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Abstract. In this paper, we obtain the dispersive estimates for the kinetic transport equation in modu-
lation spaces. To realize this goal, we establish a new and fundamental important unit decomposition in
modulation space, and the frequency decomposition is exploited as well.

1. Introduction

1.1. Background

Kinetic equation comes from non-equilibrium statistical physics that is used in gas theory, aerodynamics,
plasma physics, the theory of the passage of particles through matter, and the theory of radiation transfer.
The solution of the kinetic equation determines the distribution function of the dynamical states of a single
particle, which usually depends on time, coordinates and velocity. In this paper, we study the dispersive
estimates in modulation spaces for the kinetic (transport) equation which is defined as below,

∂tu + v · ∇xu(t, x, v) = F(t, x, v), (t, x, v) ∈ (0,∞) ×Rn
×Rn, n ≥ 1

u(0, x, v) = f (x, v).
(1)

The solution u to (1) has the form u = U(t) f +W(t)F, where

U(t) f = f (x − tv, v), W(t)F =
∫ t

−∞

U(t − s)F(s)ds.
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1.2. Some known results
In the rest of our paper, the notation ⪯ means ≤ up to a generic positive constant C, depending on the

dimension and possibly other non-essential parameters from the context. Now we recall some theorems
from [5] as our starting point.

Theorem 1.1. ([5]) Define a=HM(p,r) whenever 1
a =

1
2 ( 1

r +
1
p ).

The following estimate holds:
∥U(t) f ∥Lq

t Lr
xLp

v
⪯ ∥ f ∥Lb

xLc
v
,

where
1
q
+

n
r
=

n
b
, HM(p, r) = HM(b, c) = a, q ≥ c.

Theorem 1.2. ([5]) ∥W(t)F∥Lq
t Lr

xLp
v
⪯ ∥F∥Lq̃′

t Lr̃′
x Lp̃′

v
, where

1
q
+

1
q̃
= n(1 −

1
r
−

1
r̃

), HM(p, r) = HM(p̃′, r̃′) = a.

These theorems are basic to the estimates in partial differential equations and they are Strichartz estimates
of Kinetic equations in Lp spaces. Strichartz estimate is fundamentally important to the study of nonlinear
dispersive equations. One is referred to [3], [4] and [6] for some historical work on this subject. For
more applications of Strichartz estimates in partial differential equations such as Schrödinger equation and
Klein-Gordon equation in modulation space, see [7]-[11].

1.3. Motivation
Our motivation comes from the following question:

Question 1.1. Are there analogous results as in [5] for kinetic transport equation in modulation spaces?

To answer this question, it comes naturally to ask whether we could do the similar procedure as
in literature mentioned above to establish an analogous Strichartz estimate for the kinetic equations in
modulation space. However, up to now, we even do not have a dispersive estimate for modulation space,
not to mention the Strichartz estimates. Thus, we try to move forward to this direction which is the theme
in this paper.

2. Dispersive Estimate in Modulation Spaces

2.1. Definition of modulation spaces
Firstly let us recall the definition of Fourier transform of an integrable function f on Rn and its inverse,

which are defined as

(F f )(ξ) = f̂ (ξ) =
∫
Rn

e−ix·ξ f (x)dx, (2)

and

(F −1 f )(x) = f̌ (x) =
∫
Rn

eix·ξ f (ξ)dξ. (3)

Now we give the definition of modulation spaces Ms
p,q(Rn) [8]. For ξ = (ξ1, ξ2, · · · , ξn), we define |ξ|∞ =

maxi=1,2,··· ,n |ξi|. Let ρ ∈ S(Rn) which is Schwartz function, ρ : Rn
→ [0, 1] be a smooth function verifying

ρ(ξ) = 1 for |ξ|∞ ≤ 1/2 and ρ(ξ) = 0 for |ξ|∞ ≥ 1. Let k = (k1, k2, · · · , kn) ∈ Zn, ρk be the translation of ρ,

ρk(ξ) = ρ(ξ − k), k ∈ Zn. (4)
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Denote

φk(ξ) = ρk(ξ)
( ∑

k∈Zn

ρk(ξ)
)−1
, k ∈ Zn, (5)

and

□k := F −1φkF , k ∈ Zn, (6)

{□k}k∈Zn are said to be frequency-uniform decomposition operator. For k ∈ Zn,we denote

|k| = |k1| + · · · + |kn|, ⟨k⟩ = 1 + |k|.

Let −∞ < s < ∞, 0 ≤ p, q ≤ ∞,We define

Ms
p,q(Rn) =

{
f ∈ S

′

(Rn) : ∥ f ∥Ms
p,q < ∞

}
, (7)

∥ f ∥Ms
p,q (R

n) :=
( ∑

k∈Zn

⟨k⟩sq
∥□k f ∥qp

)1/q
, (8)

Ms
p,q(Rn) is said to be the modulation space. For simplicity, we write Ms

p,q(Rn) = Ms
p,q and M0

p,q(Rn) = Mp,q.
With this, we can give the definition of our target space.
Define

∥ f ∥Ms
(r,p),q
=
∣∣∣∣⟨k⟩s∥□k f ∥Lr

xLp
v

∣∣∣∣
lqk
,

in particular,

∥ f ∥M0
(r,p),q
= ∥ f ∥M(r,p),q =

∣∣∣∣∥□k f ∥Lr
xLp

v

∣∣∣∣
lqk
,

where

∥ξ∥lq = (
n∑

i=1

|ξi|
q)

1
q , 0 < q < ∞.

2.2. Main result

Now we are in the position to state our main theorem which is the dispersive estimate for transport
equation in M(∞,1),q spaces.

Theorem 2.1. (Dispersive Estimate) The kinetic transport evolution group U(t) obeys the following estimates,

∥U(t) f ∥M(∞,1),q ⪯
1
|t|n
∥ f ∥M(1,∞),q , 0 < t < 1, (9)

and

∥U(t) f ∥M(∞,1),q ⪯ ∥ f ∥M(1,∞),q , t ≥ 1, (10)

where the generic constants are independent of t.
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2.3. Difficulties
The evolution group Ũ(t) = eit∆ for the Schrödinger equation commutes with □k, i.e.,

Ũ(t)□k = □kŨ(t);

however the evolution group U(t), U(t) f = f (x − tv, v), for the kinetic equation does not commute with □k,
i.e.,

U(t)□k , □kU(t).

One could observe this fact by doing some computations . After taking Fourier transforms, we have

F□kU(t) f = φk(η, ξ) f̂ (η, ξ + tη), (11)

and

FU(t)□k f = φk(η, ξ + tη) f̂ (η, ξ + tη), (12)

where we use (η, ξ) to represent the dual variables of (x, v). Note that there is a translation tη in the ξ
variable. How to deal with this translation and establish the relation between □kU(t) f and U(t)□k f is the
most challenging part. This involves careful geometric analysis which is far from obvious. We will explain
it in detail in Lemma 2.2.

2.4. Strategies
In this subsection, we would like to illustrate our strategies. As we stated in Section 2.3, the difficulty

lies in establishing the relation between □kU(t) f and U(t)□k f .With (11) and (12) in mind and note that∑
l∈Z2n

φl(η, ξ) ≡ 1, ∀ (η, ξ) ∈ R2n, (13)

we have

φk(η, ξ) f̂ (η, ξ + tη) =
∑
l∈Z2n

φk(η, ξ)φk+l(η, ξ + tη) f̂ (η, ξ + tη). (14)

Note that
φk+l(η, ξ + tη) f̂ (η, ξ + tη)

in (14) is the same as the right hand side in (12), and

φk(η, ξ)φk+l(η, ξ + tη) = 0

leads to
φk(η, ξ)φk+l(η, ξ + tη) f̂ (η, ξ + tη) = 0.

Thus, we only need to consider the term in l for any fixed k such that

φk(η, ξ)φk+l(η, ξ + tη) , 0.

So the question is:

Question 2.1. Does the cardinality of l such that {l : φk(η, ξ)φk+l(η, ξ + tη) , 0} depends on k, and whether the
series converges in l?

Fortunately, it turns out l in Question 2.1 only depends on t, not on k, this fact needs geometric analysis
which could be translated into some inequalities. To be precise, we will prove a relation

□kU(t) f = F −1φk(η, ξ) ∗
( ∑

l∈E,#E≤5n·(5+2t)n

U(t)□k+l f
)
, (15)

where E = {l : supp φk(η, ξ) ∩ supp φk+l(η, ξ + tη) , ∅}, and #E denotes the cardinality of the set E.
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2.5. New unit decomposition

To achieve (15), we endeavor to prove a key lemma which translates the geometric structure in frequency
space to some elementary inequalities.

Lemma 2.2. For any η = (η1, η2, · · · , ηn), ξ = (ξ1, ξ2, · · · , ξn), k = (k1, k2, · · · , k2n), l = (l1, l2, · · · , l2n), t ∈ (0,∞),
we have ∑

l∈E,#E≤5n·(5+2t)n

φk(η, ξ)φk+l(η, ξ + tη) ≡ 1. (16)

Remark 2.3. k, l ∈ Z2n since (η, ξ) ∈ Rn
×Rn.

Proof. Note that

φk(η, ξ) · φk+l(η, ξ + tη) , 0 (17)

leads to {
|(η, ξ) − k|∞ ≤ 1,
|(η, ξ + tη) − k − l|∞ ≤ 1,

(18)

which implies that for any i = 1, 2, · · · ,n,
|ηi − ki| ≤ 1
|ξi − ki+n| ≤ 1
|ηi − ki − li| ≤ 1
|ξi + tηi − ki+n − li+n| ≤ 1.

(19)

From the first and the third inequalities in (19), we have −2 ≤ li ≤ 2. Combining the first, the second and
the last inequalities in (19) yields that

li+n ≤ ξi + tηi − ki+n + 1 ≤ tηi + 2 ≤ t(ki + 1) + 2, (20)

and

li+n ≥ −1 + ξi + tηi − ki+n ≥ −2 + tηi ≥ −2 + t(ki − 1), (21)

which means that for any (η, ξ) ∈ R2n, and t ∈ (0,∞),

−2 + t(ki − 1) ≤ li+n ≤ t(ki + 1) + 2.

Consequently, we prove that the number of l which enables (17) to be true is at most 5n
· (5 + 2t)n. Thus

Lemma 2.2 is complete.

Remark 2.4. We could not obtain #E ≤ 5 directly from −2 + tηi ≤ li+n ≤ 2 + tηi in Lemma 2.2 since for any chosen
i, ηi can vary depending on ki. Also, there is an interesting geometric picture hidden in this proof.

2.6. Proof of main theorem

With this fundamental important unit decomposition obtained in Lemma 2.2, we are ready to prove
Theroem 2.1.
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Proof. Since U(t) f = f (x − tv, v), taking the Fourier transform with respect to x and v, we have

FU(t) f = F f (x − tv, v)

=

∫
R2n

e−i(x·η+v·ξ) f (x − tv, v)dxdv

=

∫
R2n

e−i((x̃+tv)·η+v·ξ) f (x̃, v)dx̃dv

=

∫
R2n

e−i(x̃·η+(ξ+tη)·v) f (x̃, v)dx̃dv

= f̂ (η, ξ + tη),

(22)

where we applied the change of the variable x − tv = x̃ in the third line.
Note

F□kU(t) f =
∑
l∈E

φk(η, ξ)φk+l(η, ξ + tη) f̂ (η, ξ + tη), (23)

we have

□kU(t) f =
∑
l∈E

F
−1(φk(η, ξ)φk+l(η, ξ + tη) f̂ (η, ξ + tη))

= F −1φk(η, ξ) ∗ (
∑
l∈E

F
−1[(φk+l f̂ )(η, ξ + tη)])

= F −1φk(η, ξ) ∗ (
∑
l∈E

U(t)(□k+l f )).

(24)

Consequently,

∥□kU(t) f ∥L∞x L1
v
≤ ∥F

−1φk(η, ξ)∥L1
x,v

∑
l∈E

∥U(t)□k+l f ∥L∞x L1
v

⪯

∑
l∈E

1
|t|n
∥□k+l f ∥L1

xL∞v ,
(25)

where we applied Young’s inequality [1] and Lemma 4.1 in [5]. Taking the lq norm on both sides of (25) and
applying the resut in Lemma 2.2, we have∣∣∣∣∥□kU(t) f ∥L∞x L1

v

∣∣∣∣
lqk
⪯

1
|t|n

∣∣∣∣∑
l∈E

∥□k+l f ∥L1
xL∞v

∣∣∣∣
lqk

⪯
1
|t|n
· 5n
· (5 + 2t)n

∣∣∣∣∥□k f ∥L1
xL∞v

∣∣∣∣
lqk
,

(26)

which is equivalently to say that

∥U(t) f ∥M(∞,1),q ⪯
1
|t|n
∥ f ∥M(1,∞),q , if 0 < t < 1; (27)

and

∥U(t) f ∥M(∞,1),q ⪯ ∥ f ∥M(1,∞),q , if t ≥ 1. (28)

Thus, we end the proof of Theorem 2.1.

Remark 2.5. The dispersive estimate of kinetic transport equation in Besov spaces can refer to [2] , and its application
in other partial differential equations, such as shallow water waves equation, see [12, 13].
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(1993), 65-130.
[5] E. Y. Ovcharov, Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal. 43 (2011), 1282-1310.
[6] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977),

705-714.
[7] B. X. Wang, L. F. Zhao, B. L. Guo, Isometric decomposition operators, function spaces Eλp,q and their applications to nonlinear evolution

equations, J. Funct. Anal. 233 (2006), 1–39.
[8] B. X. Wang, Z. H. Huo, C. C. Hao, Z. H. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific

Publishing Co. Pte. Ltd., 2011.
[9] B. X. Wang, L. J. Han, C. Y. Huang, Global well-Posedness and scattering for the derivative nonlinear Schrödinger equation with small
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