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Inverse degree index of graphs with a given cyclomatic number
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Abstract. We investigate how the inverse degree index of graphs depends on their cyclomatic number. In
particular, we provide sharp lower bounds on the inverse degree index over all graphs on a given number
of vertices with a given cyclomatic number. We also deduce some structural properties of extremal graphs.
Some open questions regarding the upper bound over the same class of graphs are discussed and some
possible further developments are indicated.

1. Introduction

Throughout this paper all graphs are connected and simple, that is, with no loops and multiple edges.
Let G be a graph with the vertex set V(G) = {v1, . . . , vn} and the edge set E(G). The degree of a vertex vi is
denoted by di. A tree is a connected graph with no cycles and a unicyclic graph is a connected graph with
exactly one cycle. For a connected graph G with n vertices and m edges its cyclomatic number c(G) is defined
as c(G) = m − n + 1. Hence, the cyclomatic number of trees and of unicyclic graphs is equal to 0 and 1,
respectively. (For graphs which are not connected, the definition of their cyclomatic number is modified
by replacing 1 with the number of connected components, but we will not consider such graphs here.) As
usual, we denote the cycle and the path of order n by Cn and Pn, respectively.

The degree-based indices are among the oldest and the best researched classes of topological indices.
The best known among them are the Randić index and the Zagreb indices, but there are also many others.
Most of them have been studied for their possible applications in the QSAR and QSPR modeling. They are,
however, investigated also for their intrinsic interest in classical graph theory. Nice examples are provided
by [4, 5] and [6]. In this paper we are interested mostly in the inverse degree index which belongs to the
class of indices obtained by summing given powers of degrees over all vertices. See [1] for an excellent
recent survey.

The inverse degree of G is defined as

ID(G) =
n∑

i=1

1
di
.
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Also the Randić index R(G) and the harmonic index H(G) of a graph G are defined as follows:

R(G) =
∑

viv j∈E(G)

1√
did j

, H(G) =
∑

viv j∈E(G)

2
di + d j

.

The Randić index and its relationships with other graph-theoretic invariants have been extensively studied
by many authors, for instance, see [2, 3, 7–14]. Its relationship with the harmonic index is valid for all
graphs.

Theorem 1.1. [12, 15] For every graph G of order n, the following inequalities hold:

H(G) ⩽ R(G), R(G) ⩽
n
2

2. Trees and unicyclic graphs

In [8], the authors proved that if T is a tree, then ID(T) ⩾ R(T) and ID(T) ⩾ H(T). Here, we provide a
simple proof for these results and also extend these results to unicyclic graphs.

Theorem 2.1. Let T be a tree of order n. Then ID(T) ⩾ n
2 + 1 and the equality holds if and only if T = Pn.

Proof. We apply induction on n. For n = 2, the assertion is clear. Let T be a tree of order n > 2, with vertex
set V(T) = {v1, . . . , vn} and di = d(vi). Now, let v1 ∈ V(T) be a pendant vertex and v1v2 ∈ E(T). By the
induction hypothesis we have:

ID(T \ v1) ⩾
n − 1

2
+ 1,

and the equality holds if and only if T \ v1 = Pn−1. Therefore, the following holds:

1
d2 − 1

+

n∑
1=3

1
di
⩾

n − 1
2
+ 1.

This implies that:

1
2
+

1
d2 − 1

+

n∑
i=3

1
di
⩾

n
2
+ 1,

and if T \ v1 , Pn−1, then the inequality is strict. In order to show that ID(T) ⩾ n
2 + 1, it suffices to prove,

ID(T) =
n∑

i=1

1
di
⩾

1
2
+

1
d2 − 1

+

n∑
i=3

1
di

or equivalently,

1 +
1
d2
+

n∑
i=3

1
di
⩾

1
2
+

1
d2 − 1

+

n∑
i=3

1
di
.

So it suffices to show that:

1
2
+

1
d2 − 1

⩽ 1 +
1
d2

, or 0 ⩽ (d2 + 1)(d2 − 2).

Since d2 ⩾ 2, ID(T) ⩾ n
2 + 1 and if d2 > 2, then ID(T) > n

2 + 1. This implies that if ID(T) = n
2 + 1, then d2 = 2

and T \ v1 = Pn−1. Hence T = Pn and the proof is complete.
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Now, we generalize the previous result to unicyclic graphs.

Corollary 2.2. For every unicyclic graph G of order n, ID(G) ⩾ n
2 and the equality holds if and only if G = Cn.

Therefore, for every unicyclic graph G, ID(G) ⩾ R(G) ⩾ H(G).

Proof. We apply induction on n. For n = 3, the assertion is clear. Let G be a unicyclic graph of order n > 3,
V(G) = {v1, . . . , vn} and di = d(vi). First note that for two positive integers x, y ⩾ 2, we have(

1
x − 1

+
1

y − 1

)
−

(
1
x
+

1
y

)
=

1
x(x − 1)

+
1

y(y − 1)
⩽

1
2
+

1
2
. (1)

Since G is unicyclic, there exists an edge e such that G \ e is a tree. Noting to (1) and Theorem 2.1,
ID(G \ e) − ID(G) ⩽ 1. Therefore ID(G) ⩾ n

2 . If G = Cn, then ID(G) = n
2 . Now, assume that ID(G) = n

2 .
Therefore ID(G \ e) = n

2 + 1 and by Theorem 2.1, G \ e is Pn. Let u and v be the end vertices of Pn. If
e = uv, then G = Cn. If e = uw and w , v, then ID(G) = n

2 +
1
3 , a contradiction. If e = wt, w, t < {u, v}, then

ID(G) = n
2 +

2
3 , a contradiction. The proof is complete.

Remark 2.3. If G is a graph of order n, then by the Cauchy-Schwarz inequality we have, n∑
i=1

di


 n∑

i=1

1
di

 ⩾ n2.

Thus ID(G) ⩾ n2

2m , where m = |E(G)|.

3. Graphs with a given cyclomatic number

In this section we look at the inverse degree index of graphs of larger cyclomatic numbers. We start
with an observation on a structural property of graphs minimizing this index.

Lemma 3.1. Let G be a connected graph of order n and cyclomatic number c > 0. If G contains a vertex of degree 1,
then there is a graph G′ of the same order n and with the same cyclomatic number such that ID(G′) < ID(G).

Proof. Let G be a graph with cyclomatic number c > 0 and let u ∈ V(G) be a vertex of G with du = 1. Then u
must be an end-vertex of a path wv1 . . . vku, where dw > 2, dv1 = . . . = dvk = 2. Hence the total contribution
of the vertices of this path to ID(G) is given by 1

dw
+ k

2 + 1. Let x and y be two adjacent vertices on some
cycle Cr of G. (Such a cycle exists since c > 0.) Now delete vertices of the path v1 . . . vku and subdivide the
edge xy by k + 1 new vertices v′1, . . . , v

′

k,u
′ of degree 2. The new graph, call it G′, has order n and the same

cyclomatic number as G. Moreover, there are only two vertices whose degrees differ in G and in G′: the
degree of w in G′ decreases by one with respect to its degree in G, and the degree of u′ in G′ is 2, one more
than du in G. By computing ID(G) − ID(G′) we see that contribution of all vertices except those two cancel.
Hence,

ID(G) − ID(G′) =
1

dw
+ 1 −

1
dw − 1

−
1
2
=

1
dw
−

1
dw − 1

+
1
2
> 0,

since dw > 2. This completes the proof.

Hence a graph minimizing ID(G) over all graphs of order n containing cycles cannot have pendent
vertices. This is consistent with the fact that Cn minimizes ID(G) over all unicyclic graphs.

Now we can formulate results on the inverse degree index of graphs with larger cyclomatic number.
We first consider the case of rather small cyclomatic numbers and present detailed proof. A general case
then follows along the same lines.
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Theorem 3.2. Let G be a connected graph of order n with cyclomatic number c > 0. If c ≤ n
2 + 1, then

ID(G) ≥
n
2
−

c − 1
3
,

with equality if and only if G is a subcubic graph, i.e., 2 ≤ δ(G) ≤ ∆(G) ≤ 3. In particular, if c = n
2 + 1, then

ID(G) ≥ n
3 with equality if and only if G is a cubic graph.

Proof. Let u ∈ V(G) be a vertex of the largest degree k in G. The case k = 1 is ruled out by the condition
c > 0, and the case k = 2 is either ruled out by the same condition for paths, or settled in the results about
unicyclic graphs. Hence we may assume k is at least three.

Every vertex of a connected graph with a positive cyclomatic number which is not on one of its cycles
either lies in some path connecting two cycles or in some tree rooted in a vertex of a cycle or of a cycle-
connecting path. We call the paths connecting two cycles internal paths. Suppose that G contains a vertex
which lies in a tree. Then, by repeatedly applying the procedure of Lemma 3.1 we can construct a graph
G′ with ID(G′) < ID(G) such that all vertices of G′ lie on its cycles or on cycle-connecting paths. Hence we
can assume that all vertices of our graph G lie on its cycles or on its internal paths. This implies that the
smallest degree in G is at least 2. Moreover, the average degree of G cannot exceed 3. Otherwise, the sum
of all degrees would exceed 3n, meaning that m > 3n

2 and leading to c > n
2 + 1, contrary to our assumption.

Take a vertex u ∈ V(G) of degree k. If k > 3, then there must be a vertex x ∈ V(G) of degree 2. If there is
exactly one vertex of degree 2 in G, then k = 4 and u is the only vertex in G of degree greater than 3. Then x
is adjacent to at most two of the four neighbors of u. Let y be a neighbor of u not adjacent to x. By deleting
the edge uy and adding the edge xy we obtain a cubic graph which minimizes ID(G) and the assertion
follows.

Let us now assume that there are at least two vertices, x and y, of degree 2 in G. Each of them can be
adjacent to at most two neighbors of u. If one of the neighbors of u non-adjacent to x, say v, is of degree
at least 3, delete the edge uv and add the edge vx. In this way we obtain a new graph, G′, with the same
number of vertices and the same cyclomatic number as G. By computing the difference

ID(G) − ID(G′) =
1
du
+

1
2
−

1
du − 1

−
1
3
=

1
2
−

1
3
−

( 1
du − 1

−
1
du

)
> 0,

since 1
x−1 −

1
x is strictly decreasing on [2,∞).

If all neighbors of u are of degree 2, then either there is a path uv1 . . . vlw in which all internal vertices are
of degree 2 and dw ≥ 3, or there is a cycle uv1 . . . vlu in which all internal vertices are of degree 2 such that
v1 is not adjacent to x. In both cases, by deleting the edge uv1 and adding the edge v1x, we can construct a
graph on the same number of vertices and with the same cyclomatic number as G but with strictly smaller
inverse degree index. Hence a graph minimizing ID(G) cannot contain a vertex of degree greater than 3.

Let now G′ be a graph of order n with all vertices of degree 2 or 3 and with the cyclomatic number c. It
follows immediately that G must contain exactly 2(c− 1) vertices of degree 3. Each of them contributes 1

3 to
ID(G), while each of the remaining n− 2(c− 1) vertices contributes 1

2 . The assertion now follows by adding
all contributions, since for any graph G of order n and cyclomatic number c we have

ID(G) ≥ ID(G′) =
n − 2(c − 1)

2
+

2(c − 1)
3

=
n
2
−

c − 1
3
.

The above results provide a complete characterization of bicyclic graphs minimizing the inverse degree
index.

Corollary 3.3. Let G be a connected bicyclic graph of order n. Then ID(G) ≥ n
2 −

1
3 , with equality if and only if G is

either a Θ-graph or G consists of two cycles connected by a path.
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(A graph G of order n is a Θ-graph if it has two vertices of degree 3 and n − 2 vertices of degree 2 which lie
on three internally disjoint paths connecting the two vertices of degree 3. One of the paths may be a single
edge. The simplest Θ-graph is K4 − e.)

By a completely analogous rewiring argument we can prove the lower bound on the inverse degree
index for graphs of arbitrary cyclomatic numbers. We leave out the details.

Theorem 3.4. Let G be a connected graph of order n with cyclomatic number c. If, for some k ≥ 1, we have

(k − 1)
n
2
+ 1 < c ≤ k

n
2
+ 1,

then
ID(G) ≥

n
2
−

c − 1
k + 2

.

In particular, for c = k n
2 + 1, we have ID(G) ≥ n

k+2 with equality if and only if G is (k + 2)-regular.

4. Concluding remarks

In this paper we have studied the relationship between the cyclomatic number of connected graphs
and their inverse degree index. We have derived sharp lower bounds on the inverse degree index of
graphs with a given cyclomatic number and obtained some information on minimizing graphs. As a
consequence, we have recovered some results on relationships between the inverse degree index and some
other degree-based indices of graphs with low cyclomatic numbers.

It would be interesting to investigate the upper bounds on the inverse degree index of graphs with
a given cyclomatic number c. Intuitively, one would expect that ID(G) will be maximized by the graphs
with the largest possible number of leaves, each contributing one. If c happens to be a triangular number
Tp =

p(p+1)
2 , the most economic (in terms of the number of vertices) way to achieve it is to take Kp+2 and

then attach the remaining n− p− 2 vertices to one of its vertices. For such a graph G(n, c) one easily obtains
ID(G(n, c)) = n− (p+2)+1+ 1

n−1 = n−p−1+ 1
n−1 . Taking into account that p = 1

2

(
−1 +

√
8c + 1

)
, one obtains

ID(G(n, c)) ∼ n − 1
2 −
√

2c for large values of n and c.
If c is not a triangular number, things become slightly more complicated. Suppose Tp < c ≤ Tp+1. Then

there must exist 0 ≤ k ≤ p such that c = Tp+1 − k. For a big enough order n we construct a graph G(n, c) by
taking a copy of Kp+3 and removing from it k edges, all incident with the same vertex v. That leaves at least
one vertex, say u, of degree p + 2. To this vertex u we attach n − p − 3 vertices of degree one. Hence our
graph has one vertex v of degree p + 2 − k, k vertices of degree p + 1, p + 1 − k vertices of degree p + 2, one
vertex u of degree n − 1 and n − p − 3 vertices of degree 1. Its inverse degree index is then given by

ID(G(n, c)) = n − p − 3 +
1

n − 1
+

p3 + (5 − k)p2 + (8 − k)p + 4 − k2

(p + 1)(p + 2)(p + 2 − k)
,

where p =
√

8(c+k)+1−3
2 . One can see that the rightmost fraction becomes 1 for k = 0 and that it remains

between 1 and 3/2 for all values of 0 ≤ k ≤ p. We believe that the above expression is a sharp upper bound
on the inverse degree index over all graphs of order n with the cyclomatic number equal to c. However, we
have not worked out the details.
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