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Available at: http://www.pmf.ni.ac.rs/filomat

Inferential results based on Mellin-type statistics for the transmuted

inverse Weibull distribution

Daniel L. R. Orozcoa, Josimar M. Vasconcelosa, Frank Gomes-Silvaa

aPrograma de Pós Graduação em Biometria e Estatı́stica Aplicada, Departamento de Estatı́stica e Informática, Universidade Federal Rural de
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Abstract. Different measures of goodness-of-fit provide information to describe how well models fit the
data. However, it’s important to note that these measures have shown modest growth in comparison
to the emergence of probability distribution models. That said, this research constructed qualitative and
quantitative fit measures for Transmuted Inverse Weibull distribution. To develop these Goodness-of-Fit
measures, we study some properties of that distribution: we present the Mellin Transform, Log-Moments,
and Log-Cumulants. Then, we discuss estimation methods for the model’s parameters, such as Moments,
Maximum Likelihood, and the one based on the Log-Cumulants method. The last method mentioned
is proposed to estimate the parameters of the distribution. We make the Log-Cumulants diagrams and
construct the confidence ellipses. The model is applied to three survival datasets to verify the quality of
our estimation methods and Goodness-of-Fit measures.

1. Introduction

Lifetime probability distributions has been used in different contexts, such as reliability [20, 29], life data
[27], modeling failure, and engineering [36], among others. Researchers generally introduce parameters
or/and generators to obtain more new/flexible models. In this paper, we use a distribution that provides
a particular transmuting function for constructing tractable models. The famous Weibull distribution was
introduced by Weibull et al. [46] and also mentioned in Rinne [38]. This distribution is mainly used
in quality control by Nelson [31] and studied in Hallinan [15], reliability and applied statistics [32, 4],
hidrology [41, 39], among others. Nevertheless, in some situations which the fit of simple models to the
data are not good, it is necessary to create new models that supply this fact, by adding parameters or
baseline distributions, to guarantee the flexibility of the model and better fits. Keller and Arr [21] derived
four alternative failure models based on physical considerations, particularly the two-parameter model
known as the Inverse Weibull model. Such distribution plays an essential role in modeling failure rates
which are extremely important in biological, reliability, and survival analysis studies. Subsequently, some
works generalize or modify the inverse Weibull, for example, De Gusmao et al. [11], Khan and King [22],
Khan and King [24] and Jan et al. [19].
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The research of Daniel Leonardo Ramı́rez Orozco was supported by the Brazilian Government through the Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) Cod. 001.
Email addresses: orozco.dlr@gmail.com (Daniel L. R. Orozco), josimar.vasconcelos@ufrpe.br (Josimar M. Vasconcelos),

frank.gsilva@ufrpe.br (Frank Gomes-Silva)



D. Orozco et al. / Filomat 37:27 (2023), 9431–9446 9432

An excellent idea of a generalization model where the distribution is derived using the quadratic rank
transmutation map is intended to motivate our investigation; it was given by Shaw and Buckley [40]. In
this context, Khan and King [23] introduce the three-parameter Transmuted Inverse Weibull (TIW) distribu-
tion, evidencing the Transmuted Inverse Exponential, Transmuted Inverse Rayleigh, and Inverse Weibull
distributions as sub-models. Merovci et al.[30] created a new generalized inverse Weibull distribution.
Al-Omari [3] developed a new acceptance sampling plan based on the Transmuted Generalized Inverse
Weibull distribution. Al-Kadim and Mohammed [2] proposed a cubic Transmuted Weibull distribution,
discuss some special cases, and gave theoretical results. Recently, Rahman et al.[37] studied a detailed re-
view of the transmuted families of distributions and Dey et al. [13] reviewed a complete list of transmuted
distributions.

Now, let us mention the Mellin Transform (MT); it surges in a mathematical context, the Finnish
mathematician R.H.Mellin (1854-1933) was the first to formulate that, and it has been applied in different
fields of engineering. Butzer and Jansche [10] show an application to the partial differential equations
as a particular use of the differential properties. Nicolas [33] presents an interesting application based
on graphic representation using Log-Cumulants (LC) of order two and three, leading to graphing the LC
diagram. Recently, Jain et al. [18] introduced a study called a (p, q)-Mellin transform and its corresponding
convolution and inversion. They solve some integral equations in terms of applications of the (p, q)-Mellin
transform.

Finally, different techniques in the literature help to choose the best fit to the models by using criteria and
measures for different distributions, known as Goodness-of-Fit (GoF). So far, no developed GoF measures
have been applied to the TIW distribution, making it difficult to select this model in some cases. In this line,
Pearson [35] provides an excellent tool for choosing a model known as the Pearson diagram, which uses
skewness and kurtosis. However, Nicolas [33] considered this method sometimes analytically intractable.
Hence, this author built the LC diagram for some classical models illustrating synthetic aperture radar
(SAR) image data. Vasconcelos et al. [45] recently constructed LC diagrams and derived confidence ellipses
for the LC for the beta-G class based on Hotelling’s T2 statistic.

In this article, we study the MT to establish new GoF measures for the TIW distribution, with a simple
simulation study we compare the Maximum Likelihood, Moments, and LC estimates. Using the T2 statistic
and the confidence ellipses for hypothesis testing, we illustrate the performance of the measures treated in
some datasets. This work, aims to give inferential results using new GoF method. To accomplish this, we
provide a study specially of the MT, LC and Log-Moments.

The paper is organized as follows: Section 2 presents a brief overview of TIW distribution and the
parameters estimation theory. In Section 3 we propose a second kind statistic for the TIW distribution.
Section 4 offers Log-Cumulants and T2 statistics. Section 5 is a short simulation. Section 6 shows an
application to a real dataset, and finally, Section 7 presents the conclusions and future work.

2. TIW Distribution

In this section, let us introduce some aspects of the literature of how the TIW could be created.
A random variable Y is said to follow a Weibull distribution [46, 38] with parameters β > 0 and η > 0,

the scale and shape parameters, respectively, if its cumulative distribution function (CDF) and probability
density function (PDF) are,

GY(y) = 1 − e−
(

y
β

)η
and 1Y(y) =

η
β

(
y

β

)η−1
e−

(
y
β

)η
, y ≥ 0.

Let Z be a random variable following Inverse Weibull distribution, say Z ∼ IW(z; β, η), with parameters
β > 0 and η > 0, the scale and shape parameters, respectively. The CDF and PDF, respectively, are given by
Keller and Arr [21] (see also Khan et al. [25]):
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Transmutation is the functional composition of the CDF of one distribution with the inverse cumula-
tive distribution (quantile function) of another [37]. A random variable W is said to follow transmuted
distribution, see Shaw and Buckley [40], if its CDF is given by

FW(w) = (1 + λ)G(w) − λG(w)2, |λ| ≤ 1, (1)

where λ offers more flexibility in the distribution and G(w) is the CDF of the baseline distribution.
Finally, this distribution arises like a new reliability model. From (1), a random variable X is said to

follow the TIW distribution denoted by, X ∼ TIW(x; β, η, λ) if the CDF and PDF of X are given by

FX(x) = (1 + λ) e−
1
η (

1
x )
β

−λ
(
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1
η (

1
x )
β
)2

,
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) (
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x

)β+1

e−
1
η (
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β
(
1 + λ − 2λ e−

1
η (

1
x )
β
)
, x > 0.

Where β, η > 0, and |λ| ≤ 1, the shape, scale and transmuting parameters, respectively [23].
Figure 1 illustrates the flexibility of the CDF and PDF for selected parameter values. Note that, when

λ = 0.04 the density is a monotonic function and when β > 1.5 becomes unimodal. When x tends to infinity
the density tends to zero. Now, when λ is close to 1 has a leptokurtic form already in the case of λ < 1 as it
decreases has a platykurtic shape.
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Figure 1: TIW CDF (a) and PDF (b) for different values of β, η, λ

To generate data from a probability distribution we need some methodology. One of them is by quantile
function when it is possible to find the inverse of the CDF. Then, using u a random number from zero to
one, the quantile function from TIW, by solving FX(x) ≤ u is

x =


−η log




(1 + λ) −
√

(1 + λ)2 − 4λu

2λ






−1
β

.

If u = 0.5, we obtain the median of the TIW distribution. In practice, this is the life at which at least 50%
of the units will be expected to fail.

To estimate the parameters of TIW distribution, we present in this section two methods: the Maximum
Likelihood and Moments.
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2.1. Method of Maximum Likelihood

Let X1,X2, . . . ,Xn be a random sample from X ∼ TIW(x; β, η, λ). The likelihood function is

L(β, η, λ; xi) =

n∏

i=1

β

η

(
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xi

)β+1

e
− 1
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)β 1 + λ − 2λ e
− 1
η

(
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)β , (2)

where xi, i = 1, 2, . . . , n are the observed values of the random sample.
To estimate the parameters, we find the set of values of β, η and λ that attains their maximum in (2).
The associated log-likelihood function of (2) is
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The values of β̂, η̂ and λ̂ that maximize (3) will be the Maximum Likelihood (ML) estimates for the parameters
β, η and λ. The ML estimates can be obtained by numerical methods using the optim function, BFGSmethod
and BB package [44] in the software R Core Team [43]. The corresponding components of the score vector
S, by taking the partial derivates of (3) can be written as
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Remark 2.1. We consider that there is an error when writing the partial derivative of λ in Khan and King [23] page
281, equation (36).

2.2. Method of Moments

The method of moments (MM), is an estimation method of population parameters. It involves equaling
sample moments with theoretical moments. For r > 0 integer, the r-th sample moment is the random
variable

E(Xr) =
1

n

n∑

i=1

Xr
i = µr.

Let X1,X2, . . . ,Xn be a random sample from X ∼ TIW(x; β, η, λ). The r-th moment is given as follows

E (Xr) = η −
r
βΓ

(
1 − r

β

) (
1 + λ − λ2

r
β

)
, (4)

where Γ(·) is the Gamma function.
Thus, for r = 1, 2, 3 in (4) and solving by numerical methods these equations, we can obtain the MM

estimates. The dfsane function, BFGSmethod and BB package were used in the software R Core Team [43].
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3. Second Kind Statistics for the TIW Distribution

In this section, we present one of our results for TIW distribution based on the Mellin Transform. The
next, we will review some results from literature and then present the new results for TIW distribution.

3.1. Mellin Transform

The MT relates to Laplace and Fourier transforms, and has been applied in different engineering fields
[9]. Let X be a positive random variable and CDF F(x). The first characteristic function of the second kind
is defined from the MT, denoted by φX(s) [14, 33]

φX(s) =

∫ ∞

0

xs−1dF(x) = E
(
Xs−1

)
. (5)

Generally, the above integral does exist only for s = a + bj, with a, b ∈ R and j the imaginary number.
The second characteristic function of the second kind, denoted by ϕX(s), is defined as the natural

logarithm of (5)

ϕX(s) = log
(
φX(s)

)
. (6)

With this we motivation to formulate the next results.

Theorem 3.1. Let X be a random variable following TIW distribution, X ∼ TIW(x; β, η, λ). The MT of X is given
by

φX(s) = η−
s−1
β Γ

(
1 − s − 1

β

) (
1 + λ − λ2

s−1
β

)
. (7)

The proof of Theorem 3.1 follows immediately from (4) and (5).

3.2. Log-Cumulants

There is a closely related between Log-Moments (LM) and LC. Now, we show LM are derived from MT
similarly that the moments are obtained from the characteristic function.

Nicolas [33] defines ∀r ∈N, the r-th LM or second-kind moment of the MT as following

µ̃r =
drφX

dsr
(s)

∣∣∣∣∣∣
s=1

=

∫ ∞

0

(log x)rdF(x) = E
((

log X
)r
)
.

The r-th LC is obtained from derivative of (6) and then by evaluating the function at s = 1,

κ̃r =
drϕX(s)

dsr

∣∣∣∣∣∣
s=1

. (8)

Thus, the expressions for the r-th LC [7] are given by

κ̃1 = µ̃1,

κ̃2 = µ̃2 − µ̃2
1,

κ̃3 = µ̃3 − 3µ̃1µ̃2 + 2µ̃3
1, (9)

...

κ̃r = µ̃r −
r−1∑

i=1

(
r − 1

i − 1

)
κ̃iµ̃r−i,
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where µ̃r can be replaced by [34]

ˆ̃µr =
1

n

n∑

i=1

(
log xi

)r , (10)

where, n is the sample size and xi indicates the i-th sample observation.
In Table 1, for X ∼ TIW(x; β, η, λ) we present the first six theoretical LCs, where the polygamma function

of order n,Ψ(n)(x) = dn+1

dxn+1 logΓ(x), is the (n + 1)-th derivative of the logarithm of the gamma function. Thus,
the ϕX(s) function for TIW distribution can be written as

ϕX(s) = (1 − s)
1

β
log(η) + log

(
Γ

(
1 − s − 1

β

))
+ log

(
1 + λ − λ2

s−1
β

)
. (11)

LC −1 < λ < 1

κ̃1 − 1
β

[
log(η) + λ log(2) +Ψ(0)(1)

]

κ̃2 − 1
β2

[
λ log2(2)(λ+ 1) −Ψ(1)(1)

]

κ̃3 − 1
β3

[
λ log3(2)

(
2λ2 + 3λ + 1

)
+Ψ(2)(1)

]

κ̃4 − 1
β4

[
λ log4(2)

(
6λ3 + 12λ2 + 7λ + 1

)
−Ψ(3)(1)

]

κ̃5 − 1
β5

[
λ log5(2)

(
24λ4 + 60λ3 + 50λ2 + 15λ + 1

)
+Ψ(4)(1)

]

κ̃6 − 1
β6

[
λ log6(2)

(
120λ5 + 360λ4 + 390λ3 + 180λ2 + 31λ + 1

)
−Ψ(5)(1)

]

Table 1: The first six LCs of the TIW distribution

4. Estimation and GoF for the TIW Distribution

4.1. Method of Log-Cumulants
In a similar way to Subsection 2.2, the proposed estimation method consists in equaling sample version

LCs in (10) with theoretical LCs according to (9) as follow

−1

β̂

[
log(η̂) + λ̂ log(2) +Ψ(0)(1)

]
= ˆ̃µ1,

− 1

β̂2

[
λ̂ log2(2)(λ̂+ 1) −Ψ(1)(1)

]
= ˆ̃µ2 − ˆ̃µ2

1,

− 1

β̂3

[
λ̂ log3(2)

(
2λ̂2 + 3λ̂ + 1

)
+Ψ(2)(1)

]
= ˆ̃µ3 − 3 ˆ̃µ1 ˆ̃µ2 + 2 ˆ̃µ3

1.

By using above equalities and after some algebraic manipulations, we get

β̂ =
3

√√√
λ̂
(
2λ̂2 + 3λ̂ + 1

)
log3(2) +Ψ(2)(1)

− ˆ̃µ3 + 3 ˆ̃µ1 ˆ̃µ2 − 2 ˆ̃µ3
1

,

η̂ = e−β̂
ˆ̃µ1−λ̂ log(2)−Ψ(0)(1),

λ̂ =
2 ·

√
−β̂2

(
ˆ̃µ2 − ˆ̃µ2

1

)
−Ψ(1)(1) − log(2)

2 log(2)
.

Remark 4.1. An advantage of this method is that there is an expression in closed form. This does not happen in the
above methods. Thus, the system is solved by non-linear optimization methods.

This study was carried out by using the BB and MaxLikpackages Varadhan and Gilbert [44] and Henningsen
and Toomet [16], also by using BBsolve, maxBFGS functions avaliables in the software R Core Team.
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4.2. The Log-Cumulant Diagram

Let us start this section by mentioning that the Pearson system [12] helps in the model selection and
choosing the best fit for the data based on kurtosis and skewness measures. Nevertheless, Nicolas [33]
showed that the Pearson diagram sometimes could be complex in treating positive random variables and
introduced the (κ̃3, κ̃2) diagram, which uses the second statistics κ̃3 and κ̃2 rather than kurtosis and skewness
measures.

There are different representations in the diagram due to the number of parameters contained in LC
expressions [7]. Hence, when there is no parameter in LC expressions, there is a zero-dimensional space;
one parameter in LC is represented by a curve and a surface for two parameters.

Figure 2 displays the 2-dimensional space representing the third-order LC versus the second-order LC,
referring to the TIW distribution. Here, we can plot the region obtained from the theoretical LC estimated.
In application Section 6, the points representing the sample LC will be computed using a bootstrap method
from data samples and graphed over the (κ3, κ2) diagram.
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Figure 2: LC Diagram showing the dimensional space of theoretical LC for the TIW distribution

4.3. Hotelling’s Statistic

By the multivariate central limit theorem we know that for larger samples sizes,
√

n
(
X̄ − µ

) approx∼ N (0,Σ),

and the covariance matrix follows a chi-square distribution with ν degrees of freedom, denoted by

Σ = n
(
X̄ − µ

)⊤
S−1

(
X̄ − µ

) approx∼ χ2
ν,

where µ is the mean vector, X̄ is the sample mean vector and S is the sample covariance matrix. Now, the

t-student distribution is used for small samples sizes. We can write t =
X̄−µ
s/
√

n
, as T =

√
n
(
X̄ − µ

)
S−1. If we

take square to both terms, we obtain

T2 = n
(
X̄ − µ

)⊤
S−1

(
X̄ − µ

)
. (12)

In this case, (12) will be Hotelling’s T2 statistic [5, 17]. T2 follows the F-Snedecor distribution with ν, n − ν
degrees of freedom denoted by T2 ∼ Fν,n−ν.
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Let us consider the next hypothesis testing:

H0 := E
(
X̄
)
= µ vs H1 := E

(
X̄
)
, µ. (13)

Assume the null hypothesis H0 true and a significance level α. The likelihood ratio test does not reject
H0, will be T2 ≤ Q(1 − α; ν, n − ν), where Q(•; ν, n − ν) is the quantile function for Fν;n−ν [5].

We aim to find the Hotelling’s T2 statistic to provide GoF tests using LC. Thus, we pretend to estimate

the LC to identify the underlying distribution according to the location of the LC estimated
[

ˆ̃κ2 ˆ̃κ3

]
over

the LC diagram [45].
An equivalent formulation of (13) will be needed

H0 := E
([

ˆ̃κ2 ˆ̃κ3

])
=

[
κ̃2 κ̃3

]
vs H1 := E

([
ˆ̃κ2 ˆ̃κ3

])
,

[
κ̃2 κ̃3

]
.

To reject or not the null hypothesis depends on the belonging of the LC estimated over the specific
regions into the LC diagram [6]. Thus, T2 converges in distribution to a random variable following a
chi-squared distribution with ν degrees of freedom

T2 = n

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])⊤
K̂−1

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])
D−→ χ2

2,ν,

where K̂ is the asymptotic covariance matrix and P
(
T2 ≤ χ2

2,ν

)
= 1 − ν.

For the ellipse confidences, if µ is the mean of the normal multivariate distribution, that is,N
(
µ,Σ

)
, the

probability is 1 − α of drawing a sample of the population with mean X̄ and covariance matrix S such that

n
(
X̄ − µ

)⊤
S−1

(
X̄ − µ

)
≤ T2(α). (14)

Thus, if we compute (14) for a particular sample, we have confidence 1 − α that (14) is a true statement
concerning µ [5].

The inequality

n

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])⊤
K̂−1

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])
≤ T2(α),

is the interior and boundary of an ellipsoid of [κ̃2, κ̃3]⊤, with center at
[

ˆ̃κ2, ˆ̃κ3

]⊤
and with size and shape

depending on K̂−1 and α.

Proposition 4.2. Let X be a random variable following TIW distribution, X ∼ TIW(x; β, η, λ). The T2 statistic based
on LC Estimated is given by

T2 =
nβ6

τ̂33τ̂22 − τ̂2
23

[
τ̂33

(
ˆ̃κ2 − κ̃2

)2
+ τ̂22

(
ˆ̃κ3 − κ̃3

)2
− 2τ̂23

(
ˆ̃κ2 − κ̃2

) (
ˆ̃κ3 − κ̃3

)]
.

The proof of Proposition 4.2 and the algorithm to calculate T2 is in Appendix, Section 8.

5. Simulation Study

We present a brief simulation study to verify the performance of the estimators. We use the ML, MM
and LC methods for parameter estimation. Some scenarios with different sample sizes are shown in Table
2.

A simple simulation study with 1000 Monte Carlo experiments is discussed to evaluate the performance
of the MM, ML, and LC estimates with different sample sizes such as 30, 50, 80 and 100. In all scenarios,
we can observe good results associated with small values; small bias and mean squared error (MSE) values
are associated with 80 and 100 sample sizes. We can observe that while the sample size increases, the bias
and MSE decrease. However, for the last scenario, MM allows us to see that for λ values close to zero in
the third parameter, the MSE is higher. This indicates that it is not a good estimate.
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n (β, η, λ) MM ML LC

β̂ η̂ λ̂ β̂ η̂ λ̂ β̂ η̂ λ̂
30 (2, 2, 0.9) Mean 2.903 4.306 0.818 2.509 3.803 0.772 2.414 3.554 0.882

Bias 0.903 2.306 -0.082 0.509 1.803 -0.128 0.414 1.554 -0.018
MSE 1.662 48.876 0.268 0.975 40.529 0.132 1.111 14.901 0.131

50 2.590 2.880 0.895 2.236 2.747 0.755 2.163 2.997 0.810
0.590 0.880 -0.005 0.236 0.747 -0.145 0.163 0.997 -0.090
0.807 4.865 0.194 0.277 3.118 0.138 0.468 9.312 0.165

80 2.498 2.576 0.926 2.179 2.582 0.767 2.104 2.731 0.812
0.498 0.576 0.026 0.179 0.582 -0.133 0.104 0.731 -0.088
0.625 2.996 0.183 0.188 2.062 0.129 0.334 6.250 0.166

100 2.409 2.348 0.965 2.139 2.490 0.768 2.097 2.707 0.779
0.409 0.348 0.065 0.139 0.490 -0.132 0.097 0.707 -0.121
0.516 2.049 0.171 0.129 1.535 0.127 0.280 5.275 0.180

30 (9, 3.2,−0.9) 10.662 2.304 -0.281 9.303 1.952 -0.046 9.492 1.960 -0.057
1.662 -0.896 0.619 0.303 -1.248 0.854 0.492 -1.240 0.843
12.729 2.206 1.029 8.271 2.230 1.379 10.572 2.426 1.313

50 9.908 2.668 -0.551 9.079 2.542 -0.481 9.286 2.538 -0.473
0.908 -0.532 0.349 0.079 -0.658 0.419 0.286 -0.662 0.427
4.538 1.260 0.506 2.256 1.026 0.568 3.738 1.126 0.541

80 9.703 2.836 -0.653 9.095 2.723 -0.601 9.246 2.746 -0.602
0.703 -0.364 0.247 0.095 -0.477 0.299 0.246 -0.454 0.298
3.143 1.067 0.365 1.360 0.703 0.347 2.518 0.826 0.337

100 9.485 2.981 -0.742 9.110 2.895 -0.713 9.174 2.960 -0.732
0.485 -0.219 0.158 0.110 -0.305 0.187 0.174 -0.240 0.168
1.897 0.898 0.250 0.663 0.437 0.170 1.398 0.593 0.178

30 (3, 2,−0.7) 4.334 2.209 -0.175 3.447 1.988 -0.573 3.812 2.088 -0.619
1.334 0.209 0.525 0.447 -0.012 0.127 0.812 0.088 0.081
4.624 15.403 4.930 1.226 0.739 0.199 2.186 1.277 0.113

50 3.722 2.159 -0.050 3.080 2.106 -0.720 3.264 2.134 -0.717
0.722 0.159 0.650 0.080 0.106 -0.020 0.264 0.134 -0.017
1.935 3.172 7.380 0.231 0.294 0.096 0.559 0.627 0.120

80 3.592 2.118 -0.129 3.016 2.133 -0.756 3.157 2.133 -0.736
0.592 0.118 0.571 0.016 0.133 -0.056 0.157 0.133 -0.036
1.442 2.989 3.730 0.119 0.222 0.072 0.324 0.494 0.113

100 3.497 2.085 -0.252 2.980 2.145 -0.769 3.083 2.134 -0.743
0.497 0.085 0.448 -0.020 0.145 -0.069 0.083 0.134 -0.043
1.073 2.180 2.396 0.060 0.173 0.059 0.175 0.392 0.103

30 (1.5, 0.5, 0.04) 1.499 1.310 0.613 1.655 0.462 0.212 2.102 0.519 0.383
-0.001 0.810 0.573 0.155 -0.038 0.172 0.602 0.019 0.343
0.001 1.504 41.762 0.301 0.032 0.251 0.947 0.064 0.278

50 1.494 0.939 0.730 1.465 0.473 0.253 1.730 0.552 0.282
-0.006 0.439 0.690 -0.035 -0.027 0.213 0.230 0.052 0.242
0.000 0.546 55.592 0.082 0.017 0.264 0.268 0.026 0.269

80 1.494 0.795 0.670 1.425 0.473 0.269 1.641 0.565 0.247
-0.006 0.295 0.630 -0.075 -0.027 0.229 0.141 0.065 0.207
0.000 0.246 19.319 0.058 0.013 0.259 0.162 0.021 0.262

100 1.495 0.682 0.812 1.407 0.474 0.274 1.568 0.569 0.184
-0.005 0.182 0.772 -0.093 -0.026 0.234 0.068 0.069 0.144
0.000 0.087 31.224 0.046 0.010 0.250 0.095 0.017 0.253

Table 2: Parameter estimates for TIW distribution in some scenarios

6. Application to Real Datasets

In this section, we provide an analysis of real datasets to evaluate the T2 statistic. In the present study,
we will be using the following three datasets:

• DATASET 1: The data are taken from Aarset [1] and also reported in Khan and King [23], which
refers to the failure times of fifty devices put on life tests at time zero. This dataset is known to have
a bathtub-shaped hazard rate.

• DATASET 2: The data in Lee and Wang [28] represents a set of reported remission times (in months)
of 128 bladder cancer patients.

• DATASET 3: The data are the time between failures (thousands of hours) of 23 secondary reactor
pumps installed in the RSG-GAS reactor [42, 8].
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For the above datasets, in Table 3 we show some descriptive statistics for each one. Coefficient of
Variation (CV) values indicate greater levels of dispersion in data around the mean. Related to asymmetry
and kurtosis in dataset 1, they indicate left tail and smooth distribution, respectively. In dataset 2, for the
mean, median, and mode values, we have left skewed distribution. Standard Deviation (SD) in dataset 3
observations indicate a low dispersed relation to the mean.

Values in Table 4 illustrate the T2 statistic and p-value in each dataset. We verify the quality of our
estimation methods and GoF measures in all estimation methods.

Dataset Min Max Mean Median Moda SD Asymmetry Kurtosis CV

1 0.10 86.00 45.69 48.50 1.00 32.84 -0.13 -1.64 71.87
2 0.08 79.05 9.37 6.39 5.32 10.51 3.29 18.48 112.20
3 0.06 6.56 1.55 0.61 0.75 1.97 1.29 0.18 127.10

Table 3: Descriptive statistics for datasets
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Figure 3: Diagram of the LC (κ̃3, κ̃2) and Confidence Ellipses for the dataset 1 for TIW distribution

As an additional analysis, we show a visual illustration form of fits with confidence ellipses for each
dataset. To plot the points in each figure, they were obtained by the bootstrap method with 1000 replicates.
We use the T2 statistic value to measure the distance between the data and the TIW model. The better fit
between the data and the model means a smaller T2 statistic and consequently a higher p-value indicates

do not reject the null hypothesis. The ellipse center will be the LCs
[

ˆ̃κ2, ˆ̃κ3

]⊤
and the axes are directed

according to the eigenvectors of K̂; the Degree Coverage (DC) is quantified with a significance level of 95%.
See Figures 3, 4 and 5.

For Dataset 1, the MM and LC methods have a p-value greater than the ML method, and also T2 is
remarkably higher than the last method. Figure 3 shows the majority of points into the diagram and into
the ellipse. As a similar way, Figure 4 shows most of the points over the diagram and the ellipse. That
means a good fit. T2 for Dataset 2 has a smaller value in the LC method than others, and seeing the p-value
higher means the best fit, such that Dataset 3 have the similar analysis. However, in Figure 5, despite the
points perpendicular to the diagram, they are over the diagram and most of them are over the ellipse.
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Figure 4: Diagram of the LC (κ̃3, κ̃2) and Confidence Ellipses for the dataset 2 for TIW distribution
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Figure 5: Diagram of the LC (κ̃3, κ̃2) and Confidence Ellipses for the dataset 3 for TIW distribution

7. Some conclusions and future work

We provide analitical and visual analysis to Goodness-of-Fit measures to the datasets. We furnish the
Mellin Transform for Transmuted Inverse Weibull distribution and present the closed form expressions for
Log-Cumulants estimators. We estimate the parameters model using Maximum Likelihood, Moments and
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Method
Dataset 1 Dataset 2 Dataset 3

Estimative T2 p-value Estimative T2 p-value Estimative T2 p-value

(β̂, η̂, λ̂) (β̂, η̂, λ̂) (β̂, η̂, λ̂)
0.750 0.749 1.487

MM 2.194 1.521 0.693 2.155 8.196 0.049 1.647 0.348 0.956
-0.422 -0.477 -0.101
0.512 0.835 0.847

ML 0.518 10.220 0.029 0.639 4.092 0.263 3.262 1.675 0.683
-0.700 -0.855 -0.442
2.468 2.447 1.429

LC 0.001 0.276 0.966 0.034 0.181 0.980 4.698 0.298 0.964
-0.796 -0.533 -0.578

Table 4: Estimatives, T2 statistic and p-value for the datasets.

Log-Cumulants and show the better fit in the specific dataset by T2 statistic and ellipses confidence. A
simple Monte Carlo simulation study accomplished the performance estimators.

For future work, we recommend doing a comparative study analyzing the parameters of other families
of distributions such as the corrected Kies distribution because of its flexibility (see [47]). Also, in order to
choose an appropriate model that best fits to the data, it is important to know intrinsic characteristics such
as saturation in the sense of Hausdorff see [26]. Estimates of the value of the best Hausdorff approximation
of the shifted Heaviside function and the cumulative distribution function of Transmuted Inverse Weibull
could be used in practice as a possible additional criterion.

8. Appendix

8.1. Quantile function of TIW
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8.2. T2 statistic

Algorithm to calculate T2 statistic:

Step 1 Estimate the β, η, λ parameters by ML, MM or LC methods,
Step 2 Take the estimatives from above step and find ˆ̃κ2 and ˆ̃κ3,
Step 3 Find sample LC: κ̃2 and κ̃3 through Log Moments,
Step 4 Calculate T2 statistic with ML, MM or LC.

Below is the matrix K3x3:

K3x3 = J⊤3x3M3x3J3x3

=




1 0 0
−2µ1 1 0

−3(µ2 − 2µ2
1
) −3µ1 1




⊤ 


κ̃2 κ̃3 + 2κ̃1κ̃2 M1,3

κ̃3 + 2κ̃1κ̃2 M2,2 M2,3

M3,1 M3,2 M3,3







1 0 0
−2µ1 1 0

−3(µ2 − 2µ2
1
) −3µ1 1




=



κ̃2 κ̃3 κ̃4

κ̃3 κ̃4 + 2κ̃2
2

κ̃5 + 6κ̃2κ̃3

κ̃4 κ̃5 + 6κ̃2κ̃3 κ̃6 + 9κ̃2κ̃4 + 9κ̃2
3
+ 6κ̃3

2


 ,

where

M1,3 = κ̃4 + 3κ̃1κ̃3 + 3κ̃2
2 + 3κ̃2

1κ̃2 =M3,1;

M2,2 = κ̃4 + 4κ̃1κ̃3 + 2κ̃2
2 + 4κ̃2

1κ̃2;

M2,3 = κ̃5 + 5κ̃1κ̃4 + 9κ̃2κ̃3 + 9κ̃2
1κ̃3 + 12κ̃1κ̃

2
2 + 6κ̃3

1κ̃2 =M3,2;

M3,3 = κ̃6 + 6κ̃1κ̃5 + 15κ̃2κ̃4 + 15κ̃2
1κ̃4 + 9κ̃2

3 + 54κ̃1κ̃2κ̃3 + 18κ̃3
1κ̃3 + 15κ̃3

2 + 36κ̃2
1κ̃

2
2 + 9κ̃4

1κ̃2.

Based on (15), we obtain the asymptotic covariance matrix from LC (KLC) for TIW,

KLC =

(
κ̃4 + 2κ̃2

2 κ̃5 + 6κ̃2κ̃3
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If KLC is nonsingular, then
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Finally, T2 statistic is given by

T2 = n

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])⊤
K̂−1

LC

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])
. (15)

Further manipulation on the above equation leads to obtain

T2 =
nβ6

τ̂3,3τ̂2,2 − τ̂2
2,3

[
τ̂3,3

(
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)2
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)2
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(
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) (
ˆ̃κ3 − κ̃3

)]
≤ χ2

2,ν.

Other way to obtain the asymptotic covariance matrix from ML (KML) is by using the observed infor-
mation matrix instead M3x3 as following

KML = Z⊤HZ,

where H = − ∂2l(β,η,λ)

∂(β,η,λ)⊤∂(β,η,λ) =



Hββ Hβη Hβλ
Hηβ Hηη Hηλ
Hλβ Hλη Hλλ


 , is the Hessian matrix from 3 and
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.

Thus,

KML =
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ηλ
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ηλ) +Hβη(HβλHηλ −HβηHλλ) +Hβλ(HβηHηλ −HβλHηη).

Finally, the T2 statistic by using KML is

T2 = n

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])⊤
K̂−1

ML

([
ˆ̃κ2

ˆ̃κ3

]
−

[
κ̃2

κ̃3

])
. (16)

We furnish the expression expanded

T2 =
nβ̂6

4
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β̂2
− 1
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|L̂|
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