Υ,Ξ ∈ G and λ ∈ R, we obtain:

1) ⟨Θ + Υ,Ξ⟩ = ⟨Θ,Ξ⟩ ⊕ ⟨Υ,Ξ⟩,

2) ⟨λΘ,Υ⟩ = λ̃⟨Θ,Υ⟩,
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3) ⟨Θ,Υ⟩ = ⟨Υ,Θ⟩,

4) ⟨Θ,Θ⟩ ≥ 0̃,

5) infα∈(0,1]⟨Θ,Θ⟩−α > 0 if Θ , 0,

6) ⟨Θ,Θ⟩ = 0̃ iff Θ = 0.

A fuzzy inner product set is a vector space G that admire a fuzzy inner product.

3. Fuzzy Laplacian operator

In this section, we are going to extend the definition of laplacian operator under generalized H-
differentiability in the fuzzy theory.

Definition 7. [23] Take Φ : J → RF and fix s0 ∈ J. We say Φ is (i)-differentiable at s0, if there’s an element
Φ′ (s0) ∈ RF such as ∀h > 0 enough close to 0 , exist Φ (s0 + h) ⊖Φ (s0) ,Φ (s0) ⊖Φ (s0 − h) and the limits

lim
h→0+

Φ (s0 + h) ⊖Φ (s0)
h

= lim
h→0+

Φ (s0) ⊖Φ (s0 − h)
h

= Φ′ (t0) .

In this case we denote Φ′ (s0) by ∂1
1Φ (s0). And Φ is (ii)-differentiable if for all h > 0 enough close to 0 , exist

Φ (s0 + h) ⊖Φ (s0) ,Φ (s0) ⊖Φ (s0 − h) and the limits

lim
h→0+

Φ (s0) ⊖Φ (s0 + h)
−h

= lim
h→0+

Φ (s0 − h) ⊖Φ (s0)
−h

= Φ′ (t0) .

This derivative is indicated in this instance by ∂1
2Φ (s0).

Here we remember certain notions and proofs for the initial order derivative [23] and 2nd order derivatives
[24] dependent on the selection of derivative kind in every stage of differentiating.

Theorem 1. Allow Φ : J→ RF be fuzzy function, where [Φ(s)]β =
[
Φl(s, β),Φr(s, β)

]
for any β ∈ [0, 1]. Then

(1) IfΦ is (i)-differentiable thusΦl(s, β) andΦl(s, β) are differentiable functions and
[
∂1

(i)Φ(s)
]β
=

[
Φ′l (s, β),Φ′r(s, β)

]
.

(2) IfΦ is (ii)-differentiable thusΦl(s, β) andΦl(s, β) are differentiable functions and
[
∂1

(ii)Φ(s)
]β
=

[
Φ′r(s, β),Φ′l (s, β)

]
.

Proof. See [23].

Definition 8. Allow Φ : J → RF and n,m = (i), (ii). We declare Φ is (n,m)-differentiable at s0 ∈ J, if ∂1
nΦ occur in

the near of s0 as a fuzzy function and it’s (m)-differentiable at s0. The 2nd derivatives of Φ is noted by ∂2
n,mΦ (t0) for

n,m = (i), (ii).

According to Definition 7 we have:

Theorem 2. Let ∂1
(i)Φ : J→ RF or ∂1

(ii)Φ : J→ RF be fuzzy functions, with [Φ(s)]β =
[
Φl(s, β),Φr(s, β)

]
. Then

(1) if∂1
(i)Φ is (i)-differentiable, thenΦ′l (s, β) andΦ′r(s, β) are differentiable functions and

[
∂2

(i),(i)Φ(s)
]β
=

[
Φ′′l (s, β),Φ′′r (s, β)

]
.

(2) if∂1
(i)Φ is (ii)-differentiable, thenΦ′l (s, β) andΦ′r(s, β) are differentiable functions and

[
∂2

(i),(ii)Φ(s)
]β
=

[
Φ′′r (s, β),Φ′′l (s, β)

]
.

(3) if∂1
(ii)Φ is (i)-differentiable, thenΦ′l (s, β) andΦ′r(s, β) are differentiable functions and

[
∂2

(ii),(i)Φ(s)
]β
=

[
Φ′′r (s, β),Φ′′l (s, β)

]
.

(4) if∂1
(ii)Φ is (ii)-differentiable, thenΦ′l (s, β) andΦ′l (s, β) are differentiable functions and

[
∂2

(ii),(ii)Φ(s)
]β
=

[
Φ′′l (s, β),Φ′′r (s, β)

]
.
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Proof. See the Proof of the Theorem 3.9 in [24].

Definition 9. The fuzzy Laplace operator of Φ is the summation of all the fuzzy 2nd partial derivatives in Cartesian
coordinate system t j:

∆Φ =

n∑
j=1

∂2Φ

∂t2
j

The fuzzy Laplace operator, as a 2nd fuzzy differential operator, transfers Ck fuzzy functions to Ck−2 fuzzy functions
with k ≥ 2. It is a linear operator ∆ : Ck (Rn) → Ck−2 (Rn), or more broadly, an operator ∆ : Ck(Ω) → Ck−2(Ω) for
every open set Ω ⊆ Rn.

Theorem 3. Let Φ and Φ′ be differentiable fuzzy value functions, and if α-cut representation of f is denoted by
[Φ]α =

[
fΦαl ,Φ

α
r

]
, then the fuzzy Laplacian operator denoted ∆ defined as

(1) if ∂1
(i)Φ is (i)-differentiable or if ∂1

(ii)Φ is (ii)-differentiable, thus Φ′l (., α) and Φ′r(., α) are differentiable functions

and [∆Φ]α =
[
∆Φαl ,∆Φ

α
r

]
.

(2) if ∂1
(i)Φ is (ii)-differentiable or if ∂1

(ii)Φ is (i)-differentiable, thus Φ′l (., α) and Φ′r(., α) are differentiable functions

and [∆Φ]α =
[
∆Φαr ,∆Φ

α
l

]
.

where ∆ is the usuel laplacian operator.

Proof. We just offer the specifics for scenario (1) because the other situations are comparable.
If h > 0 and α ∈ [0, 1], we obtain[

∂(1)
1 Φ(t j + h) ⊖ ∂(1)

1 Φ(t j)
]α
=

[
Φ′l (t j + h, α) −Φ′l (t j, α),Φ′r(t j + h, α) −Φ′r(t j, α)

]
,

and then multiply by 1/h, we get[
∂(1)

1 Φ(t j + h) ⊖ ∂(1)
1 Φ(t j)

]α
h

=

[
Φ′l (t j + h, α) −Φ′l (t j, α)

h
,
Φ′r(t j + h, α) −Φ′r(t j, α)

h

]
.

Similarly, we obtain[
∂(1)

1 Φ(t j) ⊖ ∂
(1)
1 Φ(t j − h)

]α
h

=

[
Φ′l (t j, α) −Φ′l (t j − h, α)

h
,
Φ′r(t j, α) −Φ′r(t j − h, α)

h

]
.

Getting to the limits, we gain [
∂(2)

1,1Φ(t j)
]α
=

[
∂(2)Φl(t j, α), ∂(2)Φr(t j, α)

]
.

by applying the sum, we get n∑
j=1

∂(2)
1,1Φ(t j)


α

=

 n∑
j=1

∂(2)Φl(t j, α),
n∑

j=1

∂(2)Φr(t j, α)

 .
therefore,

[∆Φ]α =
[
∆Φαl ,∆Φ

α
r

]
.

This concludes the theorem’s demonstration.
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4. The fuzzy integral equation

Consider the following fuzzy eigenvalue problem for the fuzzy Laplacian on a bounded domain Ω.⊖∆ϕ j(y) = λ j ⊙ ϕ j(y), y ∈ Ω
ϕ j(y) = 0̃, y ∈ ∂Ω,

where 0̃ is a fuzzy number. Then, the above equation is expanded in accordance with its left and right
functions as follows: (

−∆ϕ j,l(y),−∆ϕ j,r(y)
)
= λ j ⊙

(
ϕ j,l(y), ϕ j,r(y)

)(
ϕ j,l(y), ϕ j,r(y)

)
= (0, 0) ,

Now, we look at these equations according to the two following cases. The equation with lower functions
is −∆ϕ j,l(y, α) = λ jϕ j,l(y, α), y ∈ Ω

ϕ j,l(y) = 0, y ∈ ∂Ω,
(7)

and with upper functions is−∆ϕ j,r(y, α) = λ jϕ j,r(y, α), y ∈ Ω
ϕ j,r(y) = 0, y ∈ ∂Ω,

(8)

The boundary value problems (7) and (8) is the Dirichlet problems for the Helmholtz system, and thus λ j
is classified as a Dirichlet eigen-value for Ω.

By using the theorem of compact self-adjoint operator spectral one can demonstrate that the eigen-spaces
are size limitations and that the Dirichlet eigen-values λ j are real, positive, and unbounded. As a result,
they may be ordered in ascending order :

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λ j ≤ · · · and λ j →∞ as j→∞.

Consider the related eigen-functions ϕ j ∈ H1
0(Ω).

Next, assume that the difficulty (1) has a solution u in the kind

u(y, t) =
∞∑
j=1

u j(t) ⊙ ϕ j(y).

Thus, u j(t) solves the pursuing fuzzy fractional ordinary differential equation with conditions:
C
1HDq

t u j ⊖ λ j ⊙ u j(t) =
〈
F(y, t,u(y, t)), ϕ j

〉
, t ∈ J,

u j(0) =
〈

f , ϕ j

〉
,

du j

dt (0) =
〈
1, ϕ j

〉
,

(9)

where ⟨·, ·⟩ indicate the fuzzy inner product in L2(Ω). By using the lemmas (2), (3) and the proposition (1),
we gain the solution of (9) as below:

(i) If u is Caputo (i) − 1H differentiable, then

u j(t) =Eq,1

(
λ j ⊙ tq

)
⊙

〈
f , ϕ j

〉
⊕ t ⊙ Eq,2

(
λ j ⊙ tq

)
⊙

〈
1, ϕ j

〉
⊕

∫ t

0

∫ t

s

(t − τ)q−2

Γ(q − 1)
⊙ Eq,1

(
λ j ⊙ (τ − s)q

)
⊙

〈
F(·, s,u(·, s)), ϕ j

〉
dτds

(10)



A. El Ghazouani et al. / Filomat 37:27 (2023), 9315–9326 9323

(ii) If u is Caputo (ii) − 1H differentiable, therefore

u j(t) =Eq,1

(
λ j ⊙ tq

)
⊙

〈
f , ϕ j

〉
⊕ t ⊙ Eq,2

(
λ j ⊙ tq

)
⊙

〈
1, ϕ j

〉
⊖ (−1) ⊙

∫ t

0

∫ t

s

(t − τ)q−2

Γ(q − 1)
⊙ Eq,1

(
λ j ⊙ (τ − s)q

)
⊙

〈
F(·, s,u(·, s)), ϕ j

〉
dτds

(11)

therefore, the problem (1) solution is as follow

(i) If u is Caputo (i) − 1H differentiable, then

u(y, t) =
∞∑
j=1

[
Eq,1

(
λ j ⊙ tq

)
⊙

〈
f , ϕ j

〉
⊕ t ⊙ Eq,2

(
λ j ⊙ tq

)
⊙

〈
1, ϕ j

〉]
⊙ ϕ j(y)

⊕

∞∑
j=1

[∫ t

0

∫ t

s

(t − τ)q−2

Γ(q − 1)
⊙ Eq,1

(
λ j ⊙ (τ − s)q

)
⊙

〈
F(y, s,u(y, s)), ϕ j

〉
dτds

]
⊙ ϕ j(y).

(12)

(ii) If u is Caputo (ii) − 1H differentiable, then

u(y, t) =
∞∑
j=1

[
Eq,1

(
λ j ⊙ tq

)
⊙

〈
f , ϕ j

〉
⊕ t ⊙ Eq,2

(
λ j ⊙ tq

)
⊙

〈
1, ϕ j

〉]
⊙ ϕ j(y)

⊖ (−1) ⊙
∞∑
j=1

[∫ t

0

∫ t

s

(t − τ)q−2

Γ(q − 1)
⊙ Eq,1

(
λ j ⊙ (τ − s)q

)
⊙

〈
F(y, s,u(y, s)), ϕ j

〉
dτds

]
⊙ ϕ j(y).

(13)

5. Existence and uniqueness results

Consider the points that follow.

(H1) The inhomogeneous term F : △T × C(△T,L2(△T)) → C(△T,L2(△T)) is a continuous function that meets
the globally Lipschitz criterion

dH
([

f (y, s, ξ(y, s)]α,
[

f (y, s, ζ(y, s)]α
)
≤ KdH

(
[ξ(y, s)]α, [ζ(y, s)]α

)
,

for all ξ(y, s), ζ(y, s) ∈ C(△T,L2(△T)), and a constant K > 0.

(H2) Q(t) is a fuzzy set that is appropriate for u ∈ C
(
△T; L2(△T)

)
, the equation

Q(t − s)F (u) (y, s) :=
∞∑
j=1

∫ t

s

(t − τ)q−2

Γ(q − 1)
⊙ Eq,1

(
λ j ⊙ (τ − s)q

)
⊙

〈
F (u) (y, s), ϕ j

〉
⊙ ϕ j(y)dτ

such as
[Q(t)]α =

[
Q
α
l (t),Qαr (t)

]
,

and Qa
i (t)(i = l, r) is continuous. That is, there’s a constant M > 0 such as

∣∣∣Qαi (t)
∣∣∣ ≤M ∀t ∈ J

Theorem 4. Asume that assumptions (H1)-(H2) are correct. Thus, for any f , 1 ∈ L2(Ω), the fuzzy initial value
problem (1), (2) has a unique solution u ∈ C

(
△T; L2(△T)

)
.
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Proof. Denote

S(t) f :=
∞∑
j=1

Eα,1
(
λ j ⊙ tq

)
⊙

〈
f , ϕ j

〉
⊙ ϕ j, P(t)1 :=

∞∑
j=1

t ⊙ Eα,2
(
λ j ⊙ tq

)
⊙

〈
1, ϕ j

〉
⊙ ϕ j,

The solutions is then defined as meeting the equation as

u(y, t) = S(t) f (y) ⊕ P(t)1(y) ⊕
∫ t

0
Q(t − s)F (u) (y, s)ds (14)

where
F (u) (y, s) := F

(
y, s,u(y, s)

)
,

Q(t − s)F (u) (y, s) :=
∞∑
j=1

∫ t

s

(t − τ)q−2

Γ(q − 1)
⊙ Eq,1

(
λ j ⊙ (τ − s)q

)
⊙

〈
F (u) (y, s), ϕ j

〉
⊙ ϕ j(y)dτ.

For each ξ(t) ∈ C(△T,L2(△T)), t, y ∈ △T define

(Φξ)(y, t) = S(t) f (y) ⊕ P(t)1(y) ⊕
∫ t

0
Q(t − s)F (u) (y, s)ds.

Thus, (Φξ)(y, t) : △T → C(△T,L2(△T)) is continuous in regard to t, and Φ : C
(
△T; L2(△T)

)
→ C

(
△T; L2(△T)

)
. It

is obvious that fixed points ofΦ are solutions to the initial value problem (1),(2). Forξ(t), ζ(t) ∈ C
(
△T; L2(△T)

)
,

we have

dH
(
[(Φξ)(y, t)]α, [(Φζ)(y, t)]α

)
= dH

([
S(t) f (y) ⊕ P(t)1(y) ⊕

∫ t

0
Q(t − s)F (ξ) (y, s)ds

]α
,[

S(t) f (y) ⊕ P(t)1(y) ⊕
∫ t

0
Q(t − s)F (ζ) (y, s)ds

]α)
≤ dH

([
S(t) f (y)

]α
⊕

[
P(t)1(y)

]α
⊕

[∫ t

0
Q(t − s)F (ξ) (y, s)ds

]α
,

[
S(t) f (y)

]α
⊕

[
P(t)1(y)

]α
⊕

[∫ t

0
Q(t − s)F (ζ) (y, s)ds

]α)
≤ dH

([∫ t

0
Q(t − s)F (ξ) (y, s)ds

]α
,

[∫ t

0
Q(t − s)F (ζ) (y, s)ds

]α)
≤

∫ t

0
dH

([
Q
α
l (t − s)Fαl (ξ) (y, s),Qαr (t − s)Fαr (ξ) (y, s)

]
,
[
Q
α
l (t − s)Fαl (ζ) (y, s),Qαr (t − s)Fαr (ζ) (y, s)

])
ds

≤

∫ t

0
max

(
| Q

α
l (t − s)

[
Fαl (ξ) (y, s) − Fαl (ζ) (y, s)

]
|, | Qαr (t − s)

[
Fαr (ξ) (y, s) − Fαr (ζ) (y, s)

]
|

)
ds

≤M
∫ t

0
max

(
|

[
Fαl (ξ) (y, s) − Fαl (ζ) (y, s)

]
|, |

[
Fαr (ξ) (y, s) − Fαr (ζ) (y, s)

]
|

)
ds

≤M
∫ t

0
max

([
Fαl (ξ) (y, s),Fαr (ξ) (y, s)

]
,
[
Fαl (ζ) (y, s),Fαr (ζ) (y, s)

])
ds

≤M
∫ t

0
dH

([
F (ξ) (y, s)

]α , [F (ζ) (y, s)
]α) ds

≤MK
∫ t

0
dH

([
ξ(y, s)

]α , [ζ(y, s)
]α) ds
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Thus,
d∞((Φξ)(y, t), (Φζ)(y, t)) = sup

α∈(0,1]
dH

(
[(Φξ)(y, t)]α, [(Φζ)(y, t)]α

)
≤MK

∫ t

0
sup
α∈(0,1]

dH
(
[ξ(y, s)]α, [ζ(y, s)]α

)
ds

=MK
∫ t

0
d∞(ξ(y, s), ζ(y, s))ds.

Consequently,
H1(Φξ,Φζ) = sup

t∈J
d∞((Φξ)(y, t), (Φζ)(y, t))

≤MK sup
t∈J

∫ t

0
d∞(ξ(y, s), ζ(y, s))ds

≤MKTH1(ξ(y, s), ζ(y, s)).

Pick T so that T < 1
MK . Hence, Φ is a contraction mapp. According to the Banach fixed point theorem, the

semilinear fuzzy fractional elliptic equation has a unique fixed point u ∈ C
(
△T; L2(△T)

)
.

6. Conclusion

The goal of this study is to look at a family of starting value issues for semilinear fuzzy fractional
elliptic equations with fractional Caputo derivatives. Before that, In the fuzzy theory, we will broaden
the definition of the laplacian operator under extended H-differentiability. The fuzzy integral equation is
first established, and then the existence and uniqueness of a fuzzy solution are established by utilising the
Banach fixed point assessment technique under Lipschitz conditions.
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