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Abstract. A significant amount of elegant work has been accomplished in the study of partial isometries. In
this article, we introduce a new class of operators, referred to as the (k,m,n)-partial isometries, which extends
the concept of partial isometry. We delve into the most intriguing outcomes related to this class by extending
previously established results for partial isometries and by exploring new results on partial isometries. We
investigate the relationship of this new class of operators with classical notions of operators, such as partial
isometries, power partial isometries, paranormal, semi-regular, and quasi-Fredholm. Additionally, we
examine some fundamental properties and structure theorems of (k,m,n)-partial isometries. Furthermore,
we provide spectral properties of (k,m,n)-partial isometries.

1. Introduction and Notations

Throughout this paper, we use the notation H to refer to a complex Hilbert space endowed with the
inner product ⟨· , ·⟩ and the associated norm ∥ · ∥. We denote by B(H) the algebra of all bounded linear
operators defined on H . For an operator T ∈ B(H), we denote by R(T),N(T) and T∗ the range, the kernel
and the adjoint operator of T, respectively. For a given subspace F of H , the orthogonal subspace of F in
H is denoted by F⊥. Let T ∈ B(H), we define TF as the restriction of T to F viewed as a map from F into
H . If more F is invariant by T, we denote by T|F the restriction of T viewed as a map from F into F. We
denote byD the open unit disc of the complex plane, we useD and ∂D to denote respectively the closure
and boundary ofD.

An operator T onH is said to be an isometry if T∗T = I, where I is the identity operator onH . It is also
worth recalling that T ∈ B(H) is called a contraction if ∥T∥ ≤ 1, a co-isometry if T∗ is an isometry, and unitary
if T is an invertible isometry. A partial isometry T ∈ B(H) is an isometry on the orthogonal complement of
its kernel. It is evident that any partial isometry is a contraction, has a closed range, and its adjoint is also a
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partial isometry. Moreover, it is well known that T is a partial isometry if and only if TT∗T = T. Examples
of partial isometries include orthogonal projections, unitaries, isometries, co-isometries, and their direct
sums. Following Halmos, an operator T ∈ B(H) is called a power partial isometry if Tq is a partial isometry
for every q ≥ 1.

Partial isometries are a compelling class of operators that have applications in various fields, particularly
in quantum physics [7, 28]. The concept of quantization, which we mentioned earlier, is a well-established
concept in physics and shares similarities with the Jordan-Schwinger map. Instead of using creation-
annihilation operators, a model of quantization employs a countable family of orthogonal partial isometries
in a separable Hilbert space as its foundational elements (see [6]). In mathematics, partial isometries play
a significant role as they provide a well-explored extension of isometries. They have been instrumental in
operator theory, particularly in the theory of polar decomposition of operators and the dimension theory of
von Neumann algebras. Noteworthy contributions to this field have been made by Erdélyi [12, 13], Halmos,
and McLaughlin [23, 24], among others. For more comprehensive information on partial isometries in the
infinite-dimensional case, interested readers are encouraged to consult [4, 9, 14, 15, 19, 25, 31, 32, 35–38].
Additionally, references [16, 20, 21] provide insights into the finite-dimensional case.

Recently, the literature has seen various developments concerning the generalization of the class of par-
tial isometries in Hilbert spaces. Notable examples include NA-isometric operators [2], semi-generalized
partial isometries [19], and m-partial isometries [33, 34] in Hilbert spaces. There have also been investiga-
tions on partial isometries from the perspective of C∗-algebras [4]. In this paper, we address a closely related
problem of generalization and introduce a new class of operators with numerous properties. Specifically,
we define the following class of operators: for n, m ∈N and k ∈N\{0} such that n +m ≥ k,

k∆m,n = {T ∈ B(H) : TmT∗kTn = Tm+n−k
}.

An operator T ∈ k∆m,n is referred to as an (k,m,n)-partial isometry.

We see that 1∆0,1 (resp. 1∆1,0) corresponds to the set of all isometries (resp. co-isometries). Thus, 1∆1,0∩
1∆0,1

coincides with the set of unitary operators. Moreover, if we remove the condition n + m ≥ k, then 1∆0,0
will also correspond to the set of unitary operators. Additionally, we observe that 1∆1,1 is the set of partial
isometries. Clearly, for all n ∈N\{0}we have

1∆1,0 ∩
1∆0,1 ⫋

1∆0,1 ⫋
1∆1,1 ⫋

1∆1,n

and
1∆1,0 ∩

1∆0,1 ⫋
1∆1,0 ⫋

1∆1,1 ⫋
1∆n,1.

The contents of the paper are divided into four portions: an introduction and three sections. Section
2 provides some basic concepts and remarks that will be helpful in the subsequent sections. It includes
fundamental results needed for later sections and studies the connection of our new class of operators with
classical notions of operators, specifically partial isometries, isometries, co-isometries, unitary, normal,
self-adjoint operators, operators that possess a suitable power as a partial isometry, paranormal, and semi-
regular operators. This section provides a detailed introduction to (k,m,n)-partial isometries. Despite
being easily proven, Theorem 2.9 is central because many subsequent results are based on it. In Section
3, presentations of decompositions are provided. The last section is devoted to describing the spectral
picture of (k,m,n)-partial isometries, which is presented in detail after significant effort in Theorem 4.5 and
Theorem 4.6. The paper concludes with a beautiful unfamiliar result on spectral properties of classical partial
isometries. Several properties on (k,m,n)-partial isometries are proved, which result in a generalization
of well-known assertions on partial isometries. The reader is warned of the following: several results are
given for Tk. That is to say, by setting k = n = m = 1, well-known results on partial isometries can be
rediscovered. This serves as evidence that the class of (k,m,n)-partial isometries effectively generalizes the
class of partial isometries. It is also worth mentioning that we explore some new results on classical partial
isometries.
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2. Basic properties of (k,m, n)-partial isometries

This section begins by presenting several illustrative examples.

Example 2.1.

1) If P is an orthogonal projection (i.e., P2 = P = P∗), then for all n,m ∈ N and k ∈ N\{0} such that n + m ≥
k + 1,P ∈ k∆m,n.

2) If S is an orthogonal symmetry (i.e., S2 = I and S = S∗), then for all n,m ∈ N and k ∈ N\{0} such that n +m ≥
k,S ∈ k∆m,n.

3) If T is nilpotent of order k ∈N\{0}, then T ∈ k∆m,n, for all m,n ∈N such that m + n ≥ 2k.

4) If T is nilpotent of order n ∈N\{0}, then T ∈ k∆m,n, for all m ∈N and k ∈N\{0} such that m ≥ k.

5) If T is nilpotent of order m ∈N\{0}, then T ∈ k∆m,n, for all n ∈N and k ∈N\{0} such that n ≥ k.

6) LetH be a separable Hilbert space with an orthonormal basis (ei)i∈N. Define the operator T inH as follows:

T(ei) = ei+1, ∀ i ∈N.

Clearly, T∗(e0) = 0, T∗(ei) = ei−1, for all i ≥ 1, and so

TmT∗kTn(ei) = TmT∗k(ei+n) = Tm(ei+n−k) = ei+m+n−k = Tm+n−k(ei),

for all i,m ≥ 0 and n ≥ k ≥ 1. This implies that T ∈ k∆m,n, for all m ≥ 0 and n ≥ k ≥ 1.

Example 2.2.

1) Let T = 1
2

 0
√

3 −1
0 1

√
3

0 0 0

 . Then for all n ≥ 1,m ≥ 1, T ∈ 1∆m,n; but T < 1∆1,0 ∪
1∆0,1.

2) Let T =

 0 0 0
2 0 0
0 0 1

 . Then for all n ≥ 2,m ≥ 2, T ∈ 2∆m,n; but T < 1∆1,1.

3) Let A be an isometry and B be a partial isometry such that B∗A = 0. Put

T =
(

A B
0 0

)
.

Then for all m,n ≥ 1 one can check that T ∈ n∆m,n. If more B is not an isometry, then T < 1∆0,1.

We now offer several useful remarks.

Remark 2.3. Let T ∈ B(H) and n,m, k ∈N such that n +m ≥ k > 0.

1) k∆k,k = {T ∈ B(H) : TkT∗kTk = Tk
} = {T ∈ B(H) : Tk is a partial isometry}.

That is,
T ∈ k∆k,k ⇐⇒ Tk

∈
1∆1,1.

2) If T ∈ k∆m,n and α ∈ ∂D, then αT ∈ k∆m,n.

3) T ∈ k∆m,n if and only if T∗ ∈ k∆n,m.

4) k∆m,n ⊂
k∆r,q, for all r ≥ m, q ≥ n. In particular, 1∆1,1 ⊂

1∆m,n, for all m ≥ 1,n ≥ 1.
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Remark 2.4.

1) For n ∈N\{0}, n∆0,n = {T ∈ B(H) : T∗n Tn = I} = {T ∈ B(H) : Tn is an isometry}. Thus,

T ∈ n∆0,n ⇐⇒ Tn
∈

1∆0,1.

On the other hand, we know that if Tn is an isometry, then T is an isometry if and only if Tn+1 is an isometry. This
leads to

n∆0,n ∩
n+1∆0,n+1 =

1∆0,1.

2) For m ∈N\{0}, m∆m,0 = {T ∈ B(H) : Tm T∗m = I} = {T ∈ B(H) : Tm is a co-isometry}. Thus,

T ∈ m∆m,0 ⇐⇒ Tm
∈

1∆1,0,

and as T ∈ m∆m,0 if and only if T∗ ∈ m∆0,m, using 1) we infer that

m∆m,0 ∩
m+1∆m+1,0 =

1∆1,0.

3) For n ∈N\{0},
T ∈ n∆0,n ∩

n∆n,0 ⇐⇒ Tn is unitary
⇐⇒ Tn

∈
1∆0,1 ∩

1∆1,0 =
1∆0,0.

4) For n, m ∈ N\{0}, we note that if T ∈ m+n∆m,n = {T ∈ B(H) : Tm (T∗)(m+n) Tn = I}, then T is invertible and
T−(m+n) = (T∗)(m+n) (i.e. Tm+n is unitary). Now, if Tm+n is unitary, then T is invertible and

Tm (T∗)(m+n) Tn = T−n Tm+n (T∗)(m+n) Tn = T−nTn = I.

Hence, T ∈ m+n∆m,n. That is,

T ∈ m+n∆m,n ⇐⇒ Tm+n is unitary
⇐⇒ Tm+n

∈
1∆0,1 ∩

1∆1,0 =
1∆0,0.

5) For n, m ∈N\{0}, in view of the above we have

m+n∆m,n =
m+n∆0,m+n ∩

m+n∆m+n,0.

6) Let n ∈ N\{0}. Denoting by C = {T ∈ B(H) : ∥T∥ ≤ 1} the set of all contractions, we can combine 1) and 2)
along with [4, Remark 2.8], to obtain the following results:

n∆0,n ∩ C =
1∆0,1

and
n∆n,0 ∩ C =

1∆1,0.

Therefore, if a contraction T is both an (n, 0,n)-partial isometry and an (n,n, 0)-partial isometry, then T is unitary.

Recall that for T ∈ B(H), the ascent a(T) and descent d(T) are defined as follows: a(T) = inf{n ≥ 0 :
N(Tn) = N(Tn+1)} and d(T) = inf{n ≥ 0 : R(Tn) = R(Tn+1)}, respectively. If the sets in the infima are empty,
we take the infimum to be∞.

Remark 2.5. Let T ∈ B(H) and n,m, k ∈N such that n +m ≥ k > 0.

1) If T ∈ k∆m,n, with k > m, then N(Tn) = N(Tm+n−k), and thus a(T) ≤ n.

2) If T ∈ k∆m,n, with k > n, then R(Tm) = R(Tm+n−k), and thus d(T) ≤ m.
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Here we investigate the relationship between (k,m,n)-partial isometries and classical isometries, co-
isometries, partial isometries, and unitary operators.

Proposition 2.6.

1) If T ∈ B(H) such that Tk is a partial isometry, then T ∈ k∆m,n, for all n ≥ k,m ≥ k. Thus,

k∆k,k ⊂
⋂

m,n∈N
n≥k,m≥k

k∆m,n.

2) If T is an isometry, then T ∈ k∆m,n, for all n ≥ k. Thus,

1∆0,1 ⊂

⋂
m,n∈N

n≥k

k∆m,n.

3) If T is a co-isometry, then T ∈ k∆m,n, for all m ≥ k. Thus,

1∆1,0 ⊂

⋂
m,n∈N

m≥k

k∆m,n.

4) If T is unitary, then T ∈ k∆m,n. Thus,
1∆1,0 ∩

1∆0,1 ⊂

⋂
m+n≥k

k∆m,n.

5) If N(T∗) ⊂ N(T), then
T ∈ 1∆0,2 =⇒ Tis a partial isometry.

6) If N(T) ⊂ N(T∗), then
T ∈ 1∆2,0 =⇒ Tis a partial isometry.

Proof.
1) For all n ≥ k,m ≥ k, one has

TmT∗kTn = Tm−kTkT∗kTkTn−k = Tm−kTkTn−k = Tn+m−k.

This implies that T ∈ k∆m,n, for all n ≥ k,m ≥ k.

2) For all n ≥ k, one has
TmT∗kTn = TmT∗kTkTn−k = Tm+n−k.

This leads to T ∈ k∆m,n, for all n ≥ k.

3) Evident from 2) and assertion 3) of Remark 2.3.

4) Since T is unitary, we have T∗kTk = I,which implies that TmT∗kTkTn = Tm+n. This equation, together with
the invertibility of T, implies that T ∈ k∆m,n.

5) Since T ∈ 1∆0,2, it follows that T∗2T = T∗. Hence, we have R(T∗T − I) ⊂ N(T∗) ⊂ N(T). Therefore, we obtain
TT∗T = T.

6) As T is a partial isometry if and only if T∗ is also a partial isometry, this assertion can be proven through
duality using 5). Therefore, the proof is complete. □

Let S,T ∈ B(H). Recall that S and T are double commuting, or, equivalently, S,T is a double commuting
pair, if ST = TS and S∗T = TS∗. The reader will easily prove the next basic properties.
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Proposition 2.7. Let T, S ∈ B(H) and n,m, k ∈N\{0} such that n +m ≥ k.

1) If S and T are double commuting,

T ∈ k∆m,n, S ∈ k∆m,n =⇒ ST ∈ k∆m,n.

2) If S is an isometry,
T ∈ k∆m,n ⇐⇒ STS∗ ∈ k∆m,n.

3) If S is a co-isometry,

T ∈ k∆m,n ⇐⇒ S∗TS ∈ k∆m,n, when n,m, k ≥ 1 and n +m ≥ k.

If furthermore S and T are double commuting,

T ∈ k∆m,n =⇒ ST ∈ k∆m,n, when m ≥ k.

4) If U is unitary,
T ∈ k∆m,n ⇐⇒ U∗TU ∈ k∆m,n.

In the theorem that follows, we demonstrate that a normal contractive (1,m,n)-partial isometry, a
compact self-adjoint (k,m,n)-partial isometry, or a contractive self-adjoint (k,m,n)-partial isometry is in fact
a partial isometry.

Theorem 2.8. Let T ∈ B(H), n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) If T is a normal contraction and T ∈ k∆m,n, then Tk is a partial isometry.

2) If T is self-adjoint and T ∈ k∆m,n, then T2k+1 = T. In particular, Tk is a partial isometry. If furthermore T is a
contraction, then T is a partial isometry.

3) If T is a compact self-adjoint operator and T ∈ k∆m,n, then T3 = T. In particular T is a partial isometry.

4) If T is skew-adjoint and T ∈ k∆m,n, then (−1)kT2k+1 = T. In particular Tk and T2k are partial isometries.

5) If T is a compact skew-adjoint operator and T ∈ k∆m,n, then T3+T = 0. In particular T and T2 are partial isometries.

Proof. Since k ≥ 1, it follows that either m ≥ 1 or n ≥ 1.Note that without loss of generality, we can assume
that m ≥ 1.
1) Since T is a contraction, Tk is also a contraction. This implies that I − T∗kTk is positive. It follows that
its positive square root S := (I − T∗kTk)

1
2 exists. Since T is normal and T ∈ k∆m,n, we have R((T∗kTk

− I)Tn) ⊂
N(Tm) = N(T). Therefore, T∗n(T∗kTk

− I)T∗ = 0. As T∗ is normal, we obtain TT∗kTk+1 = T2. Consequently,
T∗TS2T∗T = T∗(TS2T)T∗ = 0 and so 0 = ∥T∗TS2T∗T∥ = ∥T∗TS∥2. Hence, TT∗kTk = T.Multipling this equation
by Tk−1 from the left side, we get that Tk is a partial isometry.

2) Since T is self-adjoint and T ∈ k∆m,n, R(T2k
− I) ⊂ N(Tm+n) = N(T). So, T2k+1 = T. This implies that Tk is a

partial isometry. If more T is a contraction, then using [4, Corollary 2.5] we get that T is a partial isometry.

3) Since T is a compact self-adjoint operator, it is diagonalizable, and its eigenvalues are real (see [8, Theorem
6.11]). Let λ be an eigenvalue of T. From assertion 2),we have λ2k+1 = λ,which implies λ belongs to the set
{0, 1,−1}. Consequently, we have T3 = T.

4) and 5) Since T is skew-adjoint, iT and T2 are self-adjoint. These assertions follow from 2) and 3). This
completes the proof. □

The next theorem and its corollary provide very useful results on (k,m,n)-partial isometries.
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Theorem 2.9. Let T ∈ B(H) and n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) If T is injective or k = m, then
T ∈ k∆m,n ⇐⇒ TkT∗k

|R(Tn)
= I
|R(Tn).

2) If the range of T is dense or k = n, then

T ∈ k∆m,n ⇐⇒ T∗kTk
|N(Tm)⊥ = I|N(Tm)⊥ .

3) If T is bijective, then
T ∈ k∆m,n ⇐⇒ Tk is unitary ⇐⇒ Tk

∈
1∆0,1 ∩

1∆1,0 =
1∆0,0.

4) If T ∈ k∆m,n with k > m, then TkT∗k
|R(Tn)

= I
|R(Tn).

5) If T ∈ k∆m,n with k > n, then T∗kTk
|N(Tm)⊥ = I|N(Tm)⊥ .

Proof. 1) ”=⇒” Let T ∈ k∆m,n. Then TmTkT∗kTn = Tn+m. In the first case, when T is injective, we obtain
TkT∗kTn = Tn. By continuity, we can conclude that TkT∗k

|R(Tn)
= I
|R(Tn).

We again consider T ∈ k∆m,n. In the second case, where k = m, it can be observed directly that TkT∗kTn = Tn.
Hence the result can be deduced as in the first case.
”⇐=” Let x ∈ H . Then, Tn(x) ∈ R(Tn) ⊂ R(Tn). By hypothesis we get, TkT∗kTn(x) = Tn(x). Hence, TkT∗kTn =
Tn. If k = m, then by definition T ∈ k∆m,n. In the case where T is injective, by multiplication by Tm, we get
TkTmT∗kTn = Tm+n = TkTm+n−k. Thus, T ∈ k∆m,n.

2) From assertion 3) in Remark 2.3, together with 1) and duality, we can obtain the desired conclusion.

3) Follows directly from the previous assertions.

4) Using 4) in Remark 2.3, we can conclude T ∈ k∆k,n, which means TkT∗kTn = Tn. As in 1), we obtain that
R(Tn) is a reducing subspace of TkT∗k, and TkT∗k

|R(Tn)
= I
|R(Tn).

5) The desired result follows from 4) and assertion 3) in Remark 2.3. Therefore, the theorem is proven. □

Corollary 2.10. Let T ∈ B(H) and n,m ∈N and k ∈N such that n +m ≥ k.

1) Suppose that R(Tn) is a reducing subspace of T. If T is injective or k = m, then

T ∈ k∆m,n ⇐⇒ Tk
|R(Tn)

is a co-isometry.

2) Suppose that N(Tm) is a reducing subspace of T. If the range of T is dense or k = n, then

T ∈ k∆m,n ⇐⇒ Tk
|N(Tm)⊥ is an isometry.

3) If R(Tn) is a reducing subspace of T, then

T ∈ k∆m,n with k > m =⇒ Tk
|R(Tn)

is a co-isometry.

4) If N(Tm) is a reducing subspace of T, then

T ∈ k∆m,n with k > n =⇒ Tk
|N(Tm)⊥ is an isometry.
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As stated in the introduction, it is known that if T is a partial isometry, then

∥Tx∥ = ∥x∥, ∀x ∈ N(T)⊥

and
∥T∗x∥ = ∥x∥, ∀x ∈ R(T).

Now, we extend this result to (k,m,n)-partial isometries, where n,m ∈N and k ∈N\{0} such that n+m ≥ k.
This is achieved through the following corollary.

Corollary 2.11. Let T ∈ B(H) and n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) Suppose that T is injective or k ≥ m, then

T ∈ k∆m,n =⇒ ∥T∗kx∥ = ∥x∥, ∀ x ∈ R(Tkn).

2) Suppose that the range of T is dense or k ≥ n, then

T ∈ k∆m,n =⇒ ∥Tkx∥ = ∥x∥, ∀ x ∈ N(Tkn)⊥.

Proof. 1) From Theorem 2.9, the subspace R(Tkn) is a reducing subspace of TkT∗k and

∥T∗kx∥2 = ⟨TkT∗kx , x⟩ = ⟨x , x⟩ = ∥x∥2, ∀ x ∈ R(Tkn).

2) follows from 1) and assertion 3) of Remark 2.3 by duality. This completes the proof. □

The class of power partial isometries has received significant attention in the literature. A detailed
description of the structure of power partial isometries is provided in [14, 24]. It is easy to observe that Tk

is a partial isometry if and only if T is a (k, k, k)-partial isometry. In the following corollary, we present a
necessary and sufficient condition to ensure that Tk is a partial isometry when T is a (k,m,n)-partial isometry.

Corollary 2.12. Let T ∈ B(H) and n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) If T ∈ k∆m,n with k ≥ m, then

Tk is a partial isometry ⇐⇒ ∥T∗kx∥ = ∥x∥, ∀ x ∈ R(Tn)⊥ ∩ R(Tk).

2) T ∈ k∆m,n with k ≥ n, then

Tk is a partial isometry ⇐⇒ ∥Tkx∥ = ∥x∥, ∀ x ∈ N(Tm) ∩ N(Tk)⊥.

Proof. 1) The direct implication follows from the fact that Tk is a partial isometry if and only if T∗k is
also a partial isometry. Now assume that ∥T∗kx∥ = ∥x∥ for all x ∈ R(Tn)⊥ ∩ R(Tk). Since T ∈ k∆m,n and
k ≥ m, according to Theorem 2.9, we have TkT∗kTn = Tn, which implies R(Tn) ⊂ R(Tk). Using the fact that
H = R(Tn)⊥ ⊕ R(Tn),we obtain the decomposition

R(Tk) = R(Tn)⊥ ∩ R(Tk) ⊕ R(Tn).

It is clear that R(Tk), R(Tn)⊥ ∩ R(Tk) and R(Tn) are reducing subspaces of TkT∗k. Writing x = y + z ∈
R(Tn)⊥ ∩ R(Tk) ⊕ R(Tn) = R(Tk),we have

∥T∗kx∥2 = ⟨TkT∗ky , y⟩ + ⟨TkT∗kz , z⟩
= ∥T∗ky∥2 + ∥T∗kz∥2

= ∥y∥2 + ∥z∥2 = ∥x∥2.

Therefore T∗k (and hence Tk) is a partial isometry.
2) This assertion follows from 1) and assertion 3) of Remark 2.3. This completes the proof. □

Thanks to [30, Corollary 3.2], we know that a non-zero (1, 1, 1)-partial isometry has a closed range and a
norm of 1. In the following propositions, we extend these results to Tk when T is a (k,m,n)-partial isometry.
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Proposition 2.13. Let T ∈ B(H) and n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) Assume that T ∈ k∆m,n,with k ≥ m. Then

T∗k(R(Tn)) ⊥ T∗k(R(Tn)⊥).

If furthermore Tn , 0, then

∥Tk
∥ = max{1, ∥T∗kR(Tn)⊥∥}.

2) Assume that T ∈ k∆m,n,with k ≥ n. Then

Tk(N(Tm)⊥) ⊥ Tk(N(Tm)).

If furthermore Tm , 0, then

∥Tk
∥ = max{1, ∥Tk

N(Tm)∥}.

Proof. 1) Consider x ∈ R(Tn), y ∈ R(Tn)⊥ and z = x + y. By Theorem 2.9, we know that R(Tn) is a reducing
subspace of TkT∗k. This leads to

∥T∗k(x + y)∥2 = ⟨TkT∗kx, x⟩ + ⟨TkT∗ky, y⟩
= ∥T∗kx∥2 + ∥T∗ky∥2.

Therefore, we infer that T∗k(R(Tn)) ⊥ T∗k(R(Tn)⊥). Furthermore, we have

∥T∗kz∥2 = ∥x∥2 + ∥T∗ky∥2 ≤ max{1, ∥T∗kR(Tn)⊥∥
2
}∥z∥2.

Hence, max{1, ∥T∗kR(Tn)⊥∥} ≥ ∥T
∗k
∥ = ∥Tk.∥

On the other hand, we have
∥Tn
∥ = ∥TkT∗kTn

∥ ≤ ∥Tn
∥∥Tk
∥

2.

Therefore, if Tn , 0; then 1 ≤ ∥Tk
∥. Thus, max{1, ∥T∗kR(Tn)⊥∥} ≤ ∥T

k
∥.

2) The result follows from 1) and assertion 3) of Remark 2.3. Thus, the proof is complete. □

Remark 2.14. If T ∈ k∆m,n and T is a non-zero hyponormal operator, then ∥T∥ ≥ 1. Indeed, since TmTkT∗kTn = Tn+m

and T is hyponormal, we can deduce that ∥T∥m+n = ∥Tm+n
∥ ≤ ∥T∥m+n

∥T∥2k. Therefore, the result follows.

Proposition 2.15. Let T ∈ B(H) and n,m, k ∈N such that n +m ≥ k.

1) If T ∈ k∆m,n with k ≥ m, then T∗k(R(Tn)) is closed and

R(Tk) is closed ⇐⇒ R(T∗k
R(Tn)

⊥ ) is closed.

In particular, if codim R(Tn) < +∞, then Tk is right semi-Fredholm.

2) If T ∈ k∆m,n with k ≥ n, then Tk(N(Tm)⊥) is closed and

R(Tk) is closed ⇐⇒ R(Tk
N(Tm)) is closed.

In particular, if dim N(Tm) < +∞, then Tk is left semi-Fredholm.
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Proof. 1) First, it should be noted that it is well-known that an operator has a closed range if and only if
its adjoint also has a closed range. Since R(Tn) is closed and based on the fact that ∥T∗k(x)∥ = ∥x∥ for every
x ∈ R(Tn), it follows that T∗k(R(Tn)) is also closed. By using the fact that

R(T∗k) = T∗k(R(Tn)) + T∗k(R(Tn)⊥),

we obtain the equivalence
R(T∗k) is closed ⇐⇒ R(T∗kR(Tn)⊥

) is closed.

Notice that if codim R(Tn) < +∞, then we can use the fact that R(Tn) ⊂ R(Tk) to conclude that
codim R(Tk) < +∞ and R(T∗k) is closed. Consequently, Tk is right semi-Fredholm (see [27, Theorem
5.1]).
2) By duality, we obtain this assertion. Therefore, the proof is complete. □

3. Structure theorems of (k,m, n)-partial isometries

For n,m ∈ N and k ∈ N\{0} such that n + m ≥ k, we begin this section by a decomposition theorem for
Tk when T is a (k,m,n)-partial isometry.

Theorem 3.1. Let n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) Let T be a (k,m,n)-partial isometry. Assume that T is injective or k ≥ m. Then there exist P ∈ B(H), a partial
isometry, andN ∈ B(H), a nilpotent operator of degree n, such that

Tk = P +N , NP∗ = NP = N ∗P = 0.

2) Let T be a (k,m,n)-partial isometry. Assume that the range of T is dense or k ≥ n. Then there exist P ∈ B(H), a
partial isometry, andN ∈ B(H), a nilpotent operator of degree m, such that

Tk = P +N , PN = N ∗P = NP∗ = 0.

Proof. 1) Consider the orthogonal projection Q ∈ B(H) onto R(Tkn)⊥. Let P = T∗k(I − Q) and N = T∗kQ.
From Theorem 2.9,we have TkT∗k

|R(Tkn)
= I
|R(Tkn). It follows that

N
∗
P = PN = NP∗ = 0,

QT∗kQ = T∗kQ

and therefore
N

n = T∗knQ = 0.

Moreover, we have
PP

∗
P = T∗k(I −Q)TkT∗k(I −Q) = T∗k(I −Q) = P.

SinceN is a nilpotent operator of degree n (respectively,P is a partial isometry) if and only ifN ∗ a nilpotent
operator of degree n (respectively, P∗ is a partial isometry), we obtain the first assertion.
2) The result follows from 1) and assertion 3) of Remark 2.3. This completes the proof. □

Following Apostol (see [3]), an operator T on a Hilbert spaceH is said to be quasi-commuting if

lim
n→+∞

∥T∗Tn
− TnT∗∥

1
n = 0.
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If this condition holds, it is easy to see that T∗ also satisfies the same condition. Furthermore, T satisfies an
even weaker point-wise condition:

lim
n→+∞

∥(T∗Tn
− TnT∗)x∥

1
n = 0, ∀ x ∈ H .

Consider the set
H0 :=

{
x ∈ H : lim

n→+∞
∥Tnx∥

1
n = 0

}
.

It is straightforward to observe thatH0 is a subspace ofH and is hyperinvariant for T.

The subsequent property represents one of the key characteristics ofH0.

Lemma 3.2 ([3, 13]). Let T ∈ B(H) be a quasi-commuting operator. ThenH0 is a reducing subspace of T and T
|H0

⊥

is normal.

It is evident that every partial isometry for which its kernel is a reducing subspace can be written as a
direct sum of an isometry and a zero operator. In the following, we extend this result to (k,m,n)-partial
isometries.

Theorem 3.3. Let n,m ∈ N and k ∈ N\{0} such that n +m ≥ k ≥ n. Let T ∈ B(H) such that N(Tm) is a reducing
subspace of T. If T is a (k,m,n)-partial isometry, then T is decomposed by N(Tm)⊥ and N(Tm) in the direct sum

T = S ⊕N ,

where Sk is an isometry and N is nilpotent of degree m. If furthermore T is a quasi-commuting operator, then Sk is
unitary.

Proof. It is clear that N = T|N(Tm) is a nilpotent operator of degree m, and if we consider S = T|N(Tm)⊥ , then
by Corollary 2.10, Sk is an isometry. Now, let us prove that H0 = N(Tm). Let x ∈ H0 and write x = x0 + x1
with x0 ∈ N(Tm) and x1 ∈ N(Tm)⊥. AsN is nilpotent and Skq is an isometry for all q ∈N,we have

lim
q→+∞

∥x1∥
1
q = lim

q→+∞
∥S

kqx1∥
1
q = lim

q→+∞
(∥Tkqx∥

1
kq )k = 0.

Therefore x1 = 0 and soH0 = N(Tm).
If T is also quasi-commuting, then Lemma 3.2 implies that Sk is unitary. Thus, the proof is complete. □

As is customary, the next corollary can be obtained by duality.

Corollary 3.4. Let n,m ∈N and k ∈N\{0} such that n +m ≥ k ≥ m. Let T ∈ B(H) such that R(Tn) is a reducing
subspace of T. If T is a (k,m,n)-partial isometry, then T is decomposed by R(Tn) and R(Tn)⊥ in the direct sum

T = S ⊕N ,

where Sk is a co-isometry andN is nilpotent of degree n. If more T is a quasi-commuting operator, then Sk is unitary.

Recall that an operator T ∈ B(H) is said to be semi-regular if

N∞(T) ⊂ R∞(T) and R(T) is closed,

where N∞(T) =
⋃

n∈N
N(Tn) and R∞(T) =

⋂
n∈N

R(Tn) are respectively the generalized kernel and generalized

range of T. For more information on these concepts, we refer to the book [1]. In particular, the following
statements are very useful.

Lemma 3.5. Let T ∈ B(H) be a semi-regular operator. Then
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1) T∗ is also semi-regular.

2) R∞(T) is closed.

3) R∞(T)⊥ = N∞(T∗), T(N∞(T)) = N∞(T) and T(R∞(T)) = R∞(T).

We will use the next lemma in the proof of Theorem 3.7.

Lemma 3.6. Let T ∈ B(H) and n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) Assume that T ∈ k∆m,n, with T is surjective or k ≥ n. If T is semi-regular, then R∞(T) and N∞(T) are reducing
subspaces for Tk.

2) Assume that T ∈ k∆m,n, with T is injective or k ≥ m. If T is semi-regular, then R∞(T) and N∞(T) are reducing
subspaces for Tk.

The proof of Lemma 3.6 -a delightful exercise- is left to the reader.

Theorem 3.7. Let T ∈ B(H) be a semi-regular operator. Let n,m ∈N and k ∈N\{0} such that n +m ≥ k.

1) Let T be a (k,m,n)-partial isometry. Assume that T is surjective or k ≥ n. Then Tk is decomposed following
H = N∞(T)⊥ ⊕ N∞(T) (resp. H = R∞(T)⊥ ⊕ R∞(T)) on the direct sum

Tk = S ⊕V,

where S is an isometry andV is surjective. Furthermore,

Tk is a partial isometry if and only if V is a co-isometry.

In this case, Tk is a semi-regular power partial isometry.

2) Let T be a (k,m,n)-partial isometry. Assume that T is injective or k ≥ m. Then Tk is decomposed following
H = R∞(T) ⊕ R∞(T)⊥ (resp. H = N∞(T) ⊕ N∞(T)⊥) on the direct sum

Tk = S ⊕V,

where S is co-isometry andV is injective. Furthermore,

Tk is a partial isometry if and only if V is an isometry.

In this case, Tk is a semi-regular power partial isometry.

Proof. First note that as R∞(T) is closed, then we can write

H = R∞(T) ⊕ R∞(T)⊥ = N∞(T) ⊕ N∞(T)⊥.

Consider M = R∞(T) and N = R∞(T)⊥ (resp. M = N∞(T) and N = N∞(T)⊥).

1) From Lemma 3.6, M and N are reducing subspaces for Tk. Let S = Tk
|N and V = Tk

|M. By Lemma 3.5, it
follows thatV is surjective. Also, since N ⊂ N(Tm)⊥, according to Theorem 2.9,we have S∗S = I.Now if Tk

is a partial isometry, then

S ⊕V = Tk = TkT∗kTk = SS∗S ⊕VV∗V = S ⊕VV∗V.
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This implies thatV is a partial isometry, and the surjectivity ofV forces thatV is a co-isometry. IfV is a
co-isometry, then

TkpT∗kpTkp = Sp
S
∗p
S

p
⊕V

p
V
∗p
V

p = Sp
⊕V

p = Tkp, ∀ p ≥ 1.

We claim that R(Tk) is closed because the range of any partial isometry is closed.Moreover,

N∞(Tk) = N∞(T) ⊂ R∞(T) = R∞(Tk).

Hence, Tk is semi-regular.

2) As is customary, we obtain this assertion by duality from 1) and assertion 3) of Remark 2.3. This completes
the proof of the theorem. □

As mentioned in the introduction, familiar examples of partial isometries include isometries, co-
isometries, and their direct sums. Taking k = m = n = 1 in the previous theorem is sufficient to derive the
following corollary.

Corollary 3.8. If T ∈ B(H) is a semi-regular operator, then T is a partial isometry if and only if T = S⊕V for some
isometric operator S and co-isometric operatorV.

Labrousse in [29] has introduced the class of quasi-Fredholm operators which contains many operators
already studied in the litterature, such semi-Fredholm operators. An operator T is said to be quasi-Fredholm
of degree d if the following conditions are satisfied:

(1) For all n greater than d,R (Tn) ∩ N(T) = R
(
Td

)
∩ N(T);

(2) N(T) ∩ R
(
Td

)
is closed inH ;

(3) R(T) + N
(
Td

)
is closed inH .

Following Labrousse, an operator T ∈ B(H) is called paranormal if lim
n→+∞

∥Tn∥
1
n = 0 where (Tn)n∈N is defined

as follows

T0 = T∗ and T j+1 = i(TTk − TkT), for all k ∈N.

The following theorem describes the structure of Tk when T is a (k,m,n)-partial isometry that is both
paranormal and quasi-Fredholm.

Theorem 3.9. Let n,m ∈N, k ∈N\{0} such that n+m ≥ k ≥ n and T ∈ k∆m,n. If T is paranormal and quasi-Fredholm
of degree d, then it can be decomposed as

Tk = S ⊕ R ⊕N ,

where S is an isometry, R is surjective andN is nilpotent of degree dk, with kdk ≥ d.

Proof. Referring to [29, Theorem 3.2.1, Proposition 5.4.4] we can write T = V ⊕A, for some semi-regular
operator V and some nilpotent operator A of degree d. It is no difficult to see that V is a (k,m,n)-partial
isometry. Thus, by Theorem 3.7, we infer thatVk = S ⊕ R, with S is an isometry and R is surjective. This
completes the proof. □

Corollary 3.10. Let T ∈ B(H) be a paranormal and quasi-Fredholm operator of degree d. If T is a partial isometry,
then it can be decomposed as

T = S ⊕ R ⊕N ,

where S is an isometry, R is a surjective operator, andN is nilpotent of degree d.
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By combining [29, Proposition 3.3.5, Remark in page 245], Theorem 3.9 and Corollary 3.10, we can obtain
the following corollaries by duality:

Corollary 3.11. Let n,m ∈ N, k ∈ N\{0} such that n + m ≥ k ≥ m and T ∈ k∆m,n. If T is paranormal and
quasi-Fredholm of degree d, then

Tk = S ⊕ R ⊕N ,

where S is a co-isometry, R is injective andN is nilpotent of degree dk, with kdk ≥ d.

Corollary 3.12. Let T ∈ B(H) be a paranormal and quasi-Fredholm operator of degree d. If T is a partial isometry,
then it can be decomposed as

T = S ⊕ R ⊕N ,

where S is a co-isometry, R is an injective operator andN is nilpotent of degree d.

4. Spectral properties of (k,m, n)-partial isometries

The spectrum σ(T) of an operator T ∈ B(H) is the set of all scalars λ in C for which the operator λI − T
fails to be an invertible element of the algebra B(H). And so,

σ(T) = {λ ∈ C : N(λI − T) , {0} or R(λI − T) , H}.

The set σp(T) of those λ for which the operator λI − T is not injective is the point spectrum of T,

σp(T) = {λ ∈ C : N(λI − T) , {0}}.

Thus the point spectrum of T is precisely the set of all eigenvalues of T. There is another overlapping part
of the spectrum which is commonly used, namely the approximate point spectrum σap(T), which is defined
by

σap(T) =
{
λ ∈ C : ∃ (xn)n∈N ∈ H , ∥xn∥ = 1, (λI − T)xn −→

n→+∞
0
}
.

A fundamental property of the spectrum of an operator on a complex Hilbert space is that it is a non-empty
compact subset of C. Additionally, the approximate point spectrum σap(T) is a non-empty closed subset of
C that contains the boundary ∂σ(T) of the spectrum σ(T). Furthermore, we have σp(T) ⊂ σap(T) ⊂ σ(T).

Of course if T is a nilpotent (k,m,n)-partial isometry such that k ≥ m or k ≥ n, then

σap(T) = σp(T) = σ(T) = {0}.

If k ≥ m or k ≥ n, from Proposition 2.13 the norm of a non-nilpotent (k,m,n)-partial isometry is greater than
or equal to 1. In the sequel, let T be a non-nilpotent (k,m,n)-partial isometry such that k ≥ m or k ≥ n.We
denote by

ΓT =
{
λ ∈ C :

1
∥T∥
≤ |λ| ≤ ∥T∥

}
.

Here are some useful Lemmas.

Lemma 4.1. Let T ∈ B(H) be a quasi-commuting operator. Then for all q ∈ N, Tq is also a quasi-commuting
operator.
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Proof. We have the identity

T∗2T2n
− T2nT∗2 = T∗(T∗T2n

− T2nT∗) + (T∗T2n
− T2nT∗)T∗,

which implies that
∥T∗2T2n

− T2nT∗2∥ ≤ 2∥T∥∥T∗T2n
− T2nT∗∥.

Therefore, T2 is quasi-commuting.
Similarly, we have

T∗3T3n
− T3nT∗3 = T∗2(T∗T3n

− T3nT∗) + (T∗T3n
− T3nT∗)T∗2 + T∗(T∗T3n

− T3nT∗)T∗,

which leads to
∥T∗3T3n

− T3nT∗3∥ ≤ 3∥T∥2∥T∗T3n
− T3nT∗∥.

Hence, T3 is quasi-commuting. More generally, we can see that

T∗qTqn
− TqnT∗q =

q−1∑
k=0

T∗k(T∗Tqn
− TqnT∗)(T∗)(q−1−k).

Consequently, we have ∥T∗qTpn
− TqnT∗q∥ ≤ q∥T∥q−1

∥T∗Tqn
− TqnT∗∥. This proves that Tq is quasi-commuting.

Therefore, the proof is complete. □

Lemma 4.2. Let n,m ∈ N, k ∈ N\{0} such that n +m ≥ k ≥ n, and let T ∈ B(H) be a quasi-commuting operator.
If T ∈ k∆m,n, then σp(T) ⊂ ΓT ∪ {0}.

Proof. Let λ ∈ σp(T)\{0} and x be a non-zero vector such that Tx = λx. Since k ≥ n, we have TiT∗kTk =

Ti, for all i ≥ m, as shown in Theorem 2.9. Furthermore, since T is quasi-commuting, it follows from Lemma
4.1 that Tk is also quasi-commuting. This leads to

0 = lim
ℓ→+∞

∥T∗kTkℓx − TkℓT∗kx∥
1
ℓ = lim

ℓ→+∞
∥λkℓT∗kx − λ−kTkℓT∗kTkx∥

1
ℓ

= lim
ℓ→+∞

∥λkℓT∗kx − λ−kTkℓx∥
1
ℓ

= |λ|k lim
ℓ→+∞

∥T∗kx − λ−kx∥
1
ℓ .

We can infer that T∗kx = λ−kx, thus λ−k
∈ σ(T∗k). Hence, |λ| ≤ ∥T∥ and |λ−k

| ≤ ∥T∗k∥ ≤ ∥T∗∥k = ∥T∥k. This
implies that λ ∈ ΓT. Therefore, the proof is complete. □

Lemma 4.3. Let n,m ∈ N, k ∈ N\{0} such that n +m ≥ k ≥ n, and let T ∈ B(H) be a quasi-commuting operator.
If T ∈ k∆m,n, then σap(T) ⊂ ΓT ∪ {0}.

Proof. In [5], S. K. Berberian constructed a certain extension of a Hilbert spaceH to a Hilbert spaceL,which
reduces the problem of the approximate point spectrum of an operator T onH to the point spectrum problem
of T′ on L. It is evident to see that the properties of quasi-commutativity and (k,m,n)-partial isometry are
inherited by T′.Hence, Lemma 4.2 and [5, Theorem 1] imply that σap(T) = σp(T′) ⊂ Γ′T ∪ {0} = ΓT ∪ {0}. This
completes the proof. □

The following result provides a new structure theorem for (k,m,n)-partial isometries.

Theorem 4.4. Let n,m ∈ N, k ∈ N\{0} such that n + m ≥ k and either k ≥ n or k ≥ m. Let T ∈ B(H) be a
quasi-commuting operator. If T ∈ k∆m,n, then T = U ⊕ N, where U is an operator such that Uk is unitary and N is
quasinilpotent.



M. A. Aouichaoui, H. Skhiri / Filomat 37:28 (2023), 9595–9612 9610

Proof. Without loss of generality we may assume that k ≥ n. Let N = T
|H0

and U = T|H⊥0 .
Since H0 is a reducing subspace for T, the properties of of quasi-commutativity and (k,m,n)-partial

isometry are inherited by N. By applying [13, Theorem 6] and Lemma 4.3, we obtain that σ(N) ⊂ ΓN ∪ {0}.
Therefore, 0 is an isolated point of the spectrum, and using [13, Theorem 2], we conclude that N is
quasinilpotent.

On the other hand, Lemma 3.2 states that know U is normal. Moreover, sinceH⊥0 ⊂ N(Tp)⊥ for all p ∈N,
it follows from Theorem 2.9 that Uk is unitary. □

What might the spectrum of a partial isometry be? Since a partial isometry is a contraction, its spectrum
is included in the closed unit disc. If we moreover impose to a partial isometry to be quasi-commuting,
then its approximate point spectrum (and so its point spectrum) is a subset of union of the unit circle and
the singleton {0} (see [13, Theorems 3 and 4]). The goal of the following theorem is to demonstrate that this
outcome stays substantial for (k,m,n)-partial isometries.

Theorem 4.5. Let n,m ∈ N, k ∈ N\{0} such that n + m ≥ k and either k ≥ n or k ≥ m. Let T ∈ B(H) be a
quasi-commuting operator. If T ∈ k∆m,n, then

1) σ(T) ⊂ D,

2) σap(T) ⊂ ∂D ∪ {0}. In particular, σp(T) ⊂ ∂D ∪ {0}.

Proof. By Theorem 4.4, we can express T as T = U ⊕N, where N is quasinilpotent and Uk is unitary. Since
Uk
∈ C and σ(Nk) = {0},we have

{λk : λ ∈ σ(T)} = σ(Tk) = σ(Uk) ∪ σ(Nk) ⊂ D.

This implies that
σ(T) ⊂ D.

To prove the second assertion, observe that:

σap(Tk) = σap(Uk) ∪ σap(Nk).

Since ∥T∗Tn
− TnT∗∥ ≥ ∥U∗Un

− UnU∗∥, it follows that U is quasi-commuting, and therefore Uk is as well.
Referring to [13, Theorems 3 and 4], we conclude that

σap(Uk) ⊂ ∂D.

As σap(Nk) = {0},we have:
σap(Tk) ⊂ ∂D ∪ {0}.

This implies that σap(T) ⊂ ∂D ∪ {0},which completes the proof. □
Here we present an improved version of the previous result under a new condition.

Theorem 4.6. Let n,m ∈N, k ∈N\{0} such that n +m ≥ k. Let T ∈ B(H) such that N(Tm) ⊥ R(Tn).

1) Assume that T ∈ k∆m,n,with k ≥ n. Then

a) σap(T) ⊂ ∂D ∪ {0}. In particular, σp(T) ⊂ ∂D ∪ {0} and σ(T) ⊂ D.

b) If α ∈ σp(Tk), then ᾱ ∈ σp

(
T∗k

)
.

c) If α ∈ σap(Tk), then ᾱ ∈ σap

(
T∗k

)
.

d) The eigenspaces corresponding to distinct non-zero eigenvalues of Tk are orthogonal.

2) Assume that T ∈ k∆m,nwith k ≥ m. Then
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a) σap(T∗) ⊂ ∂D ∪ {0}. In particular, σp(T∗) ⊂ ∂D ∪ {0} and σ(T∗) ⊂ D.

b) If α ∈ σp(T∗k), then ᾱ ∈ σp

(
Tk

)
.

c) If α ∈ σap(T∗k), then ᾱ ∈ σap

(
Tk

)
.

d) The eigenspaces corresponding to distinct non-zero eigenvalues of T∗k are orthogonal.

Proof. 1) First, note that if T ∈ k∆m,n with k ≥ n, then by Theorem 2.9 we have TmT∗kTk = Tm. So,
R(T∗kTk

− I) ⊂ N(Tm) ⊂ R(Tn)⊥ ⊂ R(Tk)⊥. Thus, T∗kT2k = Tk.
a) Let α ∈ σap(T)\{0}. Choose a sequence (xn)n∈N of unit vectors such that (T − αI)xn −−−−−→

n→+∞
0. Then,

(Tk
− αkI)xn −−−−−→

n→+∞
0. And so,

0 =
〈
T∗kT2k(xn), xn

〉
− ⟨Tk(xn), xn⟩

= ⟨T∗kTk(Tk
− αkI)(xn), xn⟩ + αk

∥Txn∥
2
− ⟨(Tk

− αkI)xn, xn⟩ − αk.

As (Tk
− αkI)xn → 0 and (T − αI)xn → 0, we obtain αk(∥Txn∥ − 1) −−−−−→

n→+∞
0. Hence, ∥Txn∥ −−−−−→

n→+∞
1. Since

(T − αI)xn −−−−−→
n→+∞

0, |α| = 1.

b) Let α ∈ σp(Tk). Suppose first that α = 0. If 0 ∈ C\σp

(
T∗k

)
, then from T∗2kTk = T∗k we get that Tk is an

isometry. But this contradicts the fact that 0 ∈ σp(Tk). If α is non-zero, choose a non-zero vector x such that
Tkx = αx. Since T∗2kTk = T∗k, T∗kx = αT∗2kx. If T∗kx = 0, then 0 =

〈
x,T∗kx

〉
= ⟨Tkx, x⟩ = α⟨x, x⟩, which leads to

a contraction. Hence, 1
α = ᾱ ∈ σp

(
T∗k

)
.

c) is proven similarly.

d) Let α and β be distinct nonzero eigenvalues of Tk. If Tkx = αx and Tky = βy then 0 =
〈
T2kx,T2ky

〉
−

⟨Tkx,Tky⟩ = αβ̄(αβ̄ − 1)⟨x, y⟩. Since α , 0, β , 0, |β| = 1 and α , β, it follows that ⟨x, y⟩ = 0.

2) As is customary, the second assertion follows by duality. This completes the proof of the theorem. □

We end up with an elegant result on spectral properties of some partial isometries.

Corollary 4.7. Let T ∈ B(H) be a partial isometry such that N(T) ⊥ R(T). Then

1) σap(T) ⊂ ∂D ∪ {0}. In particular, σp(T) ⊂ ∂D ∪ {0} and σ(T) ⊂ D.

2) If α ∈ σp(T), then ᾱ ∈ σp (T∗) .

3) If α ∈ σap(T), then ᾱ ∈ σap (T∗) .

4) The eigenspaces corresponding to distinct non-zero eigenvalues of T are orthogonal.
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